
--_, N96-12960

!

An Object Oriented Generic Controller using CLIPS.

By Cody R. Nivens *

* Cody R. Nivens is a member of the Information Systems Staff of

California Polytechnic State University, San Luis Obispo,
California.

902,



ABSTRACT

In today's applications, the need for the division of code

and data has focused on the growth of object oriented

programming. This philosophy gives software engineers greater
control over the environment of an application. Yet the use of

object oriented design does not exclude the need for greater

understanding by the application of what the controller is doing.

Such understanding is only possible by using expert systems.

Providing a controller that is capable of controlling an object

by using rule-based expertise would expedite the use of both

object oriented design and expert knowledge of the dynamic of an

environment in modern controllers.

This project presents a model of a controller that uses the

CLIPS expert system and objects in C++ to create a generic

controller. The polymorphic abilities of C++ allow for the

design of a generic component stored in individual data files.

Accompanying the component is a set of rules written in CLIPS

which provide the following: the control of individual

components, the input of sensory data from components and the

ability to find the status of a given component. Along with the

data describing the application, a set of inference rules written

in CLIPS allows the application to make use of sensory facts and

status and control abilities.

As a demonstration of this ability, the control of the

environment of a house is provided. This demonstration includes

the data files describing the rooms and their contents as far as

devices, windows and doors. The rules used for the home consist

of the flow of people in the house and the control of devices by

the home owner.

903



INTRODUCTION

In the evolution of control mechanisms, it has become

apparent that a higher level of knowledge of the system
controlled must be embedded in the controller. This project uses

the control of a house as an example of a knowledge-based

controller. This is done by using the abilities of the CLIPS

programming language to utilize user defined routines to input

sensor information and to control external devices.

A real-time expert system can be defined as a system that

decides in time to undertake a corrective action. Uses of such

systems range from the home system described by this project to

the control of nuclear power plants and space stations. Such

systems have a set of common characteristics:

compartmentalization; processes which run over minutes and hours;

events which occur on a regular basis; exceptions to standard

procedures which augment presently scheduled events; and a set of

general rules on how operations in the controlled environment can

be influenced by outside factors.

These principles illustrate the use of expertise:

Specifically the body of knowledge acquired about the behavior of

a complex system. The use of a rule-based knowledge system as a
controller must have the following: the ability to control

external devices; the ability to receive sensory information in a

timely manner; the ability to make decisions within certain time

limits; finally, the ability to expand as more knowledge of the

behavior of the system becomes available. These principles are

only a few that must be examined and met for such a controller to

be effective.

The home enviroment is becoming a laboratory for the design

of user-friendly control systems. Such systems are programmed in

one of several procedural oriented languages and as such they are

difficult to expand to meet the needs of the user. A solution to

this problem is the use of real-time expert systems. These

systems provide the logic in a style that is easy to update and

understand. A carefully crafted expert system could be updated

and changed by the home owner with little need for their

understanding of the rule system.

This paper discusses the combining of CLIPS with objects

defined in C++ to create an intelligent controller. The C++

objects define what is controlled. It is mated together with the

CLIPS expert system, with CLIPS supplying the expertise for the

control of the object. This is done by a loop mechanism which

alternates between CLIPS, the C++ objects, and an interrupt

information structure. CLIPS controls the object via external

functions which access the objects controlled. The user

interface employs the objects as a selection mechanism and the

assert routine of CLIPS.

9_



OBJECT ORIENTED PROGRAMMING

Object oriented programming is ideally suited for use in

intelligent controllers for several reasons. There are several

reasons for this. First, an object oriented programming language

allows for the creation of an abstract data type. Second,

components of a program can inherit functions and data from other

objects allowing for the reuse of previous code. Finally, an

object oriented programming language provides for the use of

polymorphic characteristics. The abstract data type is the key

feature of an object oriented syste.

