
f
i,/"

N96- 12954

EMBEDDED CLIPS FOR SDI BM/C3 SIMULATION AND

ANALYSIS _/
/-"

Y.
Brett Gossage and Van Nanney
Nichols Research Corporation

4040 South Memorial Parkway
Huntsville, AL 35802

a.e.S_T.Ka.C

Nichols Research Corporation is developing the BM/C 3 Requirements Analysis Tool

(BRAT) for the U.S. Army Strategic Defense Command. BRAT uses embedded CLIPSIAda
to model the decision making processes used by the human commander of a defense system.
Embedding CLIPS/Ada in BRAT allows the user to explore the role of the human in Command
and Control (C 2) and the use of expert systems for automated C 2. BRAT models assert facts

about the cmrent state of the system, the simulated scenario, and threat information into
CLIPS/Ada. A user-defined rule set describes the decision criteria for the commander. We
have extended CLIPS/Aria with user-defined functions that allow the firing of a rule to invoke a
system action such as weapons release or a change in strategy. The use of embedded
CLIPS/Aria will provide a powerful modeling tool for our customer at minimal cost.

THE PROBLEM

Battle Management, Command, Control and Communication (BM/C 3) systems

accomplish the automated control of tactical and strategic military systems. Large-scale BM/C 3
systems such as for the Strategic Defense System (SDS) present several difficult problems.
Decision rimelines are too short and amounts of information too vast for a human Man-in-the-

Loop (M1TL) to effectively control or interact with the system without automated decision
making or decision support. It is unlikely (and undesirable) that any experience will be gained
in actual combat for building a set of rules for an automated SDS decision system. It is also
unlikely that the builders of the system will accept full automation of all decision functions.
That is, the system designer will require "positive control" of the system by some human
commander. Computer simulations of the system are the only currently available method to

study these problems. These studies are done in two fundamentally different ways. One is to
create simulated command centers with human participants and the other is to use detailed
simulations with embedded rules of engagement.

Simulated,"mock-up," command centers with human participants drive real-time

displays with discrete simulations or scripts. Separate simulations may generate the scripts
independently in non-realtime mode. These scripts have to be generated separately since the
run time for full-scale SDS simulations is generally to long for real-time displays. Automated

decision software may also be used for decision aids. The main drawback of such studies is
that the decisions of the commander cannot affect those parts of the simulation that are run off-

line. Thus, the decision loops can only be closed for the more simple parts of the simulation.
Closing this loop becomes a Hobson's choice between lowering model fidelity to close the

831

decision loops and leaving some loops open to gain higher model fidelity. However, such
simulations provide a means to study the appropriate decision aids and decision criteria for the

human commander and provide uaining for command center personnel.

Another method for studying BM/C 3 decision making is to embed an expert system
tool in a simulation of the system of interest. This tool may consist of an inference engine and
a rule base.J1] This method allows the closure of all decision loops since running in real-time
is not an issue. The main drawback of this method for SDS studies is that no experts exist
wl.th.the knowledge necessary to derive the rule base. Some the rules can be generated from

exssung rules of engagement, from experienced SDS simulation engineers, or from personnel
who have participated in mock-up SDS command centers. But other rules will have to be

generated through experimentation. Rules deemed appropriate in embedded expert system
• experiments could provide guidance to commanders in mock-up simulators, thus the two

methods may complement each other.

THE APPROACH

The requirements for BRA'I _presented us with several challenging problems. BRAT is
required to simulate all phases of SDS operation including peacetime to wm'thne transition and

reaction to failures. The BRAT simulation cannot assume any architecture for the system under
study and hence must be able to assemble a simulation from a collection of predefined models.
Since the MITL controls the peacetime to wartime Iransition of the SDS, a BRAT model must
be constructed that models the decision processes of the commander. BRAT simulates the
system with a large collection of models of varying levels of detail. The BRAT simulation
framework integrates these models together employing object-oriented techniques and event
graphs.J2] The models capture the physical characteristics of the system, the performance of

the automated BM/C3 functions and the control of the system exercised by the commander.
While most of the models can be implemented in procedural code, a model of the commander
requires the greater flexibility provided by declarative languages. In BRAT, one model,
designated as Command_Defense, accompfishes the simulation of the role of the commander in

stem. We hay.e chosen to. em.bcd an expert system in the Command Defense model.
d_Defense and sts mtegrauon with this expert system (CLIPS) are the subjects of the

rest of this paper.

To meet the BRAT requiresrents for modeling the role of the commander and the rules a
commander would use to operate the system, we chose to imbed an inference engine in the
Command_Defense _ It was _ decided that a forward chaining engine would be
appropriate since the BRAT simulation is an "event driven" environment.[3]
Command._Defense is one of many models that are required for BRAT, so it was not feasible

within cost or time conslraints to implement an inference engine of our own. CLIPS provided
the ideal solution since cost was zero. Also, CLIPS is designed to be embedded in other
software which lowered the risk associated with interfacing to stand-alone expert system tools.
The major work that remained then was to design and build the interfaces for asserting facts
about the system state to CUPS and to extend CLIPS with user-defined functions that allow

rule fh"ings to cause changes in the simulated system state and the current engagement strategy.

