
N96- 12944

\

Integrating Commercial off-the-shelf (COTS)
Graphics and Extended Memory packages with CLIPS

Andres C. Callegari

Computer Sciences Corporation

16511 Space Center Blvd.
Houston, Texas 77508

Abstract

This paper addresses the question of how to mix CLIPS with graphics and how to overcome PC's memory

limitations by using the extended memory available in the computer. By adding graphics and extended memory

capabilities, CLIPS can be converted into a complete and powerful system development tool, on the most

economical and popular computer platform. New models of Pcs have amazing processing capabilities and

graphic resolutions that cannot be ignored and should be used to the fullest of their resources. CLIPS is a

powerful expert system development tool, but it cannot be complete without the support of a graphics package
needed to create user interfaces and general purpose graphics, or without enough memory to handle large

knowledge bases. Now, a well known limitation on the PC.s is the usage of real memory which limits CLIPS to

use only 640 Kb of real memory, but now that problem can be solved by developing a version of CLIPS that uses

extended memory. The user has access of up to 16 MB of memory on 80286 based computers and, practically,
all the available memory (4 GB) on computers that use the 80386 processor. So if we give CLIPS a self-

configuring graphics package that will automatically detect the graphics hardware and pointing device present

in the computer, and we add the availability of the extended memory that eJfists in the computer (with no special

hardware needed), the user will be able to create more powerful systems at a fraction of the cost and on the

most popular, portable, and economic platform available such as the PC platform.

I. Introduction

Programmers who use CLIPS (C Language

Integrated Production System) to design large PC
applications with or without graphics have
encountered the problem of being left with

insufficient memory to run the application in a

guaranteed and l_roductive way.

This memory problem does not come as a surprise

considering that DOS normally uses 640 KB of
RAM to allocate the operating system, drivers,

buffers, TSRs ('Terminate and Stay Resident

programs), and for loading and executing programs.
DOS memory limitation constitutes a barrier that

impedes applications to use the full potential of
CLIPS and the standard features of the new

generation of PCs such as: extended memory,
higher resolution graphics cards and displays, etc.
It is important to realize that graphics and image

manipulation are usually memory intensive, and that
CLIPS memory requirement varies according to the

size of the knowledge base used.

Now, PC's are the most popular, portable,

accessible, and every time more powerful computer

platform available, and it will be a shame that
having such excellent hardware power and software

development tools such as CLIPS and high quality
off-the-shelf software packages, there should still be

problems using or developing large PC's

applications.

Fortunately for us, two events have happened. The
first event is that one of CLIPS blueprint goals was

to create a highly portable and low-cost expert

system tool that could be easily combined with

external systems. This goal facilitates the

integration of CLIPS with any external software
package(s). The second event is the fact that the
PC software market has been flooded with high

quality off-the-shelf software packages. These
software packages has been written for almost every

need, and by using the right combination of
software took (off-the-shelf graphics packages and

698



DOS memory extenders packages), the problems of

•using and creating large applications utilizing CLIPS

with or without graphics can be solved.

II. CLIPS Problem Areas

The solutions to graphics and memory problems

that arise when developing large applications using

CLIPS and applications mixing CLIPS with off-the-

shelf graphics packages can be grouped into three

main areas: CLIPS and extended memory, CLIPS

and graphics, and CLIPS using graphics and

extended memory. One of several ways to solve

each of these problems will be analyzed next. All
these solutions have been implemented, used, and

tested in an application or demo.

1. CLIPS and Extended Memory

Many PC programmers using CLIPS to build their

applications fred that they run out of memory while

designing, testing, or executing thei; programs.

Once this problem occurs, the only thing left is to
restructure the application in order to optimize

memory usage. But, as painful as it sounds,
sometimes there is no way around. Sometimes, the

knowledge base becomes too big, and CLIPS will

not have enough memory to operate. In most cases,
the only solution is to have access to more memory,

but, luckily for us, there are straight and easy

solutions for these kind of problems.

1.1 Using extended memory

On the PC.s, CLIPS runs on computers using the

old Intel 8086 chip as CPU or using a chip which

can emulate the operation of this chip. When a

program runs on a chip using this emulation mode,
it is said that the program is running in real mode.
Now, the new family of Intel chips (80286, 80386,

and 80486 chips) were designed with two working

modes (dual-mode chips). The first mode provided
full compatibility with older chips so that existing

programs will still run in the new computers. The

second mode was designed to give on-chip memory

management, task management, and protection
tools to new and more powerful operating systems

(multitasking and multiuser operating systems).
When a program runs in the second mode, it is said
that the program is running in protected mode.