An abstract data type is called a class. A class is

composed of the data structure associated with the implementation

of the data type and a set of member functions which manipulate
that data structure called member functions. There are several

advantages to creating a new data type: the hiding of the

implementation of a design from its user, encapsulation of both
the data and the code that manipulates it, and the restriction on

access to the data reducing inter-module dependences. Member

functions allow limited access to the data of a class. These are

messages that the class accepts for manipulating itself. The

function passes the parameters necessary to complete the desired

operation. Member functions can be overloaded by using the same

name with different parameters. This feature allows descriptive

function names to have different routes to the same service.

Inheritance and polymorphism are interrelated in their uses.

Inheritance allows both code reusability and the derivation of

new data type types that share both the code and data of its

base. Polymorphism uses this ability to create derived classes
which use functions of the base class and redefine functions in

the derived class. Functions which can be redefined are called

virtual functions. The virtual function differs from the normal

function in that the binding to the function occurs at run time

as opposed to the static binding at compile time. There are two

major uses for this feature. First, the redefined function of

the derived class is used when the base class calls the function.

Second, a pointer to a base class can be used on a derived class
with the functions redefined by the derived class being used.

This allows the calling program to use a derived class without

knowing what it is. For example, an array of components which

having the same base class can all be sent the same function call

even though each component in the array is a different derived

class.

For example, consider a set. The implementation of a set in

the C++ language consists of two classes as defined in figure I.

The first class is a set element. The second class is the set

itself. Two types of set elements are defined in figure 2 to

show how the inheritance and polymorphic abilities of C++ work.

The main program and output is defined in figure 3. Note that

'a' is said to be an instanciation of the set class. This is

similar to saying that x is an instanciation of an integer, but

is not an integer class.

905



DEVICE CONTROLLERS

Computer based controllers fall into three broad categories.

First, the group of controller are those controllers that are

based on a clock signal. These controllers deal with the use of a

set sequence of events that are triggered when a predetermined

time arrives. An example of this is a steel mill which heats a

piece of metal for a predetermined length of time. A second type

of controller is based on sensory input. These controllers must

provide a response based on input from the environment of a

device. Examples of this type of controller are the closing of

valves based on the level of liquid in a tank. The last type of

controller is interactive. These controllers generally deal with

human input and have their responses geared towards the average

person using the device. An automated teller machine is an

example of this type of controller.

INTELLIGENT CONTROLLERS

An intelligent controller will be defined as a controller

that has the ability to arrive at decisions based on external

facts and internal rules of the behavior of the system being

controlled. To illustrate such a controller, a model of how the

controller relates to the controlled component is needed. The

simplest way to achieve this is to consider the controller as an

indivisible computer. The inference engine is the cpu, the rules

are the programs, and the fact lists are the data. I/O for such

a computer consists of external assertions of facts and the

execution of commands from the consequent portions of rules.

The use of a central processor for the CLIPS engine is a

very useful metaphor. The Rete algorithm uses tokens of the

changes in working memory to communicate which rules may fire.

Such a system is similar to the concept of an associate memory

system. All changes within the memory system happen at one time.

The tokens affect only those rules that use the changed component

of working memory. Such a scheme allows for a large number of

rules and facts to be compiled into a network whose access time

is dependent on the changes in working memory.

The model of the cpu would have to be extended to include

the use of interrupts. In CLIPS, interrupts could be handled by

rules that are fired by the assertion of a specific fact. The

chain of events that follows from the interrupt can be determined

by the precedence of the rules. The use of the salience feature

allows for the running of priority tasks based on interrupt

information. Each set of interrupt rules would have a salience

level associated with it. It should be noted that the CLIPS

system handles input from the interrupts, not the interrupts

themselves.

906



Programming the Device Controller

Programming the CLIPS machine for the use of several

independent processes involves little change in method from

conventional programming. The major difference between normal

programming and this model is the use of a set of rule chains to

determine the "program." The need for scheduling, enqueing or

dequeing for resources, or rendezvousing between tasks is

eliminated. All these things are handled by the working of the

Rete mechanism. Two tasks which have independent chains of

inference can perform a rendezvous via the assertion of a common

fact.