IMPLEMENTATION

The BRAT simulation executive and its.models are implemented in Ada. As a proof-of-
concept we implemented a prototype Command_.Defense model using the C-Pragrna interfaces
provided with the C version of CLIPS. (The Ada version was not available at that time). While

832

thiswassuccessful,it caused problems when ported _om one enviroment to another since
different Ada compilers implement the C-pragnms differently. A second solution which solved

the portability problems was to build a fact file from the Ada code and then execute CLIPS
through the operating system. The CLIPS rules wrote all commands generated as a result of
rule firings to a file read in by the model when CLIPS terminated. This solution was also
unsatisfactory since the process was much slower than a fully embedded design. When
CLIPS/Ada became available, the model was redesigned to accommodate iL This resulted in
the loss of some CLIPS feauacs such as bsave and bload which are not now available in the

Ada version. The added portability and ease of integration made the switch worthwhile,
however.

System

Performance

Data ,_
System

Status

Data

Command

Defense

Model

MessageStrings

Facts

I-" Commands

Command

Messages Rules

Clips/Ada

Figure 1. Model Interfaces.

The interfaces to the Command_Defense model occur through three routes. (See

Figur_ 1) The first is the definition of the rules by the user. This is accomplished in the BRAT
user interface in a text editor or in the CLIPS stand-alone program. The latter is probably.

preferable since the user can take advantage the CLIPS system to rest the rules before their use
by the model. The second interface is the assertion of facts about the current state of the
system into CLIPS. This accomplished by converting system information into fact strings and
asserting them into CLIPS. The rules bind quantitative system information to variables by
pattern matching these facts. The third interface is through the extension of CLIPS with Right
Hand Side (RHS) functions. These RHS functions pull information from the CLIPS buffers
and insert it into global package data su'ucna'es. The model reads these global data structures
when new commands art to be sent to other models through the simulated communications

system.

Rules for the Command_Defense model are divided into three basic types: time-based,

relational, and free-fcrm. Time-based rules fire on or after a given simulation dine has been
reached (see Listing 1). The time fact is bound and then re.asserted to allow other tin, m-based
rules to fire. A lower salience rule eventually binds the time fact and retzacts iL This allows

the user to cause system actions to occur such as releasing weapons 300 seconds after
simulation start. Frame-based rules use information generated as Ada records by other BM/C 3

models and sent to Command_Defense in messages. Free-form rules can follow any syntax

833

desiredandallow theuserto defineexternal suing messages (such as those generated by
external simulations) as Left Hand Side (I.I-IS) patterns for firing rules.

(defrule release "A rule to release weapons at time t"

(current time ?simtime) ;bind ?simtime to current time

(release-time ?rtime) ;bind ?rtime to release time

(test (>- ?simtime ?rtime)) ; if time >= release t

(not(timel-past)) ; and rule not fired yet

=> ; then

(assert (command RELEASE_WEAPONS)) ;release weapons
(assert (timel-past))

(defrule retract-time " so other time-based rules fire"

(declare(salience -I)) ; lower salience so that all

?timefact <- (current time $?); rules for current

; time fire first
R>

(retract ?timefact) ; retract time fact

Listing 1. Example of time-fired rule.

The user is responsible for creating and maintaining the rule-base for the
Command..Defense model. Without detailed knowledge of the available fact patterns and R.HS
function syntax, this task could overwhelm the user and cause errors in rule execution. To
ease this burden and assure Im3per use of the model, "defexternal" and "defreladon" statements

provided to the Cross Reference Style Verification (CRSV) utility to assure rule validity [4].
The CRSV tool uses defexternals to assure that RHS function names and arguments are

• correct. An example defexternal is given is Listing 2. This definition assures that only the
available weapon target assignment optimization modes are select_ Defrelations assure that

LHS patterns for rules are consistent with the facts asserted by the model. An example
defrelation is given in Listing 3. This definition assures that the user does not define a rule for

which no valid fact pattern will exist. It also helps to assure that the proper variable bindings
will occur.

(defexternal SET OPT MODE

(true-function-name SET_OPT_MODE)

(min-number-of-args 1)

(max-number-of-args 1)

(assert ?NONE)

(retract ?NONE)

(return-type NUMBER)

(argument I

(type WORD)

(allowed-words

PREFERENTIAL ASSET BASED

PREFERENTIAL TARGET BASED

SUBTRACTIVE))

Listing 2. Example defexternal for CRSV.

834

(defrelation threat-data

(min-number-o f- fie Ids 3)

(max-number-of-fields 5)

(field 1

(type WORD)

(allowed-words threat_class asset_class))

(field 2

(type NUMBER)

(range 1 ?VARIABLE))

(field 3

(type WORD)

(allowed-words count))

(field 4

(type NUMBER)

(range 1 ?VARIABLE))

)

Listing 3[Example deft'elation for CRSV.

