
N96- 12955

Embedding CLIPS-based Expert Systems in

a Real-time Object-oriented Simulation

z_,_/

Patrick McConagha and Joseph Reynolds

Tracor Applied Sciences, Inc.
6500 Tracor Lane

Austin, Texas 78725

1.0 INTRODUCTION

This paper describes our continuing work embedding

CLIPS-based expert systems into the System Test Environment (STE) 1. We

are embedding simple, compact rule engines in STE to simulate the actions

• of Naval platform commanders and equipment operators. Our eventual goal

is to implement expert system modules that will replace all human

participants and some of the equipment present in the simulation.

This paper will briefly describe STE and then discuss its

structure and implementation in more detail. Next, we will consider how

expert systems could enhance STE's current capabilities. This will be

followed by the examination of a specific CLIPS-based expert system
model to be embedded in STE. Finally, a summary of our experience and a

discussion of anti.cipated work on this project will close this paper.

2.0 AN OVERVIEW OF STE

So that the reader will understand the environment into which

the CLIPS-based expert systems are to be embedded, we will now briefly

describe STE. This discussion will be rather short and high-level. A more

complete description of STE can be found in [1], from which the following

description has been condensed.

1 Our work on STE was sponsored by Mr. Steve McBurnett of the Integrated Warfare Branch,
Code 5570 of the Naval Research Laboratory (NRL) under Contract # N00014-88-C-2175.

839

STE is not a simulation in itself but rather a simulator. The

purpose of STE is to supply data describing the kinematics, equipment, and

operation of Naval assets thereby simulating the "real world". This data

provides an environment in which to develop and test operational

equipment for the Navy. STE can be considered a test bed on which a large

range of simulation experiments will be run.

The initial application of STE was to provide data to stimulate a

prototype Anti-Submarine Warfare (ASW) decision aid, called TABS, under

development at NRL. A typical configuration of STE for testing TABS is

shown in Figure 1. Although STE can and will support testing of a range of
experimental equipment, work to this point has been directed toward the

requirements of TABS. This paper will address applications of expert

systems and issues present in this first application of STE.

2.1 STE Structure

The functional requirements imposed on STE were similar to

those for any large-scale simulation test bed. These requirements
included the following.

• Modularity - STE must readily accept any extensions needed

to provide an acceptable environment to the equipment under

test. This means STE must be able to generate all data

needed to stimulate a piece of equipment and must deliver

that data to that equipment as it would receive it in its
operational environment.

Flexibility Simulation operators must be able to substitute

models with various levels of fidelity as required by the
equipment under test.

• Speed- STE must run in real time and take advantage of
hardware resources available at NRL.

There were other requirements lewed on STE, but the three

outlined above are all we need to consider. These requirements resulted

in an object-oriented design for STE.

L.j

84O

STE objects were designed based on the low-level objects in the

Object-Oriented Support Library (OOPS) [2]. The following OOPS objects

provided the bases from which all STE objects are derived:

• Movable objects - This category includes platforms such as

ships, aircraft, torpedoes, etc. as well as other "movable"

objects like minefields, storms, convoy perimeters, and land

masses. These objects can move and can have equipment

objects (see below) attached to them. Land masses do not

move, but they are useful as navigation hazards and where
land-based forces, such as aircraft, must be considered.

• Equipment objects - This category includes sensors (sonar,

radar, etc.), weapons, communications gear, and ship and

equipment commanders. Equipment objects are attached to

movable objects by the scenario.

• Environment objects These objects model the operational

environments for sonar, radar, etc. as those environments

affect the various pieces of equipment.

• Launcher objects - These objects can create new instances of

objects as the simulation progresses. For example, a

helicopter launcher creates a new helicopter object and

attaches to it any radars, sonars, radios, or other equipment

objects specified by the scenario.

• Operator objects - These objects serve as translators
between STE and entities in the outside world. These

entities can be humans sitting at a console or equipment

under test.

• Internal Communication objects - This category includes

objects used internally by STE to control data exchange and
communication between other simulation objects.

841

• Miscellaneous objects - This category includes low-level

objects such as random number generators used by STE to
control the simulation.

