
N96- 12940

An Object Oriented Extension to CLIPS

Clifford Sobkowicz

Government of Canads, Dept. of the Environment

McGill University, School of Computer Science

April 25, 1990

Abstract

A presentation of • software sub-system developed to augment CLIPS with _cilities for

object oriented knowledge representation. Functions are provided to define _, instantiate

objects, access attributes, and Msert object related facts.
This extension is hnp]emented via the CLIPS user function interface and does not require

modification of any CLIPS code. It does rely on int_n_l CLIPS functions for memory manage-

meat and symbol representation.

1 Introduction.

CLIPS (C Language Integrated Production System) is an expert system she]] which represents

knowledge by production rules which can be applied to asserted facts. Rules represent constant

knowledge of relationships between antecedents and consequent•, such as causes and effects. Facts

specify current information and are either asserted initially, interactive]y, or as the consequent• of

rl_es.

Objects are abstractions of knowledge about hypothetics] entities. They are represented as sets

of attributes, which can take numeric or symbolic values, and methods for for manipulating them.

Objects are members, or instances, of classes with common sets of attributes and methods. Each

instance has specific wlues for the attributes associated with its class. As attributes and methods

are qualified by specific objects po]ymorphi!m is provided for, whereby actions upon objects can

be affected by different means depending on the class of the object.

The capabilities presented here provide for extending rule consequents to include object reship-

ulation and allow for antecedents bMed on objects and their attributes as wet] as asserted facts.

Also, assertion of facts about objects is facilitated.

2 CLIPS rules and facts.

Kales in CLIPS are composed of • set of antecedents termed the left hand side (LHS) and a set of

consequent• termed the right hand side (R.HS). Facts are ordered sets of fields which can assume

single word, numeric, or quoted character string values. The antecedents of rules are patterns which

are matched against the current set of facts. They may include wildcard fields, variables which

are bound to one or more field values from matching facts, and logical expressions for constraining

652

field values. The consequents are actions such as asserting subsequent facts or side effects such as

outputting messages and variable values.

An important feature of CLIPS is the facility for invoking external functions on either the

LHS or the 11H$ of a rule. On the LHS functions can provide data for pattern expansion or be

implemented as predicate functions to constrain fields or test conditions. On the KHS functions

can perform side effects as consequents of rules. It is via these facilities that objects are created,

manipulated and accessed.

8 CLIPS Objects.

Objects in this sub-system are sets of named attributes which can take word, numeric or string

values. They can also take multiple values. Attributes are specified by an object name and an

attribute name. The data type of an attribute is set dynamica]]y.

Objects include methods which can manipulate the attributes. These are C functions which

are integrated with CLIPS, like other external functions, via the usrfuncs routine. Methods are

invoked by specifying the name of an object and a method selector in an invoke command, along

with any parameters to be passed to the function. Also, functions can be attached to attributes

and invoked automatically when the value is set or read. Different functions can be invoked from

different objects by the same attribute name.

3.1 Implementation.

Functions such as creating objects and accessing their attributes, are implemented by external
functions called from CLIPS rules.

Objects are designated by names which are CLIPS symbols and reside in the CLIPS symbol

table. They are identified by hash pointers so string manipulation is averted. Objects are imple-
mented as structures in a second table structured after the symbol table. The randomized bucket

number from the symbol table entry is used in the object table so as to speed searching. The loca-

tion of the last object referenced and the last object modified are retained, so performance can be

optimised by grouping commands which reference the same object. The object structure includes

the hash pointer of the name, a pointer to a list of attributes and a pointer to an inheritance list.
The attributes are stored in a linked list of structures which indicate the type of the attribute:

class, instance, or method, the type of the current data: word, number, string, or multiple, the

data itself: a pointer or floating point value, the attached functions: two pointers into the CLIPS

function table, and some information related to inheritance.

Multiple field data is stored as a linked list referenced from an attribute value element.

4 Classes.

Classes specify sets of attributes and methods common to groups of objects referred to as instances

of the class. They are represented by objects that are used as templates for instantiation. Attributes
are either class or instance attributes. Class attribute values are maintained in the class object and

are common to all instances of the class.

653

5 Inheritance.

Classes can inherit the attributes and methods of other classes. Thus genera] super classes can share

their functionality with more specific sub-classes which can add additional functionality. Multiple

inheritance is provided for in that a class can inherit from a number of classes allowing functionality

from general utility objects to be mixed in with super class mad local resources. Inherited classes

can include inherited resources themselves to _ted depth. Circular inheritance is disMlowed.

A priority can be specified for each inheritance to resolve conRicts when the same name appears

in more than one contributing class. The inheriting c/ass carries priority 100 so that inheritances

with priority less than or equM to I00 preserve the originM resources while those with priority

greater than I00 can replace them.

As an alternative to conflict resolution, methods can be declared as multiple in a class definitions.