Rules for programs running in protected mode are
more strict than those programs running in real
mode. Protected mode was designed to support

multitasking and multiuser systems, so direct access

to the hardware and to the operating system has to

be restricted in order to eliminate any possible

interference with other running processes or with

the operating system itself. A crucial advantage of

a program running in protected mode is that it

gains access to all the extended memory available in

the computer.

Normally, when CLIPS runs in real mode, DOS will

provide CLIPS with specific services: input/output,

fde system management, memory management,

processor management, etc. In general, all

programs will request any of these services from

DOS or will bypass DOS and access the hardware

directly.

Now, A.I. Architects, Inc. created a very interesting

software package which provides to a program
running in protected mode (and, therefore, able to

access directly all the extended memory available in

the computer) with all the services that DOS

normally gives to a program running in real mode.

This approach permits programs running on 80286

systems a direct memory addressing of 16 MB with

64 KB segments. On 80386 systems, the program
can directly access up to 4 GB, with segment sizes

as large as the memory installed in the computer.

1.2 Processing CLIPS

If the A.I. Architects package is installed in our

compiler package (there is a large list of compilers
and assemblers supported) and CLIPS source code

is correctly processed, CLIPS will be able to run in

protected mode. With CLIPS being able to run in

protected mode, CLIPS will have access to all the
extended memory available in the computer (15 MB

on 80286 systems and 4 GB on 80386 systems).
With access to extended memory, CLIPS will be

able to handle large knowledge base systems;
moreover, the size of the knowledge base that
CLIPS could handle will depend on the amount of

extended memory available in the computer.

In general, to make a C, assembly language, or
FORTRAN program run in protected mode will

normally imply the following steps: compiling or

assembling the program (.OBJ), linking with the
special patch libraries provided for each compiler
brand, and maybe postprocessing it by using a

special program which creates the final protected
mode executable. After these steps are performed,

one should load the kernel and load the program

699



into protected mode by using a special real-mode
program called loader, which tells the kernel to
manage and load the program into protected mode.

This enhanced version of CLIPS does not have the

memory limitations and problems that CLIPS and
PC users have suffered for so long. From now on,
CLIPS will be able to fully use the extended

memory normally available in the new powerful
generation of machines found in today's market
(machines based on Intels' 80386 and 80486 chips).
Powerful and highly productive expert systems can
be built at a very low cost, and they will be able to
use all the graphics power, portability, low cost, and
availability characteristic of PC platform's machines.

HARDWARE 1

Figure 1. All graphics routines are run in real mode;
CLIPS is nan in prmectcd mode, and the DOS extender
provides the communication links between protected and
real mode.

1.3 8086 Emulation

There is another solution which is not as complete
as the one discussedbefore but is very simple to use

and to implement. This option is only available for
80386 based systems, the 80386 chip has a virtual
V86 mode, which emulates real-mode of an 8086 or
80286 in virtual address space. This emulation

permits specially processed executables to run in
virtual V86 mode and to use direct addressing in
the device space. This approach gives the processed
executable a total linear addressing space of 1 MB
of RAM. Thus, if CLIPS is properly processed, it
will have the capability to directly address up to 1
MB of memory.

linear address space for itself to use. Spawn
processes don't take memory from the program,
since each spawn process generates a new virtual
V86 1 MB linear address space for the new process
to use. Another advantage of this mode is that each

process runs in a real-mode emulation, which
means, they do not have the restrictions imposed by

protected mode; they can bypass the operating
system and access the hardware directly.

In a few words, a program running in real mode can
have only 450 KB or less of free RAM memory left
for execution. The operating system, TSRs, buffers,
drivers, devices, etc. coexist in the same linear
address, while a process running in V86 mode uses
practically 1 MB of RAM exclusively for its
execution and use.

In order for a program to be successfully processed,
it must not used any unsupported DOS calls, and
the programs should not be tied to specific physical
addresses. The beauty of this solution is that the
executable (.exe) can be processed, and there is no
need to have the source code.

1.4 Performance

Now, the performance of a program running in a
80386 CPU in protected mode is faster than when
it is run in real mode. In a 80286 based system, the

performance is slightly slower because the 80286
chip needs to be reset (logic reset) every time it
switches from real mode to protected mode, and it

requires several overhead calls in order to return
control to the running program (shutdown logic).