One of the obvious benefits of an object-oriented design is that

although objects share a common structure, they are very much

independent. As long as their interfaces conform to what is expected

from specific objects, ships for example, implementation of the ship

model is wholly contained in the ship object. In fact, two ships in the

same scenario could be modeled quite differently. A ship that controls

local air traffic could be modeled at a high level of fidelity while another

ship ;hat launches helicopters is simply modeled as a movable platform

with a helicopter launcher object attached to it. With this in mind, one or

more expert systems can be introduced into this structure in place of

algorithmic models or in place of models that require human response. We

have done this by replacing the specified models with simple embedded

CLIPS-based expert systems. Specific applications of expert system

models will be discussed in section 3.

2.2 STE Implementation

STE was written in C++, an object-oriented programming

language based on C. It runs on a 128 node Butterfly parallel processor

with human interfaces implemented on Sun workstations networked with

the Butterfly 2. The current version of STE provides the simulated

environment for the initial TABS prototype. It has been able to satisfy the

real time speed requirements of TABS, providing data faster than TABS

can process it.

2 Sun is a trademark of Sun Microsystems, Inc., Butterfly is a trademark of BBN Advanced
Computers, Inc.

i_42

3.0 USING CLIPS IN STE

CLIPS-based expert systems will be used to automate decision making in

STE. These embedded expert systems will replace models that currently

require a response from an operator sitting at a console. In some cases,

an embedded expert system could replace an algorithmic model or a table

look-up model. Any object in STE whose function can be described by a set

of rules, however fuzzy, is a candidate for an embedded expert system.

The benefits gained from this effort include the ability to

rapidly develop prototype "experts" for specific STE objects in the CLIPS
standalone environment. Enhancements to initial implementations of

these experts will likewise be a relatively straightforward task.

Similarly, "tweaking" the system by reprogramming experts provides a
valuable means of studying various effects of different actions taken

under similar situations. These trade-off studies are a major paTt of

STE's functionality. Finally, considering a specific function from a

rule-based perspective may lead to insights that help us build better

algorithmic models.

Objects in STE that are candidates for an expert system model

include the following:

• Platform Commander - A human in command of a ship,

airplane, or other platform. A platform commander receives

data from equipment on his platform and operational orders

from his superiors in the chain of command. He must then

determine how to best use his platform and the equipment

attached to it to carry out his orders.

• Asset Commander Examples include a Battle Group, Task

Force, or ASW commander. This object differs from a

platform commander in that an asset commander issues
orders and receives feedback from other commanders. An

ASW commander, for example, might have frigates,

destroyers, and several ASW aircraft at his disposal. In

carrying out his orders, he controls these assets by issuing

commands to each of the platforms' commanders.

843

• Equipment Operators These commander objects operate

specific equipment. For example, a sonar operator receives

data from his sonar equipment and reports sonar contacts up
the chain of command.

• Specific Functions of Equipment - This is where an embedded

expert system replaces a traditionally algorithmic function.

The track correlator example in section 4 is an example of

this application.

To illustrate the application of embedded expert systems in STE

consider the following scenario. A task force is leaving port and steaming

to its assigned patrol area. The ASW Commander for the task force is

ordered to protect the task force from hostile submarines en route to the

patrol area. Assets at his disposal include frigates, destroyers, aircraft,

and a variety of equipment on each of these platforms. Figure 2 shows the

relationships between some of the STE objects that exist in this scenario.

Objects that could possibly be replaced by expert system models are so

marked. This example is simplistic but it serves to illustrate the breadth

of possible applications of expert systems in STE.

4.0 AN EXPERT SYSTEM MODEL FOR A TRACK CORRELATOR

As our first investigation into expert system applications in

STE, we implemented a rudimentary track correlator model. This

particular object was chosen mainly because its functionality in STE was

well understood. Secondly, the track correlator model in place in STE was

a very simple one; almost any new model would have been an improvement.

A typical track correlator is a sequential algorithm that does

the following. Given a list of established tracks and a set of new sensor

reports, the correlator tries to match each new report to an existing

track. A new track is cruated if a new report doesn't correlate with any

of the existing tracks. Finally, existing tracks that do not match new

reports are dropped. This process is repeated each time a new set of

reports is received.

This is a simplified explanation of a track correlator. Specific

issues such as how "closely" a new report must rnatc_ an existing track,

844

what to do when a new track matches more than one existing track, under

what circumstances a new track is created, and how old a track must be

before it is dropped vary between applications. Nevertheless, the basic

functionality of a track correlator is straightforward.

