
N96- 12943

Executing CLIPS Expert Systems in a Distributed Environment

James Tayl or

IntelliCorp, Mountain View, California, USA

Leonard Myers
CAD Research Unit, California Polytechnic State University

San Luis Obispo, California, USA

This paper describes a framework for running cooperating agents in a
distributed environment to support the Intelligent Computer Aided Design

System (ICADS), a project in progress at the CAD Research Unit of the Design
Institute at the California Polytechnic State University. Currently, the

system aids an architectural designer in creating a floor plan that

satisfies some general architectural constraints and project specific
requirements. At the core of ICADS is the Blackboard Control System.
Connected to the blackboard are any number of domain experts called

Intelligent Design Tools (IDT). The Blackboard Control System monitors the

evolving design as it is being drawn and helps resolve conflicts from the
domain experts. The user serves as a partner in this system by manipulating

the floor plan in the CAD system and validating recommendations made by the

domain experts.

The primary components of the Blackboard Control System are two expert
systems executed by a modified CLIPS shell. The first is the Message
Handler. The second is the Conflict Resolver. The Conflict Resolver

synthesizes the suggestions made by domain experts, which can be either

CLIPS expert systems, or compiled C programs. In DEMOI [I], the current

ICADS prototype, the CLIPS domain expert systems are Acoustics, Lighting,
Structural, and Thermal; the compiled C domain experts are the CAD system

and the User Interface.

686



COMMUNICATION FRAMEWORK

The communications framework supports multiple hierarchies of connections
among both C and CLIPS processes. Each connection provides an independent
two-way stream communication path between processes using UNIX sockets [2].
The current network of connections demonstrates some of the possibilities

(Fig. 1). From the point of view of the Blackboard Message Handler (MH),
the Conflict Resolver consists of a single connected component. However, to
increase performance, the rule set of the Conflict Resolver was divided into
three independent rule sets and distributed as separate processes across the
network. The User Interface has also been divided into two processes to
take advantage of the organizational power of the Rete Network in CLIPS and
the graphical display capabilities of the X Windows Tool Box.

MESSAGE HANDLER

The part of the Blackboard called the Message Handler (MH) is a CLIPS expert
system with additional functions for message passing. The MH has two primary
functions. First, it initializes the system by starting each IDT. Second,
it distributes modified values to IDTs that request them. The MH
initializes the system in two phases. During the first phase, the MH
establishes a connection with the IDT to allow message passing, and receives
the input requests specifying the blackboard values the IDT needs to produce
its results. During the second phase, the MH builds a hash table and
transmits it to each IDT to reduce future message sizes. An important
prerequisite in this framework is that all system components use the same
naming convention. Without a consistent naming convention, too much time
would be spent converting between different representations. This common
naming scheme is provided by a frame-based representation developed as part
of the ]CADS project [3].

REPRESENTATION

The particular-frame based representation used in ]CADS is implemented as a
set of CLIPS facts. A frame is a collection of information about a class or
object. The information is represented in CLIPS with a frame header fact
and any number of slot facts. Slots can define a particular value of the
class or identify a "has-a" relation to another class.

A frame header is a fact of the form:

(FRAME <class> <instance>) where
FRAME is a keyword,
<class> is the name of the class of this frame, and
<instance> is the frame identification number.

The FRAME header is useful in performing operations on the entire frame (ie.

deleting the frame), but is not needed to access the slots within the frame.

68_7



PROTOTYPE DATABASE

GEOMETRIC
POINT/LINE

DB

BUILDING SITE

TYPE DB

DB

USER INTERFACE

EXISTING
CAD

DRAWING
SYSTEM

NEW
DESIGN

INTERFACE

BLACKBOARD

ATTRIBUTE
LOADER

GEOMETRY
INTERPRETER MESSAGE HANDLER

CONTROL
IDT

IDT IDT IDT

Figure 1" ICADS System Diagram

688



A value slot is a fact of the form:

(VALUE <class> <attribute> <instance> <value>) where
VALUE is a ke_ord,
<class> and <instance> are the same as in the frame header,
<attribute> is the slot name or attribute, and
<value> is the actual value of the slot.