1.5 Restrictions

When a program runs in protected mode, it is
subjected to more restrictions. First, the access to
physical memory is no longer direct; in this case,
indexes to descriptor tables are used instead of
addresses. Access to the physical address is made
through these descriptor tables when paging is not
enable, and the segment register contains a symbolic
representation of the address called selector.

One of the biggest advantages of this method is that
the operating system, TSRs, and drivers will all run
in real mode, so the application has a whole 1 MB

A second difference is that memory can not be
allocated in an arbitrary way. Third, one can not
write to a code segment, and one can not write past
the end of a segment. Fourth, a program can not
interfere with the operating system. This protection
is implemented to keep the operating system in
optimal and healthy conditions at all times. These

7OO



restrictions are necessary because 80286, 80386, and

80486 chips are design to support multitasking and

multiuser operating systems.

Figurt 2. Alter running • memory exhaustive test

program, CLIPS traucd s memory allocation error

me.ssagc after using 2.1 MB. of extended memory.

In Figure 2, there is a picture of a CLIPS program

processed so that it can run in protected mode.

The CLIPS source program being run from the
processed CLIPS executable has been designed to

exhaust all the extended memory available in the

computer. This test program continuously created

CLIPS data forcing CLIPS to request more memory
from the operating system until the system run out

of memory. The picture shows that CLIPS

requested 2.1 MB of memory from the operating

system before the system run out of memory.

1.6 Limitations

The EMACS-style editor could not be used. It's
code seems to violate rome of the restrictions,

discussed earlier, iml_osed over programs running in

protected mode. However, one can create a user-
defined function to call another editor until a cure

is found. A redefinition of the "system" command

is necessary. From now on, spawning is reserve for

executable files only (.exe) not command files

(.corn). This means that in order clear the screen,
one can not use the command [system "cls']

anymore. The solution is to create a small routine
to clear the screen and added to the user defined

functions. All of these problems can be fixed in the

future, but it is very important to notice that
unmodified CLIPS source code is being used and
mixed with the A.I. Architects DOS memory

extender package.

1.7 Conclusions

The ability of being able to run CLIPS in protected

mode and being able to access all the extended

memory available in the computer permits the

application programmer to create large applications

that can handle large knowledge bases. The new

generation of PCs based on the Intel 80386 chips

have processing speeds near the 8 MIPS mark, and

computers based on the 80486 chip have speed
around the 15 MIPS bench mark. With CLIPS

breaking the PC DOS memory barrier which

constrained CLIPS from being used to develop largc
PC applications, CLIPS will now be able to use all

the power and portability of the new PC

generations. Now, for example, powerful and

complete expert systems can bc run in a small but

powerful laptop computer, which can be taken and

run on practically any possible physical environment.

This combination of performance, portability,

graphics power, plus the intrinsic capabilities of
CLIPS is what CLIPS programmers have been

awaiting for. PCs are very powerful and fast but if

the operating system can't give programs enough

memory to work with, then all the good qualities

and power of the PCs are useless. From now on,
the situation is different; applications can use large

amounts of memory and can use all the new

features of the PC's (extended memory, higher

resolution graphics cards, mass storage, etc.).

2. CLIPS and Graphics

Sometimes an application needs to express some or
all of its output information in a graphical form or

needs to have a specialized graphical user interface
to interact with the user (icon menus, cascade

menus, dialog windows, etc.).

In the following paragraphs, two ways of mixing

CLIPS with graphics will be discussed. The first

method is to mix CLIPS and two graphical.
packages. In this first case, a driving program
controls the execution of the routines. The second

method consists in embedding graphics package(s)
into CLIPS and to define a complete set of user-

defined graphics functions into CLIPS. That is,

adding to the original CLIPS language a complete
set of graphics commands so that any graphic

output or image manipulation process can be
performed by issuing commands from these

extended language set. Each of this methods have
their own advantages and disadvantages.

701



2.1 EmbeddingCLIPS (First method)

CLIPS was designed so that it can be embedded

within other applications; therefore, when this

happens, it needs a driving program which calls

CLIPS as a subroutine. This driving program

controls CLIPS activation and normally can control

most of the graphics output of the application.