4.1 The Track Correlator Model

Our initial implementation of an expert system track correlator

is shown in Figure 3. This program defines four templates that are used

by the expert system. The sim-time 3 template defines the fact that
maintains the current simulated time and time step. Since STE is an

event-driven simulation, the time step is not necessarily a constant value

but represents the simulated time that has elapsed since the CLIPS rule

engine was last called. The new-report template defines the format of

facts that contain new sensor reports. A sensor report consists of

current information about the sensor itself (e.g.position) and information

about the detected target such as bearing. A sensor report can contain
much more information about the target, but this information varies

between types of sensors (active sonar, passive sonar, radar, etc.). Sensor

position is useful when trying to localize the target's position; it was not
considered in this example. The current-track template defines the

facts that identify established tracks. A current-track fact contains a

contact number and a list of times at which a report was received on this

target. The contact template defines facts that contain the actual data

from each specific sighting of a target. A contact fact contains the same

information as a new-report fact with the exception of sensor position.

If sensor position were considered in this model, a contact fact would

contain an estimate of the target's position derived from the sensor's

position and its report on the target.

3 Boldface words name fact templates, facts, or rules. Fixed-width font words denote function
or constant names.

845

This model contains three rules; one to perform each basic

function of a track correlator. The first rule, extend-track, tries to

correlate a new sensor report with an existing track. This rule compares

target information in the new report to information contained in the most

recent contact fact for a given track. An external function, same target,

is called to make the comparison. For this simple model only relative

bearing of the target is considered. A higher fidelity test could easily be

implemented in same_target which would then require more arguments to

be passed from CLIPS (report times and target characteristics), but the

structure of this rule would be essentially the same.

When this rule fires, the new-report fact is removed from the

fact list and replaced by a contact fact. The outside world is notified of

the continuing track via another external function call same "crack.

Finally, the current-track fact is modified to incorporate the newest

contact with the target.

The second rule, make-new-track, creates a new track when a

sensor report cloes not match an existing track. It fires when there does
not exist a contact fact in the fact list that correlates with the new

report. The same target test is used as a predicate function inside a
negated pa_ern to-perform this test. As in the extend-track rule, the

new-report fact is replaced by a contact fact in the fact list when this
rule fires. The outside world is notified of the track creation via a call to

the external function new_track. Finally, a current-track fact is created
with a unique track number and asserted. The track number is derived

from a track counter fact that is initialized in a deffact statement.

The last rule in this model, lost-track, fires when no new

report is received for an existing track. After extend-track and

make-new-track have fired for each of the extended and new tracks,

respectively, lost-track simply checks if the most recent contact in an

existing track was received before the start of the current CLIPS

execution cycle.
each execution

simply reports
no contact.

D

this model.

The sire-time fact used in this rule is updated before

cycle by the calling program. When this rule fires, it

the loss of contact by calling the external function
Discontinued tracks are not removed from the fact list in

o

846

4.2 Runnino the Track Correlator Model

The 'C' program shown in Figure 4 was used to demonstrate the

execution of the expert system track correlator model. The program first

opens a data file that contains time and bearing information. Next, it
initializes CLIPS, loads the rule base, and resets CLIPS. It then works

through the data file building and asserting the sim-time fact containing
the current simulated time and time step, building and asserting

new-report facts for each bearing given at the current time (a negative

bearing in the data files represents an execution cycle where no new

reports are received), runs CLIPS, and retracts the sim-time fact. The

sim-time fact is asserted using the assert command so that it may be

retracted later. The new-report facts are asserted via the more

efficient add fact mechanism.

The program listing in Figure 4 also contains the declaration for

the external functions called by the track correlator (in usrfuncs) and the
functions themselves. The same target function simply compares the two

D

parameters and returns TRUr. if they are within a specified tolerance.

Otherwise it returns FALSE. The same_track, new_track, and no_contact

functions simply print informative messages to the screen.

A sample data file and execution output is shown in Figure 5.

Several test data sets were executed to examine the performance of this

track correlator model under a wide variety of operating environments.

These tests were run on a 20 mHz, 80286-based personal computer.

Sample execution times are shown in Tables 1 through 5. Each table

shows the time, in seconds required to complete a single iteration of the

main loop of the 'C' driver program (see Figure 4). The different number of

tracks represent the number of targets being tracked by the system. This

value increases as more targets enter the scenario. The maximum number

of contacts represents the maximum number of times the system has

detected a specific target. This value generally increases as the length of
the simulation increases. The number of new reports represents the

number of sensor reports received in the current execution cycle. It

increases with the number of targets present at the current simulated

time.

847

Not surprisingly, execution time increases with an increase in

the number of tracks, contacts, and new reports. While this seems

reasonable, the amount of increase was unexpected. Further analysis of

the model revealed several improvements which might improve

performance.