The <value> field is one or more values, depending on the nature of the
slot. For example, a slot for the coordinate of a point would have two
values, whereas a slot for the length of a wall would only have one value.

A relation slot is a fact of the form:

(RELATION <class]> <class2> <instance]> <instance2>) where
RELATION is a keyword,
<classl> and <class2> are the names of classes, and
<instance]> and <instance2> are the frame identification

numbers of <class]> and <class2> respectively.

An example of an architectural object is the room or space object. Shown
below is an instance of the class 'space' with an id number of 15, a name of

LOBBY, a center coordinate of (12B, 384), a perimeter of ]08 feet, and four
walls_

(FRAME space 15)
(VALUE space name 15 LOBBY)
(VALUE space center 15 128 384)
(VALUE space perimeter 15 108)
(RELATION space wall 15 1)

(RELATION space wall ]5 2)
(RELATION space wall ]5 3)

(RELATION space wall 15 4)

Changes to existing frames are made by inserting an action as the first
field of the slot. Slots can be added, deleted, and modified using the

keywords ADD, DELETE, and MODIFY. The ADD action asserts the slot. The
DELETE action retracts the slot, and the MODIFY action retracts the existing
slot and asserts the new slot. For example, if the above instance of a

'space' class exists and (MODIFY VALUE space area 5 216) is asserted, then

the following actions occur:

retract (VALUE space area 5 108)
assert (VALUE space area 5 216)
retract (MODIFY space area 5 216)

When the DELETE action is asserted with the frame header, the entire frame

(ie. all slots and the header) is retracted.

689



EXTERNAL FUNCTIONS

The external functions added to CLIPS to implement message passing are
divided into two categories -- initialization and transmission. Messages are
composed of any number of slots (te. CLIPS facts), and are received
explicitly with an external function that asserts the slots in the message.
Messages are built with commands that have been added to the standard CLIPS
command set and have the same syntax as the CLIPS 'assert' command.

INITIALIZATION FUNCTIONS

The functions used during initialization are briefly described below:

(new_server <name of process>):
Called by the MH and IDTs to create a server to allow future
connection. Returns zero if no errors occurred.

(connect bb [<name of message handler>]):
Called by an IDT to establish a two way connection between the
IDT and the MH. Returns IDT identification number. If no
argument is present, the IDT identification number is returned.

(accept_idt):
Called by the MH to establish a two way connection between the
MH and an IDT. Returns IDT identification number.

(unaccept_idt <IDT id number>):
Called by the MH to terminate the connection between the MH and

the IDT specified. Returns zero if no errors occurred.

(insert hstring <field]> <field2> ...)
CaITed by the MH and IDTs to add a string composed of the
concatenated fields to the hash table. Returns zero if no

errors occurred.

TFL_NSMISSION FUNCTIONS

The functions used during the transmission of facts are briefly described
below:

(receive message [<IDT id number>]):
Called by MH and IDTs to receive a message in FIFO order and
assert the facts in the message. Receives a message from only

the MH, if zero is supplied as the IDT id number. Receives a

message from only the ID7 specified, if IDT id number is

supplied. Returns zero if no errors occurred.

(bb assert (<fact 1>) [(<fact 2>) ...]):
-Called by IDTs to add facts to the message buffer. Uses the

same syntax as the CLIPS 'assert' command. Returns zero if no
errors occurred.

690



(bb end message):
-CalTed by IDTs to send the message buffer built with the

bb assert command to the MH. Returns zero if no errors occurred.
m

(Idt assert <IDT id number> (<fact 1>) [(<fact 2>) ...]):

Called by MH to add facts to the message buffer of the IDT

specified. Separate message buffers are maintained to allow

messages for different IDTs to be built simultaneously. Returns
zero if no errors occurred.

(idt end message <IDT Id number>):
Called by MH to send the message buffer built with the idt_assert
command to the IDT specified. Returns zero if no errors

occurred.

