
N96- 12946

A Graphical Interface to
Using SunView

CLIPS

=

/

Terry Feagin
University of Houston - Clear Lake

Abstract

The importance of the incorporation of various graphics-oriented
features into CLIPS is discussed. These features, which have been implemented

in a version of CLIPS developed for a popular workstation, are described and

their usefulness in the development of expert systems is examined.

Introduction

When developing expert systems that are intended to interact heavily with
the user (as opposed to those systems that operate in a primarily independent

manner), it is essential to provide an interface that enhances and accelerates the
process, that allows meaningful dialog with the least effort, that provides clear and

unambiguous two-way communication, that expedites the handling of sensitive or
emergency situations, and that provide intuitive mechanisms for giving commands
to and for receiving responses from the expert system. Computer graphics has

long been recognized as a valuable aid in facilitating the flow of information

between users and their computer-based applications. Instead of allowing only a
few one-dimensional streams of characters (i.e., input and output files and a

command line interface), modem computer graphics admits the possibility of

interacting with the user via a number of two-dimensional color images that can
move or be influenced directly by the user using a mouse, light pen, keyboard,

joystick, or other graphic input device. The images are often organized into
windows and user-interaction is often provided via menus that are
mouse-selectable.

There are, of course, several enhanced versions of CLIPS that provide support

for graphic-based interactions. However, these are primarily provided to enhance

the giving of commands or setting conditions at the top-level (which level of
support, it might be added, is also provided by the system described below).



For example, the Macintosh interface allows users to clear, load, reset, run, etc.

by making conventional menu selections. However, there is no direct support for
opening Windows or generating menus from within an executing expert system.

Because of the extensible nature of CLIPS, it is not difficult to develop such
support by adding user-defined functions. This paper, as well as several other
papers presented at this conference, offers the expert system developer the ability
to support directly such graphic-oriented interfaces to the user.

In an expert system, it is often desirable to convey to the user a set of conditions
that may be true or false or indeterminate (inactive, disabled, etc.). Additionally, it
may be important to show a precise measurement or reading. In the traditional
command-line versions of CLIPS, these conditions would normally be exhibited
via printed messages. In a graphic-oriented interface, the natural vehicle for
conveying such information would be to provide an image or icon that might be
immediately recognized by the user and to alter the image in a way that might
graphically depict the level of the condition. For example, in an expert system
developed to assist the operators in a nuclear power plant, excessive temperature
conditions might be indicated by flashing red in an image depicting a
thermometer. In an expert system developed to control a chemical reaction, the
pH of a solution might be indicated by showing a dial. If the pH exceeds certain
limits (either high or low), then the dial could be repainted, for example, in red for
low pH and in blue for high pH values. If a serious or emergency condition holds,
a graphic-oriented interface might be set up to flash the whole screen or window in
color, to set off audible alarms (such as a beep or buzzer sound), to present the
operator with an alert window with various possible actions or options designated,
and to allow the operator to view and evaluate the consequences of his/her
actions on the system via explanatory text revealed in windows and additional
diagrams of equipment, meters, or fault nets.

Specific Advantages of a Graphical Interface

Most of the advantages of providing a graphical user interface to an expert
system are obvious. Human operators are usually more receptive to a new
environment if it is intuitive, pleasing to the eye, and easy-to-learn. A
well-designed graphical interface assists the operator in visualizing the problem
at hand, the relationships between entities in the system or variables in the
problem, the ways in which she/he can or cannot affect the behavior of the system
or the solution of the problem, the current state of the system or the solution
process, the distinction between essential and non-essential characteristics or

conditions, and any hierarchical organizational relationships.

734



Any change in the system can be identified almost immediately and the more
significant changes can be allowed to trigger the more visually stimulating
graphical effects (such as flashing lights or images and alert windows). This kind
of separation of more significant from less significant events is difficult to
accomplish as effectively with a simple command line interface.

Animation of windows or objects within windows can be used to represent

higher level concepts such as a sequence of actions or events that are particularly
difficult to represent in a simple command line interface. This is especially helpful
if the speed of the animation can be varied.

In a graphical user interface, it is easier to control and restrict the user's input
when it is important. Typographical errors can be eliminated. Other types of user
input errors such as clicking on the wrong object are possible, but can be readily
monitored and the user can be requested to confirm any unusual input.