The extend-track rule was relatively straightforward.

Maintenance of track information in the fact list was costly. A better

implementation might have the same_track function update an external

database where track histories are stored. The same target test could

then access the database to determine track continuity. This would be

useful as the need for a more sophisticated correlation test is realized.

The make-new-track rule was a little more confusing. The

use of a predicate function within a negated pattern circumvented the

CLIPS rule that and constraints were not allowed inside a negated pattern.

This implementation, however, resulted in numerous calls to the

same target function. In fact, since the make-new-track rule did not

limit its correlation attempts to just the most recent contact fact for

each target, the assertion of a new-report fact resulted in a call to

same_target for each contact fact in the fact list. This means that

same_target was called once for each current-track fact and once for

each contact fact in the fact list each time a new-report fact was

asserted. With three current tracks consisting of four contacts each and

only two new reports, same target would get called seven times when the

first report is processed-and nine times when the second report is

processed (the first report either lengthened an existing track or

established a new one).

The initial implementation of the lost-track rule was poor. It

was activated for every track maintained in the fact list at the beginning
of each execution cycle. Because of the salience declaration, activations

of extend-track fired and removed activations of lost-track for those

tracks that were extended in the current execution cycle, lost-track

was modified and the salience declaration was replaced with a (not

(new-report)) constraint. Along with minor changes to extend-track

(retraction of the new-report fact was delayed until the track was

updated) and the test program (assertion of the new s'im-time fact was

848

"-....4

delayed until after all new-report facts were asserted), this change
ensured that lost-track would not be activated unnecessarily. However,

this "improvement" actually resulted in slightly LONGER execution times.

A seemingly obvious improvement to the model resulted in a degradation

of performance.

5.0 CONCLUSIONS

We have successfully implemented a low-fidelity model of a

track correlator using CLIPS. This model takes advantages of many of the

features CLIPS offers for embedded expert systems. More importantly,

the experience gained while working on this model will allow us to design

and implement better models for a wide range of functions within STE.

We plan to continue our work developing and improving these models. The
track correlator we examined in this paper may not ever be used in an STE

simulation, but it has demonstrated that simple rule-based models will

have a place in the real-time, object-oriented environment of STE.

We have ported CLIPS to a Sun workstation and to the Butterfly

computer at NRL. The track correlator model has been run successfully on

both. The next major task ahead of us is to modify CLIPS so that multiple

expert systems can run concurrently on the Butterfly. From there we can

integrate working expert system models into STE.

849

TABLE 1
Execution times with zero tracks

0 1 2 5

.02 .05 .06 .17

number of new reports

execution time

TABLE 2
Execution times with 1 track

number of new reports

0 1

maximum
number
of contacts

1

2

3-5

6-10

.05

.05

.05

.06

maximum
number
of contacts

TABLE 3
Execution times with 2 tracks

1

2

3-5

6-10

15

number of new reports

0 1 2

.04

.08

.06

.11

.13

85o

TABLE 4

Execution times with 3-5 tracks

maximum
number

of contacts

0

2 -

3-5 .06

6-10

15

20 .05

number of new reports

1 2 3

.11 .16

- .28

.18

.24 .39

5

- .33

.11 .38

.16 .59

- .97

TABLE 5

Execution times with up to 49 tracks

35
maximum
number 4 9

of contacts

number of new reports

2 3 4 5 6 7 8 9 10

1.92 2.93 3.73 5.61 7.47 9.50 12.30 15.90 20.80

. - 13.95 -

851

.,, =l
I!

!
lm

/ff

" iii;
:_ j]

" IiII
li

w

i
oH

ID

852

Other Asset

and Platform

Commanders

DID!

DD968

SH60 SH3

Other Asset

and Platform

_mmanders

Cmd r

Ii

I,,,_11_.. _
FF1052

Shaded objects could be modeled with an Expert System

Figure 2 - A Sample STE Scenario

853

File: corlater.clp

Programmer: Pat McConagha

This program implements a simple track correlator that takes

new sensor reports and integrates them into a list of

current tracks. It will be embedded in an application that

calls CLIPS once per execution cycle with new sensor reports.