All information about the state of the simulated system is input to CLIPS through facts.
Current time is always asserted on each execution of the model. Simulated messages are sent
to Command_Defense by other models and are received as Ada records or as strings. The
Threat_Assessment anti System_Performance models summarize available system information
in datarecordsand transmit them in simulated messages to the Commanfl_Defense model.
These records contain summary information for system element operational status, weapon
system performance, assets threatened, and missile launch ileitis. Record fiekls are converted
to strings and concatenated with appropriate description strings. For example, the fact (clam
threat class I count 20) provides the type and number of threat objects of a given class
currently detected. The rule base uses this threat information to make inferences about the
objective and intent of an attack. The model asserts string messages directly so the user is
responsible for assuring that the rules are consistent with them. String message facts allow the
user to define arbitrary scenarios for a simulation run. These message facts are defined in an
input exogenous event file along with a message arrival time for input to the simulation through
event generators.

Command Defense Model CLIPS/Ada

Spec

Body

Figure 2. Software Architecture

835

The RHS functionsadded to CLIPS which change defense strategies,selecttypesof

assetstodefend,specifyweapon withhold,releaseweapons,or sendstrategychange
messages. The software architecture for exporting these functions to CLIPS is shown in
Figure 2. These functions are exported to CLIPS throughout the model Ada specification f'de
while the code for the functions is kept in the model code body file. Each function pulls the
function paran_ters from the CLIPS buffers and places them in a global strategy variable.
When the SEND_STRATEGY_MESSAGE RHS function is invoked, the current strategy is
sent to weapon control models. W • expect to continue to expand the number of RHS functions
as the BRAT simulation grows. An example of a RHS function which sets the weapon
withhold percentage is shown in Listing 4.

function SET WITHHOLD

(The_Problem : in CLIPS_GLOBALS.Test)
return CLIPS GLOBALS.Real is

constants SET WITHHOLD

Check_Value : FLOAT_TYPE_PKG.Float_Type := 0.0;

exceptions SET WITHHOLD

Probability_Out Of Bounds_Error : exception;

use FLOAT_TYPE_PKG;
begin

Check_Value :- UTILITY.GET_FLOAT_ARGUMENT(The_Problem, 1);
if (Check Value > 1.0) OR (Check Value < 0.0) then

raise Probability_Out Of Bounds_Error;
end if;

Percent_Withhold :- Check_Value;
return 0.0;

Exception

when Probability_Out Of Bounds_Error =>

BRAT_ERROR_PKG.Log_Error
("Invalid probability retrieved from
CLIPS buffer");

Raise BRAT ERROR PKG.Cc Function Error;

end SET_WITHHOLD;

Listing 4. Example]U-IS function.

STATUS AND FUTURE PLANS

As of this writing the Command_Defense model is undergoing integration testing with
the BRAT Simulation Executive. Time-based rule firings have been tested in a prototype
simulation. The use of defrelafion _d dofextemal statements in the User Interface for rule

verification has been defined. All i z_'faces have been successfully tested and verified.

CONCLUSIONS AND RECOMMENDATIONS

836

Embedding CLIPS in CommandDefense has proven to be swaight-forward, so long as
both the model and the CLIPS version are wriuen in the same language. The loss of the
bload and bsave features in the Ada version restricted our ability to build simulations with

multiple instances of Command_Defense models. Simulated systems with multiple
commanders require multiple model instances for studying devolution of control when primary
C2 nodes are lost. An added feature that would be useful in this regard is for bsave and

bload to include the fact list along with the rules. This would allow saving the models

perception of the system at a given time to a binary file for fast reloading later. We expect the
rule base for the model to expand over time as more users take advantage of its capabilities.
We will be def'u'tng a baseline set of rules to be delivered with the BRAT product that the user
can modify as needed. This may also involve the addition of more RI-IS functions to CLIPS.
In sum, embedding CLIPS in the Command_Defense model has proven to be a powerful,

easy-to-use, and cost effective choice for the BRAT project.

837

REFERENCES

[1] Mitchel, RobertR. "Expert Systems and Air Combat Simulation." _ 4(9).
(September 1989): 38-43.

[2] Daniel, Robert S., Gossage, Brett N., Barnett, Gene A. "The Battle Management
Requirements Analysis Tool Simulation Environment." Presented at the 1989 Summer

Computer Simulation Conference, Austin TX. Nichols Research Corporation.

[3] Baker, Louis. Artificial Intelligence With Ada. McCn'aw-HiU, New York. 1989.

[4] CLIPS p,eference Manual. Version 4.3. Houston, Texas; NASA Johnson Space
Center. June 1989.

** The opinions expressed in this paper are those of the authors and do not reflect any
official position of U.S. Army Strategic Defense Command (USASDC) or Nichols Research
Corporation. The work is supported under USASDC contract DASG60-88-C-0069.

838