CLIPS can interact and interchange data with the

driving program in many ways: declaring user-

defined functions, passing variables from CLIPS into

external functions, passing data from external

functions to CLIPS, etc. It is very easy to integrate
CLIPS with external functions, which gives CLIPS

the capability to execute user-defined graphics

commands (C language, etc.) whenever it is needed.

In this way, both the controlling program and

CLIPS will be able to process, modify, or send

graphical information to the screen.

Figure. 3 This is • menu t'Teated by a e_endcd graphics

CLAPS command. I! displays an icon menu activated by the

mouse, and it uses aU available extended memory.

2.2 Using off-the-shelf packages

There are many off-the-shelf graphics packages that

can be used. Two of them (one from Metagraphics

Software Corporation and one from Ithaca Street

Software, Inc.) have excellent graphics packages that

combined provide the following features: complete
graphics environment support, a complete set of

utilities for developing multi-window desktop

applications, independence over graphics
peripherals, icon manipulation routines, plus a

complete and powerful set of graphics drawing
functions. These features provide most of the tools
needed to build any kind of graphical information,

graphical objects, and complete user interfaces.

These software provide most of the necessary

routines needed to build higher use,' interface tools

like pop-up menus, windows, image processing

routines (frame animation, etc.), icon manipulation,

automatic graphics hardware detection of graphics
cards and mouse, etc.

The result of combining CLIPS with the graphics

tools provided by these software packages is a

complete and powerful set of software development

tools. Computer Sciences Corporation created for

NASA an application which mixes these graphics

packages (from Metagraphics Software Corporation
and Ithaca Street Software, Inc.) with CLIPS using

Borland's C compiler as the blending environment.

Figure 4 shows a screen of the application which

was develop using CLIPS 4.3 and ti_e tools provided

by the packages described above. A complete user

interface (popup menus, Icon menus, help windows,

etc.) and automatic hardware detection capabilities
were created or provided by the former packages.

In addition to this, a set of specialized graphics

functions aimed to manipulate graphical objects on
the screen were built too.

2.3 CLIPS Graphics Version (Second Method)

In the second method, CLIPS possesses all the

graphical capabilities to create and manipulate

(using its new set of graphical language commands)

any graphical object on the screen: menus, image

manipulation, icon manipulation, graphics functions,
etc. In Figure 2, 5, and 6, there are examples of

applications that use all the extended memory

available in the computer and that use a mouse to
activate the icon menus. These icon menus were

created using the new set of CLIPS graphics

commands (icon management and graphics

environment provided by Metagraphics Software
Corporation and Ithaca Street Software, Inc.).

When an option is chosen" a fact specifying the

chosen option will be asserted into the CLIPS fact
list. Figure 5 gives a demonstration of text

management, size, and the different kind of fonts
available in the e._ended graphics CLIPS version.

The advantages of this method is that all programs
will be written as part of an extended CLIPS

language, they will run in interactive mode (easy to
maintain, perform tests, or debug), and they will not

need a driving program. The best part is that after

modifying the code, there is no need of recompiling
or relinking the program. This will give the expert

system total and continuous control over the

702



process. Sometimes, if there is a driving
program(s), information has to be passed to CLIPS
to update any change in the state of the system that
happened while the driving program was in control

Figure 4. This figure shows the display of an ICAT

system created by mixing CLIPS and graphics in a C
environment.

Graphics commands behave and are issued exactly
like any other CLIPS internal command, and rules
containing graphics commands will behave like any
other rule does.

Figure 5. This figure shows [on! management and the

svtilablc fonts (provided by Borlands C compiler) used

in |he extended memory/iffaphics CLIPS v¢lzion.

2.4 Performance

The applications described above were tested on a
PC running at 25 Mhz., 100 ns RAM memory, with
coprocessor, and with a VGA card/monitor. The
applications didn't have any problems in what speed
pertains; CLIPS, the user interface, and the graphics
responses run smoothly and pleasantly fast.

2.5 Memory Limitations

For systems that use CLIPS and a moderate amount
of graphics (does not need a complete user
interface or image manipulation routines), these
graphics packages will provide the perfect
development solution, and the application will
almost have the same limitations as a normal CLIPS

program (just a little less memory free for CLIPS).

The application in Figure 4 possesses a complete
graphical user interface, works on graphical objects,
and does a lot of image manipulation. Therefore,
it is anticipated that after loading the program,
there will not be much memory left for CLIPS to
work with. This fact directly implies that there will
be a strict limitation in the size of knowledge base
that can be loaded and/or used by CLIPS.