The following fact templates are used:

(deftemplate elm-time "current simulated time and time step"
(field cur-time

(default ?NONE)

(type NUMBER))

(field time-step

(default ?NONE)

(type NUMBER)))

(deftemplate new-report "a new sensor report"

(field report-time

(default ?NONE)

(type NUMBER))

: (field sensor-lat

; (default ?NONE)

: (type NUMBER)

: (range -90.0 90.0))

: (field sensor-long

: (default ?NONE)

: (type NUMBER)

: (range -180.0 180.0))

(field target-bearing-

(default ?NONE)

(ty;_ NUMBER)

trance 0.0 360.0))

_multi-field other-info

(default ?NONE)

(type ?VARIABLE)))

Sensor position not used in this model

: Specific target characteristics

: dependent on the sensor.

_deftemplate current-track "track information"

(field contact-num

(defaul_ ?NONE)

(type N_MBER))

(multi-field times

_default ?NONE)

Itype NUMBER)))

: Times at which contact was made

Figure 3 - An Expert System Track Correlator

854

(deftemplate contact "specific information from each contact"

(field contact-num

(default ?NONE)

(type NUMBER))

(field time

(default ?NONE)

(type NUMBER))

(field target-bearing

(default ?NONE)

(type NUMBER)

(range 0.0 380.0))

(multi-field other-info

(default ?NONE)

(type ?VARIABLE)))

; Initial facts

(deffacts initial-conditions

(last-track-number 0))

; Specific target characteristics

; dependent on the sensor

; Define the rule for extending an existing track.

: A track is extended if bearings match between a new

; report and an established contact

(defrule extend-track

?report <- (new-report (report-time ?time)

(target-bearing ?bearing)

(other-info $?other))

?track <- (current-track (contact-num ?num)

(times "?last-time SPtimes))

(contact _contact-num ?num)

(time 7last-time)

(target-bearing ?last-bearing))

Itest (same_target ?bearing ?last-bearing)) : S_m_le test

: to match Dearin_3

_retract ?report)

(same_track ?num ?bearing ?time)

(modify ?track (times ?time ?last-time $?times))

(assert (contact (contact-hum ?num)

(time ?time)

(target-bearing ?bearing)

(other-info $?other))))
,)RIGINAL PAGE I_
OF POOW OUALIT'V

Figure 3 (Cont'd)

855

9

; Define rule for creating a new track

; A new track is created if a new report does not match the
; bearing of a known track

(defrule make-new-track

?report <- (new-report (report-time ?time)

(target-bearing ?bearing)

(other-info $?other))
(not (contact (target-bearing ?old-bearing&:

(same_target ?old-bearing 7bearing))))
?hum <- (last-track-number ?n)

:>

(retract ?report ?num)
(bind ?n (+ ?n I))

(new_track ?n ?bearing ?time)

(assert (last-track-number ?n))

(assert (current-track (contact-num ?n)

(times ?time)))
(assert (contact (contact-num ?n)

(time ?time)

(target-bearing ?bearing)
(other-info $?other))))

; No known contact

; on new bearing

; Define rule for droping a track

; Don't remove it from fact list, just report that it wasn't detectec
: during this execution cycle

(defrule lost-track

_declare (salience -50))

(current-track (contact-hum ?num)

ttimes ?last-time $?)_
_sim-time (cur-time ?t.)

(time-step ?delta-t))

(test (<: ?last-time (- ?t ?delta-t)))

(no_contact ?num ?t))

Figure 3 (Cont'd)

856

/* File:

Programmer:

main.c

Pat McConagha

This program demonstrates a rudimentary expert system
track correlator implemented in CLIPS.

*/

Sinclude <stdio.h>

_include "clips.h"

Sdefine DATAFILE "contacts.dat"

#define RULESFILE "corlater.clp"

main ()

{
FILE *datafp;

float sim_time, cur_time, brng;

char time_string[50], report_string[50];
struct fact *time_fact, *new_fact;

Both new reports and current track information
are maintained in the CLIPS fact list. */

/* open the data file that contains new reports */

datafp = fopen(DATAFILE, "r");

if (datafp =: NULL)

{

printf("Couldn't open data file.\n");

exit (I);

}

init_clips();

Ioad_rules(RULESFILE);

reset_clips();

fscanf(datafp, "'%f%f", &sis_time, &brng),

'?ur_time = 0.0:

/* outer loop iterates through the data file

calls CLIPS shell once per time interval. */

while (!feof(datafp))

{

Figure 4 - The 'C' Track Correlator Driver

8,57

/* build and assert the current time-keeping fact */
sprintf(time_string. "sim-time %f %f". sim_time.