Even a simple presentation of images within windows can be effective. The
images can be used to present aspects of the problem or system that are
otherwise difficult or impossible to present. In many of the science and
engineering disciplines, there are times when some kind of two-dimensional
image is the best way to represent a problem or method of solution. For example,
in an expert system that might be used to help solve heat transfer problems, it may
be desired to show the temperature distribution over the surface of some physical
object like a flat plate of copper. The actual temperature distribution could be
displayed as a color-coded image within one of the windows and used to show
progress toward a solution.

In an object-oriented approach within CLIPS, one may wish to identify specific
graphic objects or items that represent the objects about which the system is
reasoning. As the attributes of the objects change, the graphic representations
(position, size, shape, color, motion, etc.) could be made to change as well,
thereby giving the user a view of the reasoning process that might be difficult to
provide with the more usual command line interface. As the new object-oriented
version of CLIPS emerges, this advantage may become even more significant.

Another advantage of a graphical approach concerns explanation facilities. If
one creates an expert system in which the user can simply depress a mouse
button over an object to signify that the user requires an explanation of the
reasoning process or simply requires help regarding the meaning of the object,
then the expert system can be more readily understood and may even be used for
training new users. Also, if a user enters an unusual, expensive, hazardous, or
dangerous request of the system, the system can ask for confirmation with an alert
window complete with a cautionary warning. Security can be enforced by
requiring passwords at critical points before actions are taken.

735



A graphics environment is less tiring to the user. Graphical output is generally
able to convey more information with less eyestrain than simple text. In a
command line interface, a user may miss an important detail that can become lost

in line after line of alphanumeric characters. For input, many users often find that

using a mouse is easier than typing.

Some Graphics Primitives Useful in Creating Expert Systems

The kind of graphics primitives that one might select for creating an expert
system will undoubtably vary from one application to another. A general expert
system shell that proposes to support the user in all of the ways mentioned above
must therefore be able to support a wide variety of graphic objects and functions.
In this section, several kinds of graphic objects and functions are described and
some examples of how they might be used in an expert system are given.

WINDOWS - A CLIPS programmer should be able to call functions that
cause windows to be created, opened, closed, hidden, exposed, and destroyed.
The size and position of any window should be adjustable from within CLIPS or
directly by the user. Other useful attributes might include scrollbars, labels, and
colors. The windows should have the same appearance as non-CLIPS windows.
It should be possible to retrieve most window attributes directly.

ITEMS - There should be the ability to support a number of graphic objects or
items within each window. It should be possible to create, hide, show, and destroy.
items. It should be possible to label the items, and move them about under user

control or program control. Several especially useful types of items might be
identified. For example, a button item would be useful for selecting conditions or
indicating operator actions. Most graphical interfaces provide for this type of
object. Such items should be displayable as general graphical images in color or
as simple labeled buttons. Another useful type of item would be text items. These
items could be used to prompt the user for input with text strings and enable the
user to enter filenames, passwords, or other text input. Such objects could also be
used for short messages to the user. Other types of items might also be defined.
Animation of items would be also useful, particularly in simulations (another area
where the use of CLIPS is growing rapidly).

736



Items should be selectable and the result of a user selecting such an object
should be the assertion of a fact describing the event. It would also be useful for

items to be highlighted when selected, thereby providing positive feedback to the

user. It would also be useful to be able to get most item attributes directly.

MENUS - Menus should be supported for both windows and items within

windows. Menus should be displayed according to the conventions supported by

the windowing system in general. Whenever a menu selection is made, a fact

should be asserted describing the selection. It should be possible to remove a
menu and create a new menu for an item or a window.

DRAWING PRIMITIVES - Certain simple drawing primitives should be provided

as a minimum, including the ability to draw lines, draw polygons, fill regions, load

images from raster files into windows, and save window images (all in color, of

course). It would also be important to be able to get the pixel value at a particular
location within a window.

OTHER FEATURES - Other helpful features of a graphical interface to CLIPS

would include the ability to change the color definitions in the colormap segment
for a window, to cycle a window's colors, to repaint a window, to cause an item to

be highlighted, to change the menu for an item, to remove all items in a window, to
remove all windows, and to remove all the items in all the windows.

There are also a number of functions that might be provided for debugging

purposes such as the ability to print a list of all the windows or a list of all the items
in a window for examination.

Implementation : Some Questions

Most of the functionality for graphical objects described above is supported for
C programs executing on Sun "rM workstations under the windowing system
SunView TM. Making this functionality available to CLIPS programs is somewhat

complicated by a number of issues:

How many of the hundreds of options available under SunView are really

important for supporting the development of expert systems ? What features not

currently supported by SunView should be added ?