INITIAUZATION

The Message Handler (MH) has two phases of initialization. In the first

phase, it starts each IDT, establishes a connection to allow message
passing, and receives input requests specifying the slots an IDT requires as

input. Each IDT sends its input requests as its first message in the form

of 'input' value slots in an 'idt' frame. The following example demonstrates

the actions performed by the MH and two IDTs during the first phase:

MESSAGE HANDLER

(new_server "mhandler')
(system "sound.start')

(receive message (accept_idt))
(system Wlight.start')

(receive_message (accept_idt))

SOUND IDT

(new_server "sound')
(bind ?no (connect_bb "mhandler'))

(bb_assert
(ADD FRAME idt ?no)
(ADD VALUE idt input ?no FRAME space)

(ADD VALUE idt input ?no FRAME space name)

(ADD VALUE idt input ?no FRAME space area))

(bb_end_message)

LIGHT IDT

(new_server "light')

(bind ?no (connect_bb "mhandler'))

(bb_assert
(ADD FRAME idt ?no)

(ADD VALUE idt input ?no FRAME wall)

(ADD VALUE idt input ?no VALUE wall length)

691



(ADD VALUE Idt input ?no RELATION wall window))

(bb_end_mssage)

As shown above, an optional argument is supplied to receive_message to
specify that the next message be received only from the most recently
started IDT. This prevents messages sent by previously started IDTs from
being mistakenly received and interpreted as the input requests for the most
recently started IDT.

In the second phase of initialization, the MH builds a hash table to
decrease the percentage of time spent transmitting messages by reducing the
amount of information sent across the network. This technique reduces

message sizes by a factor of four or five. The MH builds the hash table
from the input requests of the IDTs. The keyword and class name fields of
the input request slots are concatenated into a string and entered into a
hash table. Then, when an instance of that slot is added to the message
buffer with bb assert or idt assert, the string of consecutive words starting
with the second field is converted t_ a hash code, transmitted across the
network as an integer, and then converted back to the original string of
words upon receipt. If the string cannot be found in the hash table, each
field is transmitted as a sequence of separate words. To insure that the
hash code is correctly converted back to the original fields, the MH and all
IDTs must have identical hash tables. Thus, even though an IDT may never
receive a particular slot, the slot name is still contained in the hash
table of the IDT.

Using the example from Phase I, the following strings would be entered into
the hash table of the MH, the sound IDT, and the light IDT:

(insert_hstring FRAME space)
(insert hstrtng VALUE space name)
(tnsertZhstrtng VALUE space area)
(insert_hstring FRAME wall)
(insert hstring VALUE wall length)
(insert_hstrtng RELATION wall window)

When the slot shown below is added to the message buffer, the second, third,
and fourth fields (te. VALUE space name) are converted to a single integer
hash code, sent across the network, and converted back to the original three
fields upon receipt of the message.

(bb_assert (MODIFY VALUE space name 5 RECEPTION))

DISTRIBUTION

After initialization, the basic loop of the MH receives the next available
message, distributes the slots of the message to the IDTs that request them,
and then retracts the slots. The following rules accomplish this for VALUE
slots:

692



(defru!e receive-message
(declare (salience 40))
?f <- (RECEIVE)
m>

(retract ?f)

(receive_message)

(defrule build-message

(declare (salience 30))

(VALUE idt input ?no VALUE ?class ?attribute)

(?action VALUE ?class ?attribute ?instance $?value)
->

(idt_assert ?no (?action VALUE ?class ?attribute ?instance $?value))

(assert (SEND FRAME idt ?no))

(defrule send-message

(declare (salience 20))
?f <- (SEND FRAME idt ?no)
->

(retract ?f)

(idt_end_message ?no)
)

(defrule loop-rule

(declare (salience lO))
(not (RECEIVE))
m>

(assert (RECEIVE))
)

Similar rules send the FRAME header and RELATION slots.

Assertion of (DELETE FRAME Idt <lOT Id number>) causes the MH to retract the
frame and terminate the connection of the IDT specified. This fact must be
asserted for an IDT to exit prior to receipt of (KILL) without causing an
error. Assertion of (KILL) causes the MH to distribute this fact to all of
the connected IDTs and then exit. The IDTs exit upon receipt of this fact.