For example, the standard consumer/producer problem can be

defined in CLIPS by two rules as shown in figure 4. The

producer/consumer cycle starts with an assertion of the specific

producer facts and the start fact for the producer rule. The

cycle between the producer/consumer is controlled by two facts

which are asserted when the particular phase of the cycle is

done. Such a system does not have the ability to enque messages,
but such abilities can be accessed via an external procedure.

Interrupts

Interrupts and device input are handled in a similar manner.

The use of the add exec function allows a user defined routine to

be used between the firing of rules. This function then has the

option of asserting information based on the state of an

interrupt or device. The control of such assertions can be

handled by two routines defined by the define function routine.

One function enables interrupts from devices and external

interrupts. A second function disables the asserting of new

facts. A supporting function returns the state of interrupts.

Interrupt precedence can be controlled via the salience clause of
a CLIPS rule. This allows specific interrupts to have control of

the system while they are working. An example is shown in figure

5.

Input/Output

Traditional device input is handled by the add function

routine of CLIPS. This function allows for the creation of a

routine which can be used in the RHS of a rule. The function

defined would then assert a fact based on the responding device.

Output is handled in a similar manner: the defined function would

take a multi-variable pattern and consult the appropriate

component being controlled.

907



THE GENERIC CONTROLLER

The generic controller is an object which uses an expert

system to provide control to some other object. The controller

class has the following components: a CLIPS expert system, a

component to control, a simulation to run the component through,

an alarm manager for time signals and alarm activations, a

command object to pass commands between CLIPS and the controlled

object, windows to display output for the user, and a set of I/O

ports for information on the component controlled and through

which to control the component.

The basic use of the controller consists of loading the

information on the windows, the ports, the component information,

the simulation information and the files that the CLIPS system

will use for a trace of all its output, as well as the rules and

data of the controller and the application. Next, either the

controller is run in real-time mode where the alarm manager and

ports deal with the real-time and hardware of the system, or the

controller is run in simulation mode where the time and port

values are artificial.

In either case, the controller goes into a loop where the

following events occur endlessly. First, the CLIPS expert system

is executed for a set number of inferences (rule firings.)

Second, if a command was executed by the executive function then

the status is updated. Third, the keyboard is checked for user

input. If input is found, it is passed to the controlled

component to interpret. If the interpretation returns a command

string, the string is asserted into CLIPS after the current time

is attached to it. Next, the sensor inputs are checked for new

data. If input is present, it is asserted into CLIPS after the

time is stamped onto it. Finally, the alarms are checked and the

time is updated if necessary.

THE CLIPS CLASS

The CLIPS class is not an implementation of the CLIPS expert

system, but is an interface to the C routines that define the

CLIPS system. The encapsulation of CLIPS in a C++ class has

enabled the restriction of the many available routines that

provide access to the CLIPS environment. The member function of

the CLIPS class provides for the following areas of access.

First, the embedding functions of clear, reset, execute and load

are given standard names and definitions of their use.

The CLIPS class also provides for the use of I/O routers.

These functions allow for access to external I/O devices. The

use of this function requires that the functions passed to the

I/O router not be a member function of a class. The reason for
this is that while the address of the member function is known,

the instanciation of the class it is being used by is not known.

As such, the I/O router functions are defined as friend functions

to the controller class.

_8



The next area that the CLIPS class provides a common

interface for is the use of executive functions. The executive

function is one that is called by the interpreter of CLIPS rules

between rule firing. In this project, the executive function is

responsible for asserting sensory information if it is present.

The next member function that the CLIPS class contains is

concerned with defining a function that CLIPS can call from the

right-hand side of a CLIPS rule. This function can do work

outside of the CLIPS environment, possibly returning a value as a

predicate function. There are three functions defined in this

project: do_command, seek, and set_alarm.