Should the central control loop remain within CLIPS or should control be given

to the main loop in SunView and returned to CLIPS only for the handling of

predesignated events ? The latter callback mechanism is the one normally used
when developing SunView applications. Also, how should multiple simultaneous

input streams be treated ?

737



Should the SunView distinction between a window for images or drawings
(known as a "canvas" in SunView) and a window for button and text items (known
as a "panel') be maintained or should a "new" type of window be adopted that
would incorporate the essential features of both panels and canvasses ? The

second approach would be less confusing and present additional power to the
CLIPS programmer.

Implementation : Some Answers

Out of the hundreds of options available to general SunView applications, it
was decided that only those most useful to the expert system developer would be
supported. In the current version of the system, the most significant functions
supported are as follows:

create "_window- causes a window to be created with attributes as specified,
remove_window - causes a window to be destroyed, releasing resources used,
remove_all_windows - causes all windows to be removed,
hide_window - causes a specified window to be hidden from view,
show_window - causes a hidden window to be exposed,
open_window - causes a closed, iconified window to be opened,
close_window - causes an open window to be iconified or closed,
set_window - allows resetting of a window's attributes,
get_window - allows retrieval of a window's attributes,
set_window_color - allows redefinition of the particular colors used in a window,
set_window_fg - sets the window's foreground color,
set_window_bg - sets the window's background color,
draw_window - allows drawings to be created within a window,
load_window_image - allows a user-specified image to be loaded in a window,
save_window_image - causes the window's image to be saved in a file,

create_item - causes an item of specified type to be created in a window,
remove_item - causes an item to be removed permanently from a window,
remove_aJl_items - causes all the items in a window to be removed,
remove_all_items in all windows - causes all items to be removed,
hide_item - causes an item to be hidden from view,
show_item - causes an item to be exposed,
set_item - allows for resetting of attributes of an item, including its image,
get_item - allows for retrieving attributes of an item,
highlight_item - allows the item to be highlighted for a flashing effect,
animate_item - permits the item (i.e., its image) to appear to move within a

window at a specified rate of speed,

738



create_item_menu - causes a user-specified, item-dependent menu to be
created for the item,

remove_item.menu - causes menu to be removed from the item,
set_item_menu - allows menu attributes to be established,

get_alert_window - causes an alert window to be displayed and blocks user
from entering input (except to indicate a response to the alert),

cycle_window_colors - allows the colors in a window to be cycled,
repaint_window - allows the window to be repainted,
snooze - causes CLIPS to sleep for a user-specified number of milliseconds,

list_windows - causes a list of the presently defined windows to be produced,
list_items - causes a list of presently defined items to be produced,

In almost all of the above functions, the number of arguments has been limited

in order to make the syntax of each function easier to remember. The arguments
are generally ordered in such a way that the most significant arguments appear
first, thus allowing the CLIPS programmer to omit some of the less significant
arguments (thereby implicitly specifying default values for such arguments).

In addition to the explicit function calls listed above, a user can interact with the
system in a number of ways, primarily by making mouse movements and mouse
button selection over windows, items, and menus. Text entry is also supported.

Regarding the issue of control, it was determined that the central control loop of
CLIPS would be maintained and that SunView's Notifier (the dispatcher which
allows client programs to register event handlers and receive notifications later
when the respective events occur) would be called explicitly after each rule firing
and implicitly during any blocking or non-blocking read. This allows the user to
obtain good response to graphics input events while CLIPS is firing rules and also
when the user is entering commands or function calls directly to the CLIPS prompt.

It was also determined that the distinction between a canvas and a panel in

SunView would be superfluous. The features of both have therefore been
combined by adding the essential features of a canvas (namely, most
two-dimensional graphics primitives such as drawing lines, constructing images,

setting colors, and getting pixel values) to the panel type of window. Therefore, to
the CLIPS programmer, there appears to be a core type of window that allows for
buttons, simple text interactions, and color graphics output.

Another feature that was not directly supported under SunView is the dynamic
movement of items under user control. By dragging the item with the middle
mouse button depressed, the user can reposition the item at will. Afterwards, the
new position of the item is reported to CLIPS as a new fact assertion. These last
two features make the package much simpler and more useful for developing
expert systems.

739



The animation of an item is also not directly supported under SunView.
However, given the growing interest in using CLIPS for the development of

simulations (whether or not such simulations are a part of an expert system), the
animation feature as given above has also been provided.

• J

Concluslons

The project has now been successfully completed and over thirty-five new
functions (mostly graphics-oriented) have been added to CLIPS. Work is now
underway to enhance these capabilities even further and study their usefulness
within several existing expert systems.

740