sim_time - cur_time);
time_fact = assert(time_string);

cur_time = sim_time;

do

{

if (brng >= O) /_ a negative bearing simulates */

/* no new reports during the ,/

/* current execution cycle _/
{

/_ build and add a new data fact _/
new_fact = get_el(3);

add_element(new_fact. 1, WORD. "new-report". 0.0);
add_element(new_fact. 2. NUMBER, NULL. sim_time);

add_element(new_fact. 3. NUMBER. NULL. brng);

if (add_fact(new_fact) == NULL)

printf("Error adding a data fact.\n");
}

fscanf(datafw. "_f_f". &sim_time. &brng);
}

while ((!feof(datafp)) _ (sim_time == cur_time));

run(-1);

retract_fact(time_fact) ;

printf("\n");
}

Figure 4 (Cont'd)

858

v

/* define functions called from CLIPS */

usrfuncs()

{
int same_target(),

same_track(),

new_track(),

no_contact();

define_function("same_target", "i', same_target, "same_target"):

define_function("same_track", "v', same_track, "same_track");

define_function("new_track", "v', new_track, "new_track");

define_function("no_contact", "v , no_contact, "no_contact");

}

_define epsilon 1.0e-3

int same_target()

{
float brngl, brng2;

double fabs();

brngl = rfloat(1);

brng2 : rfloat(2);

if (fabs(brngl-brng2) < epsilon)

return(TRUE);

return(FALSE):

}

int same_track()

<

int con_num:

float brng, time;

con_hum = rfloat(i);
#-,Ornw = rfloa_.(_);

time - rfloat_3);

DrlntT'_"New report for contact S %:Jd on

bearing ;_5.iI at tlme _D.II :_

con_num, brng. time):

return(0) ;

}

Figure 4 (Cont'd)

859

int new_track()

{

int con_num;

float brng, time;

con_num = rfloat(1);

brng = rfloat(2);

time = rfloat(3);

prlntf("Startlng new track for contact # %3d on

"bearing %5.1f at time %5.1f\n",
con_hum, brng, time);

return(O):

}

int no_contact()
{

int con_num;
float time;

con_num : rfloat(1);

time = rfloat(2);

printf("No report for contact S %3d at time %5.1fkn",
con_num, time);

return(O);
}

Figure 4 (Cont'd)

86O

Program Input

Program Output

Starting new track for contact

Starting new track for contact #

I 45

I 195

2 45

2 72

3 195

3 45

3 213

4 72

4 321

4 195

6 45

7 -i

8 72

8 213

1 on bearing 195.0 at time

2 on bearing 45.0 at time

Starting new track for contact _ 3 on bearing 72.0 at time

New report for contact # 2 on bearing 45.0 at time 2.0

No report for contact _ 1 at time 2.0

Starting new track for contact # 4 on bearing 213.0 at time
New report for contact S 2 on bearing 45.0 at time 3.0

New report for contact _ 1 on bearing 195.0 at time 3.0

No report for contact # 3 at time 3.0

New report for contact _ 1 on bearing 195.0 at time 4.0

Starting new track for contact # 5 on bearing 321.0 at time

New report for contact _ 3 on bearing 72.0 at time 4.0

No report for contact

No report for contact

New report for contact

No report for contact #

No report for contact

No report for, contact

Nc report for contact

N<, report for contact #

Nr: report for' contact #

No report for contact #

No report for contact
No report for contact

New report for contact

New report for contact

No report for contact #
No report for contact

No report _or contact

4 at time 4.0

2 at time 4.0

2 on bearing 45.0 at time

4 at time 6.0
1 at time 6.0

5 at time 6.0

3 at time 6.0

4 at time 7.0

1 at.time 7.0

5 at time 7.(]
3 at time 7.0

2 at time 7.0

4 on bearing 213.0 at time

3 on bearing 72.0 at time

I at time 8.0

5 at time 8.0

2 at time 8.0

6.0

8.0

8.0

1.0

1.0

2.0

3.0

4.0

Figure 5 - Execution of a Sample Data File

861

REFERENCES

1. Cohen, Neil and J. Reynolds. 1990. "System Test Environment: A

Real-Time, Man-In-The-Loop Fleet Simulator to Support Testing of

Developmental Equipment." In Proceedings of the SC$ Mu/ticonference on

Object-Oriented Simulation (San Diego, CA, Jan. 17-19). Society for
Computer Simulation, San Diego, CA, 23-27.

2. Gorlen. Keith, OOPS, Public Domain Software Library, National
Institutes of Health

862