The interaction between CLIPS and external routines are

defined in two member functions: The first asserts a string into

the CLIPS environment, and the second loads a command object with

the parameters passed to a function when it is called by a CLIPS
rule.

The last set of functions in the CLIPS class are involved

with debugging and status display. These routines deal with the

activation of watches on facts, rules and activations. They also

provide functions for the display of the CLIPS fact environment

and the current agenda of rules to fire.

THE COMPONENT CLASS

The component class is the class which describes the object

being controlled. This class provides a generic holder for

information on how a system relates to itself. This scheme is a

hierarchical system. Objects at one level only access those at a

lower level and the parent of the present object. Access across

branches of the component tree are not possible in this system.

A component provides an object display, I/O, and relational

information.

The display information of a component is divided into four

parts. The first part is a window display of the contents of a

component in a window. The second part is a display of the status

information about the component. The next area is a display of

the related objects of the component. This part consists of an

overlay which fits the related objects into a cohesive whole.

The last area consists of the display windows and the index to

the window in which the overlay and related components of the

component are displayed.

The I/O information consists of several values. The input

port id determines which related object is the next component in

the component-path name of the input item. If there are no

related objects then the value from the port is the state of the

device or sensor. The output value, the command or value related

to the place of the component in the system begin controlled, is

9_



sent to the output port. If there are no related objects, the

output value is the state of the component. The I/O ports are an

array of ports that are used for input/output operations. These
allow for an index to determine which input port and which output

port should be used. The I/O ports are used by the interrupt

mechanism to establish an interrupt path to a component. This is

done by enqueing the id of the component in the set of related

objects of the parent component.

The related object information consists of the related

objects, their number and which are currently selected. This

information is used to create command strings that are asserted

into the CLIPS system. The related object information identifies

which is the master (root) component and which component is

active (being selected from.)

The use of individual I/O ports, command levels and display

windows allows the programmer to create generic components that

are independent of the device being controlled. For example, the

application of this project is a house controller. In the test

case, there are 3 rooms, I0 lamps, 13 outlets, 12 sensors, and 12

command components. All can be represented by generic

components. All I/O in the system is done by the generic

component; no further programming is needed. A draw-back is that

the number of components goes up with an increase in command

complexity with any device. The simple solution to this is to

create new device components derived from the base component.

SUPPORTING CLASSES

The alarm manager class has four major functions. First, it

is responsible for the time and date clock. Second, it holds the
times of alarms that are active in the CLIPS environment. Third,

when an alarm occurs, the alarm manager asserts a time fact into

CLIPS for the time of the alarm. Finally, the alarm manager class

is responsible for the time stamp when an event occurs.

The command class acts as a data carrier for communications

between CLIPS and the component. There are two parts to a
command: the count of lines in the command, and the lines

themselves. The command class is defined as an array of strings.

The dimensions of the array are dynamically enabled when the

class is instanciated. It must be noted that the CLIPS version

used in this project has multiple field variables containing

extra lines of information, specifically, the fact name-field

(the first field in the fact.) Hence, the offset must be one

greater than the position of the field in the multivariable of
the CLIPS rule. This can be used to allow one routine to

interpret many commands, as the command is always the first

field.

The port class defines an input/output medium. The port can

either be used for real I/O or for simulated I/O. Real _/O is

glO



device and implementation dependent. The simulation of the port

input is done via an index that the port acquires along with a
simulation when it is instanciated. This id is passed to the

simulation which returns -I if either the index is lower than the

ports simulated or there is no input for the port ready. The

ports used for the house application are shown in figure 6.

Interrupts use the ports to signal that a value is present. This

is done by the interrupt routine which calls the component. It

changes the state of the component and creates an interrupt trail

via a member function of the parent of the component.

The simulation class contains an array of values that are

assigned to ports dependent on the time that the simulator has

for the next input. The first member function deals with the

loading of the simulation values from an input stream. There are
two functions which deal with stepping the simulation and testing

if the simulation is done. Two further functions deal with

returning the simulation time and the simulation value given a

port index. The private variables of the simulation define the

number of simulations, the offset for the port index, the current

simulation time, and the index of the next simulation event.