693



COMMUNICATION ARCHITECTURE

There are three levels of C modules below the actual TDT in the
communication architecture (Fig. 2).

i K"O"EOOEB'SE! I CP O0"I
I Ii i i ,,o i
I I

I FACTIO J

!

Figure 2: Levels of C Modules in Communication Hierarchy

At the lowest'level in the hierarchy is the MESSAGE module which implements
transmission of information between distributed processes using UNIX
sockets. This module takes care of mapping the logical name supplied by a
process into a network address, creating and binding the socket to this
address, establishing multiple connections to a single socket, and receiving
facts from distributed processes in first-in-first-out order. The next
level in the hierarchy is the FACTIO module which implements reading and
writing of the elements in a CLIPS facts. This module hides the
representation and means of transmission of the fact. The next level in the
hierarchy depends on the language in which the IDT ts written. CLIPS
knowledge bases use KBIO, whtle C programs (te. CAD system, User Interface)
use BBIO. Both modules implement establishing a two way connection between
the MH and an IDT, and the hashing and unhashing of the static fields of
frame slots. The KBIO module allows facts to be transmitted using the same
syntax as the CLIPS 'assert' command. The BBIO module allows facts in the
frame format to be transmitted with a single C function call.

CONCLUSION

ICADS DEMOI is currently very stable. However, for the system to become
usable in a professional setting, the response time needs to be much faster.
Presently, the response time is slow because of the large size of the
knowledge bases. The response time could be increased by dividing the large
IDTs into multiple rule sets, and adding an expert system to coordinate
them. The communications framework supports this creation of multtple

hierarchies of expert systems.

An IDT should be divided into rule sets that are as independent of each

other as possible. This will minimize the transmission and subsequent

694



assertion of local facts between the sub-lOTs. In addition, one slow

sub-IDT will not affect the calculation of results from the other sub-IDTs.

Optlmumly, the facts produced by the sub-IDTs will be blackboard values to

be passed directly from the coordinating IDT back to the Blackboard Message
Handler.

The IDT would control its sub-IDTs using the same technique as the

Blackboard Message Handler. The multiple rule sets would be coordinated by

their own message handler. All communication among the rule sets would go

through thls message handler. Only this message handler would be connected

to the Blackboard Message Handler, allowing the IDT to continue to be

treated as a single connected component.

Based on run-time profiles of ICADS DEMOI, the percentage of time spent in

communication (5 percent) is insignificant compared to the percentage of

time spent managing expert system execution (75 percent). The functions

which are taking the highest percentage of time are join_compute, find id, and

request_block. The execution time of all these functions would decrease with
smaller rule sets. The savings gained _rom dividing large knowledge bases

outweighs the added overhead for the necessary communication.

The slowest and thus the most logical system to divide is the Conflict

Resolver. This knowledge base is the largest with over 250 rules. It would

be divided into three relatively independent rule sets: no conflict, direct

conflict, and indirect conflict. The no conflict division would have rules

to post a blackboard value which only one IDT produces. The direct conflict
division would have rules to decide the blackboard value based on

suggestions for that value from more than one IDT. The indirect conflict
division would have rules to infer a blackboard value from a set of other

blackboard values. The coordinating expert system for these divisions would

be implemented using the same rules contained in the Blackboard Message
Handler.

The Conflict Resolver is the largest and most complex knowledge base, and
thus would need to be divided first. However, in the future, each IDT will

be expanded to produce more in depth analysis and simulation, and thus

become larger and slower. When this time comes, these expanded IDTs will
also need to be divided.

REFERENCES

. Pohl, J., L. Myers, A. Chapman, J. Cotton (Ig8g); ICADS: Working Model

Version I; Tech. Report, CADRU-O3-Bg, CAD Research Unit, Design

Institute, Cal Poly, San Luis Obispo, California.

2. Kernighan, B. and R. Pike (IgB4); The UNIX Programming Environment;
PrenticeHall.

. Assal, H. and L. Myers (1990); An Implementation of a Framebased
Representation in CLIPS; Proc. First CLIPS Users Conference, Houston,
Texas.

_- 695