If the knowledge base consumes most of the free
memory left in the computer, then it will be very
probable that CLIPS will run out of memory at run
time. This is why an application using CLIPS and
intensive graphics can not run in a guaranteed
(knowledge base can grow and consume all the
memory) and productive way (if the knowledge base
is limited to a certain size, the application main goal
will be restricted too).

2.6 Conclusions

Thanks to CLIPS special features and design,
CLIPS can be easily integrated with off-the-shell's
graphics packages. These added graphics
capabilities give CLIPS the power to express output
in graphical form, which is needed in a large
number of applications (simulations, training,
charting, etc.), or in those applications that need a
specialized graphical user interface (image
manipulation, icon menus, etc.).

For large applications that use CLIPS and intensive
graphics manipulations, a second package (DOS
memory extender) has to be added. This package
will permit CLIPS to run in protected mode and the
graphics part to run in real mode. In this way,
CLIPS knowledge base can grow as big as it needs
and the graphics part of the application will have
enough memory to operate without any problems.

"/03



3. CLIPS, Graphics, and Extended Memory

3.1 Problems

Developing an application that uses CLIPS in

extended memory and graphics involves a deeper

understanding of how real mode and protected
mode work. First, off-the-shelf graphics packages

provide only libraries and object files. Most

packages do not provide the source code; therefore,

it will not be possible to process the code so that it

can run in protected mode. Second, there are
software whose code access directly the hardware

(direct screen write, etc.); protected mode will not

let these programs access the hardware directly.

Figure 6. Th_ is a sample of rome graphics features

available in the extended memory/gntphict version of CLIPS.

3.2 Solution

The solution consists in running the hardware

dependent routines in real mode, where they can
access the hardware directly, and to run all non

hardware dependent code in protected mode. A.I.

Architects developed mechanisms for interprocessor
communication. A routine running in protected

mode can pass data to a routine in real mode which

will process the data and will return data to the

protected mode application. There are two more
ways how a real procedure can communicate with a

protected-mode application. The real procedure

can signal a protected-mode handler, or one can
make use of interrupts.

If the application is going to use graphics (graphics
run faster if the graphics routines can access the

hardware directly), the best solution will be to run

all the graphics routines or hardware dependent
routines in real mode. The required communication
finks will be established with the protected mode

application so that the application can issue any

graphics command. Figures 3, 5, and 6, show

screens of an appfication created by the extended

graphics version of CLIPS. This version of CLIPS
runs graphics in real mode and runs all other

CLIPS routines in protected mode. When CLIPS

needs to issue a graphics command, it will make a

call to the real procedure and will pass the needed

data so that the real procedure can execute the

graphics commands. This extended CLIPS version
that includes graphics and extended memory was

built using packages from Borland, A.I. Architects
Inc., Metagraphics Software Corporation, and from
Ithaca Street Software Inc.

3.3 Limitations

The transaction buffer size is 4 KB. This buffer is

used to pass data when the protected mode

application calls a real-mode procedure. One can

get around this problem by using interrupts or real

procedure signals. Second, the number of real

procedures can not exceed 32. Considering that
DOS only uses 640 KB of memory, 32 real

procedures will be sufficient for most purposes. If

the real procedure is called as an overlay, then the
CS:IP in the EXE header is needed; therefore, the

executable must be an .E file not a .COM file.

3.3 Conclusions

In appendix A, there is a list of graphics commands
used by the extended version of CLIPS. This

graphics version of CLIPS uses extended memory
and was created using the packages mentioned in

section 3.2. Appendix B contains two rules that cut

a portion of an image on the screen and will slide it
randmoly around the screen. One excellent feature

provided by the off-the-shelf packagcJ is the ability
to detect the graphics hardware and pointing device

present in the computer. The PC platform has a
wide variety of hardware and is difficult to keep
track of all the different brands anu models. This
feature frees the user from the trouble of

configuring the application for the particular system
in which it will run.

Applications created using this method has the
advantage that all programs are written in the
extended CLIPS language (expert system, graphics

output, and user interface). In order to run
different applications, the only executable needed is
the extended version of CLIPS. If the application

704



needs to be modified, only the application code
needs to be changed without needing to compile or
link the source code again. Moreover, all the tools
llke fonts, drivers, and graphics routines will

altogether coxist in one CLIPS executable package.
Applications will only consist of source code and
data; thus, large amounts of storage space will be
saved permiting even PCs with small storage devices
to store complete applications.