SYSTEM RULES AND FACTS

The system rules are divided into four areas: changes in

sensory information, time and date maintenance, alarm durations,

and activation of alarms.

The first set of rules in the system CLIPS file deals with

sensory information. This section is divided into two parts.
The first deals with the rules involved with the processing of

sensory input. There is only one rule: sensor-reset. This rule

resets the sensor input states when the sensor cycles from ON to

OFF or OFF to ON.

The second set of rules dealing with sensory information

seeks status of components in the system. There are three rules

in this set: seek-status, status-seek, and reset-seek.

Seek-status is used to reset the knowledge system given existing

state facts. This allows for the periodic checking of the

consistency of the knowledge base against the controlled

component. Status-seek processes the results of a seek operation

by creating a state fact. Seek-status and status-seek work with

a control fact: seek-state. Seek-state carries a list of selector

elements, which quizzes related objects and their descendants for

their status. Reset-seek retracts the seek-state fact if no other

rules are activated by the fact. The structure of the system

facts are listed in figure 7.

The second part of the system rules is composed of

guidelines related to the maintenance of time and date. When the

date changes at midnight, the alarm manager asserts the new date.

911



This assertion causes the rule change-date to fire. This rule

asserts seek-state on all components and process-alarms to set up

the alarm manager for the next 24 hours. The reset-time rule

removes the time fact if no other rules are activated by it. The

time fact is asserted by the alarm manager when an alarm occurs.

The third set of rules are those involved in processing

alarm times. There are three rules. Process-alarms is activated

by the process-alarms fact asserted by the change-date rule.
Set-alarm-time sets the time of a newly activated alarm.

Reset-process-alarms removes the process-alarms fact if no other

rules are activated by it. A more complex system of rules would

process alarms on an hourly basis.

The next section of the system rules is concerned with rules

which govern the use of durations. Durations are alarms which
run from one time to another. This section is divided into three

parts. The first part is the rule set-duration. This rule is

activated by process-alarms asserted by the rule change-date.

The second part consists of the rules start-duration and
reset-start-alarm. Start duration fires when the alarm created

by the duration is activated. It asserts start-alarm fact

containing the id of the alarm activated. This is asserted for

application rules use when alarms are activated.
Reset-start-alarm removes the fact if no other rule is activated

by it. The last part consists of the rules end-duration and

reset-end-duration. End-duration removes the alarm associated

with a duration. It fires when the duration reaches its end. It

also asserts the end-alarm fact with the id of the duration

associated with the retracted alarm. Reset-end-alarm removes the

fact end-alarm if no other rules are activated by it.

The final set of rules consists of the rules for the firing

of alarms. There are nine rules which correspond to the types of

alarms. All alarms have the following in common: an id, a type, a

possible repetition count, a date and time to fire, and

information specific to the application which is used to command

the cc_rolled component. The alarm types are listed in figure

8. Alarm fact structures and constants are listed in figure 9.

THE APPLICATION

The application of this project consists of a house

controller. The basic design focuses around the use of the X-10

house controller. X-10 is an industry standard for the control

of components in a home. The application consists of a three room

building. Each room has at least one door, one or more windows,

lamps and outlets. For each room, there is an overlay file, a
list of devices in the room as well as CLIPS facts on the room.

The house as a whole also possesses an overlay.

The controller is used in a command mode by selecting which

room to work in..Next the type of device to control is selected.

912



The device is then selected. Finally, the command to perform on

the device is selected. When this is done, a command is sent to

the CLIPS controller. The controller in turn sends a command to

the component to perform the operation.

The application and the controller have performed well in

simulation runs. It will soon be implemented in a model system

consisting of the basis house that is now defined along with X-10

controlled devices. The outcome of this implementation will be

presented at the CLIPS Users Conference.

HOUSE RULES AND FACTS

The house rules file is divided into three parts. The first

part deals with door direction and specification information.