An object can then inherit a list of procedures under a single method name. All of the procedures

will be called in sequence when the method name is invoked. It is the responsibRity of these

procedures to limit their results to non-conRicting side effects such as asserting facts or updating

separate attributes or to implement a combining algorithm such as summing or appending resRlts.

5.1 Implementation.

Each class includes an ordered list of inherited classes. The order is that in which the inheritances

where specified. The list entries reference the inherited object and indicate the priority of the

inheritance. Inherited class objects can inherit classes so the composition of a class is a tree

structured set of class objects.

6 Instances.

Instances of classes represent specific objects by maintaining specific data in instance attributes.

They inherit all attributes and methods of the class of which they are an instance.

6.1 Implementation.

When a class object is instantiated a new instance object is created. All of the &ttributes ofthe

class object _re copied to the new instance, and assigned a priority of 100. The tree of class

objects inherited by the specified class is traversed depth first. For each attribute encountered, if

the attribute is not yet present in the new instance it is copied and assigned the priority of the

inheritance. If the attribute is already present but the priority of the inheritance is higher than the

priority recorded in the instance it is overwritten.

In the event of equal priority, precedence is given to inherited objects according to the order

in which the inheritance was specified and class objects are considered to include their inherited
attributes.

When instance attributes are copied to the instance object the value in the class object is

copied along with pointers to any whQn-road and vhen-aet functions. Thus the attribute in the

class object serves to provide an initial value and attached functions.

When class attributes are encountered a pointer is placed in the instance object which refers
back to the class. Thus the data and attached functions remain common to all instances of the

class.

654

A Appendix: CLIPS commands.

The following are illustrations of CLIPS statements which create and manipulate objects. Famil-

iarity with CLIPS as documented in [I] is assumed.

A.I Overview.

CLIPS interfaces with the object oriented progrRmminE extension by LHS functions and P,.HS

commands implemented as external functions. The function arguments ob_ct, cl_s, instance,

attribute, method, or function refer to names which must be of type word. Attribute values can be

of any type. Parameters for methods or attached procedures are subject to the protocols of the

user supplied function.

Methods and attached procedures must be declared as external functions in usrttmcs. The

function parameter refers to the CLIPS name declared for the function.

A.2 Object manipulation.

Classes axe defined by a defclass construct which specifies attributes, methods, attached functions,

and inherited classes.

Instance objects axe created by iustantiation of a class. They inherit all attributes, methods,

and attached functions of the class.

Classes

(defclass class "comment "

(methods

(method function) (method function multiple) ...)

(instance-attributes

attribute[<-value/ (attribute/<-value] /(.hen-set function).]/(.hen-read function).]) ...)

(class-attributos

attribute/<-value/ (attribute/<-value.] /(.hGm-set function) f /(.hen-read function).]) ...)

(inherits

(class priority) cl_s ...)

Creates a new class with the given name and the specified methods and attributes. The

given function names must be the CLIPS reference names as specified in usrfncs. Multi-

field values are enclosed in parenthesis. Inherited classes must be already defined.

Instances

(instautiato class instance [attribute<-uaIue.]...)

655

Creates a new instance object for the specified class giving it the specified name. Optionally

specified attributes are initialized. The name of the new instance is returned as the function

value so that gen-sym can be used to create instance names which can be bound to variables
as the function value. The new instance becomes the current object and current instance.

(delet, e-insl;ance instance)

Removes instance objects from the symbol table and releases their memory.

A.3 Attribute manipulation.

V_lued attributes can be updated and referenced. Methods can be invoked.

Setting v_lues

(se_-a=_ribu=@ object attribute [datum [parameter...]])

Sets the value of the specified attribute, or flags it empty if no data given. Any previous

data is deleted.

The specified parameters are passed to any vhon-set procedures.

(appud-'co-at'cribute object attPibute datum)

Appends the given datum to a multi-field value. If the attribute wLs not previously a multi-
field wlue its contents, if any, becomes the first field. Appending does not invoke any attached

procedures as it is not known if the multi-field wlue is complete.

Retrieving values

(ga_-attributa object attribute [parometer ...])

Obtains the value of the specified attribute. Parameters if given are passed to any vhon-rQad

attached procedures.

Invoking methods.

(invoke object method [parameter...J)

Invokes the function for the selected method of the specified object and passes it the given

parameters. If the method was found in more than one inherited class only the first inherited

with the highest priority is called unless the method was specified as mu1_iple in which case

all multiple designated functions are called.

656

A.4 Predicate functions.

Predicates about objects can be used to constrain patterns or as tests in the LHS of rules. They

can thus prevent rules from making erroneous assumptions about objects.

Attribute of object?

(_est is-attribute object attribute)

Determines if the named attribute is in fact an attribute of the specified object.

(_es_ is-at_ribu_e-numberp object attribute)

(test is-attribute-wordp object attribute)

(Zest is-attribute-stringp object attribute)

Determines if the attribute is of a specified type. Returns false the specified object does

not have the specified attribute.

Inheritance?