III. Concluding Remarks

Section 1 shows a way overcome CLIPS memory

problems by using extended memory;, section 2
shows a way to mix graphics with CLIPS, and
section 3 shows a way to use CLIPS in extended
memory and how to mix it with graphics. Again,
this is only one way to solve these problems, but if
you are designing a large application on a PC, you
will surely have one of the problems discussed in
this paper, so if you have any of these problems and
don't have a solution, or you are thinking in
designing a large application, this paper provides
you with the information needed to solve that
problem.

The best outcome of the whole process is that PC's
applications, built using CLIPS and graphics, can
overcome the 640K memory limitation imposed by
DOS, and applications using CLIPS will be able to
handle large knowledge bases. This capability
allows developers to use the PC platform as an
application development and delivery platform, and
will permit users to enjoy the power, low cost,
portability, and accessibility of the new generation
of PCs.

705



APPENDIX A

Extended CLIPS version

(Graphics and Extended Memory)

List of Graphics Commands:

initialize-graphics

draw-bar

memory-left

change-bkcolor-to

set-viewport

draw-rectangle

clear-viewport

clear-screen

draw-ellipse

draw-circle

draw-piesliee

draw-point

mouse-in-rectangle

pt-in-rectangle

set-active-page

limit-mouse

set-draw-mode

key-pressed

max-screeny

ed

draw-arc

set-timer

draw-sector

draw-linerci

draw-line

draw-polygon

draw-lineto

pause

draw-bar3d

status-message

pause-keyortime

fill-pattern

status-message-top

set-linestyle

move-mouse

random-number

move-cursorrel

move-cursor

set-visual-page

get-scankey

Initialize-Animation

rectangle-animation

set-usercolorpattern

I

write-grstringxy I erase-mode

write-grstring

set-textstyle

set-text justify

hide-mouse

show-mouse

mouse-waitchange

_et-usercharsize

mouse-waitrelease

mouse-waitpress

mouse-RightPressed

mouse-LcftPressed

mousc-AnyPressed

mousc-MiddlcPressed

mouse-positiony

mousc-positiortx

max-scrcenx

clcar-lcxt

close-animation

text-attribute

mouse-visible

set-palette

draw-icon-bar

I free-mouse-draw

cursor-shape

draw-menu

save-image-file

read-image-file

write-image

read-image

grid-pick

release-image

set-rectangle

close-graphics

set-nosound

set-sound

spawn-process

] draw-tc_box

bell

I text-xy

set-delay

706



APPENDIX B

Extended CLIPS version (Sample Source Code)

These are two rules that when fire, they will cut an image from the screen and will move

it randomly around the screen. The move will be performed in the specified number of

steps. Before running the program, the command "initialize-graphics" has to be run

interactively from CLIPS or added to the CLIPS initialization rule.

This Rule Reads an image from the screen and initializes the animation procedure.

(defrule copy-rectangle

(initial-fact)

(limit-mouse 0 0 639 479)
(read-image 251 251 349 349 1)

(clear-screen)

(write-image 255 255 1)

(release-image)

(Initialize-Animation 251 251 349 349)
(clear-screen)

(assert(count 80)

(animation-start)

(do animation)
(coord 251 251)

(rectangle-start)))

; Limit mouse movements to specified box

; Read image in specified box (cut)

; Clear the graphics screen

; Write image to specified position (overwrite)

; Free image resources

; Initialize animation for given box.

This rule moves the image ramdomly around the screen 80 times.

(defrule do-animation
?one<-(do animation)

?two<-(coord ?a ?b)

?three < -(count ?cc)

(test (> ?cc 0))
(test (key-pressed))

m>

(retract ?one ?two ?three)
(bind ?x (random-number 539))

(bind ?y (random-number 379))
(bind ?w (+ ?a 98))

; Begin process
; Retrieve actual coordinates
; How many times more do we need to fire this rule

; Stop moving..?
; Test if key was pressed, if pressed don't fire rule.

; Create random numbers within the screen size

(bind?z (+ ?b 98))

(bind?cc (-?cc 1)) ;Working variables.

(rectangie-animation ?a ?b ?w ?z 5 ?x _ 0) ; Move image using given arguments

(assert (do animation)
(coord ?x ?y)(count ?cc))) ; Repeat until count is reached.

707