(zest inherits class object)

Determines if the named object inherits the attributes of the specified class. The inheri-

tance tree above the object is searched for the class.

A.5 Fact assertion

Facts about attribute values can be asserted into the CLIPS fact list so as to relate knowledge

represented by objects to the inference engine. The facts are of the form (object attribute value

attribute value ...).

Single assertion

(assert-attribute object attribute ...)

Asserts a fact giving the object name followed by ordered p&irs of attribute name, and at-
tribute value. For s multi-field value all fields are reported following the attributes name.

(assert-instance object)

As above for all attributes of an instance.

Multiple assertions

(assert-lisz object attribute)

Asserts a fact for each field of a multi-field attribute.

657

B Appendix: User function protocol.

This protocol must be followed when writing C functions which are to be invoked from the object

oriented extension as Object methods. This includes procedures attached to attributes which are

called when-se_ or when-read.

B.1 Overview.

Object methods ore implemented as user defined C functions as specified in [2]. Information

pertinent to the object oriented extension is provided via function call parameters.
The interface functions provided by CLIPS remain accessible. This includes the CLIPS param-

eter passing routines such as runknow.
Utility functions are provided for accessing and manipulating objects and attributes from user

functions. These are used to access the invoking object or any named object.

when-set attached procedures are called before the attribute is updated. The new value is

passed as the first CLIPS function parameter and is obtained using CLIPS interface routines. It is

the responsibility of the function to update the attribute, possibly with a modified value.
ALl 1/01LDor STRING valued parameters are represented by CLIPS hash pointers.

As well as including required CLIPS header files the source should include objects .h in order

to access structures relating to the object oriented extension.

B.2 C Function parameters.

The object oriented extension calls methods and attached procedures with four parameters:

1. The name of the object which invoked the function. Type IIASH_PTIL

2. The name of the attribute to which the the function is attached. NULL if not an attached

function. Type IiaSll_PTlt.

3. A pointer to the attributes data field. The field is a union of float, HASH.PTIt, or NULDATUH.

4. The type of the data. An integer with possible values: W0P,I), NUMBEg, STItlNG, or MULTIPLE

as defined in consSan$.h.

5. The class from which the function was inherited.

The provided names allow for object specific and attribute specific processing. They can be

used as parameters to object access utility routines.
The data field pointer can be used to access and update the attribute's value. If s when-set

procedure the field will contain the previous value. The new value is obtained as the CLIPS

parameter selected by parameter four. The when-set procedure is responsible for updating the

value in the data field.
If the attribute is muJti-valued the data field is a pointer to a linked list of the form:

658

sypedef struct muldatum_fmt * MULDATUM;

ssruc$ muldatum_fmS

{
ins daSa_$ype; /, consSant.h VALUE */

union {HASH.PTR symbolic; floa$ numeric} data;

sSruc_ muldaSum_fmt *next; /* LIST LINK

};

,/

B.3 C Function returns.

when-read attached procedures return a resultant value which is reported as the attribute value.

The procedure must be declared as an appropriate type and this type must be specified in usrfuncs.

B.4 Utility routines.

Certain object oriented commands are accessible to external C functions via function calls. The

function names consist of the command prefixed by uf_ for "user function".

Parameters common to many routines:

Object identify" As with CLIPS function.

Attribute identifier As with CLIPS function.

type Au ins code indicating the type of an attribute value being affected.

I_BER, WORD, STRING or MULTIPLE as defined in the fde constant, h.

Can take the value

numeric A float attribute value.

alpha A IIASH_PTIt addressing either a CLIPS WORD or STRING attribute value.

B.5 Instance manipulation.

Creation

(uf_instansiaSe class instance)

Removal

(uf_delese_£nstance instance)

B.6 Attribute manipulation.

Setting values

uf..seS-obj•cS..aZSIibuSe (objectattribute[data/parameters]/)

uf.append__o_objecS-aZSribuSe(objectattribute/data/parameters]])

659

Retrieving values

(set_object_attribute object attribute/data/parameters/l)

B.7 Predicate functions.

The truth of predicates iB returned as CLIPS_TRUE or CLIPS_FtLSE as defined in constant .h.

Attribute of object?

ufAs_attribute(object attribute)

uf._s_ttribute.numberp (object attribute)

Ef_is.at_ribute_uordp(object attribute)

u_As.attribute_tringp(object attribute)

Inheritance?

u__inherits (class object)

B.8 Fact assertion

Single assertion

_.asssrt.attribut= (object attribute)

u.t_ass=z'zAnstance (object)

Multiple assertions

uf.assert.2ist C object attribute)

References

[1] Giarrateaao, Joseph C. CLIPS User's Guide. COSMIC, The University of Georgia, 382 East

Broad Street, Athens GA 30602.

[2] Artificial Intelligence Section, Lyndon B. Johnson Space Centre. CLIPS Reference Manual.

[3] Artificial Intelligence Section, Lyndon B. Johnson Space Centre. CLIPS Architecture Manual.

660