The second part deals with room and house occupancy. The last

part contains exception rules for possible error conditions.

The door direction rules are outside-door-dir and door-dir.

Outside-door-dir is concerned with determining if a person is

entering or leaving the house. Door-dir determines which room a

person is entering and leaving.

The next set of rules deal with house and room occupancy.

The first rule is changing-rooms which adjusts the appropriate

room occupancy counts. The next rule is person-entering-house.

It adjusts the house occupancy count and the room being entered

or left.

The last set of rules contain two exception rules. The

first is person-too-many-room. This rule resets the room count

and issues an exception message to standard out. The second rule

is person-too-many-house. This rule resets the house and

appropriate room count and issues an exception message to

standard out. Figure I0 shows the house controller fact

structures.

913



SUMMARY AND CONCLUSIONS

The use of CLIPS as a real-time controller in a house has be

examined. The CLIPS expert system is suited to this work because

of its abilities to define external functions and executive

functions which allow the insertion of interrupts into the

working storage of the system. This allows the CLIPS system to

be viewed as a computer with programs, interrupts, and

input/output capability.

The use of rule-based systems as opposed to

procedurally-based systems gives a programmer greater control

over the logic embedded in a system. As the logic of a system

goes beyond a certain limit of comprehension, rules for clarity

become necessary. Traditional control systems in conventional

languages are based on simple formula describing the system. In

an application such as a home, a descriptive formula is all but

impossible. Yet, it is possible to describe the behavior of the

system in pseudo-English. This pseudo-English allows the

programmer to develop rules that describe the behavior of the

system. These rules are then given directly to the controller

without need for additional programming or development.

The use of an object oriented programming language allows

the creation of descriptive fact structure related to the

component being controlled. C++ is a language which provides

such capability in a familiar setting. A programmer familiar

with C will have little difficulty improving or adding code.

This reduces the cost of development of new projects, and their

maintenance once they are in operation.

Intelligent controllers are a natural extension of

Artificial Intelligence into the fields of conventional

programming and control. Embedded systems may one day have the

ability to control and learn from previous conditions and

actions. Research into such systems will prove to be profitable

and stimulating. CLIPS is an excellent tool with which to

conduct such research as it is written in C, which combined with

C++, allows for programmer involvement in the development of the

rules and structure of the application.

914



Figure I - Set Classes

class set element {

frlend set:

private:
set element " next: // pointer to the next element in the set.

publlc:

setelement<);

// Effects: Creates a set element.

};

virtual prlnt<];

// Effects: Prints the set element's contents.

class set {

private:
Int size; // number of elements in the s_t.

set_element * elements; // The elements in the set.

publlc:

set<);

// Effects: Creates a set.

add<set element* a);

// Requlres: A set element to add to the set.

};

print<);
// Effects: Prints the contents of the set.



Figure 2 - Derlved Set Classes

class card : publ_c set_element {
private:

Int value;
Int suit;

public:
cardflnt v,lnt s);
// Requlres: A value and a suit.

// Effects: Creates a card wlth value of sult.

};

prlnt();

// Effects: Prlnts the value and sult of the card.

class toy : publlc set_element {

prlvate:

char" name; // Name of the toy.

char" color; // Color of the toy.

public:

toyCchar' n,char" c);

// Requlres: Name and color of the toy.

// Effects: Creates a toy.

};

prlnt();

// Effects: Prints the toy.

916
J



Figure 3 - The use of the Set class and Cts output

#deflne DIAMONDS I

#deflne HEARTS 2

matnCD

(
set a;

card dlO(IO,DIAMONDS);

card hI(I,HEARTS>;

OUTPUT

green ball

ace of hearts

blue doll

i0 of dlamonds

toy dollC"doll","blue");

toy ballf"ball","green"3;

a.add(dlO);

a.addCdoil3:

a.add(hl);

a.addCball);

a.prlnt();

91"/



Figure 4 - Comsumer/Producer Rules

fdefrule consumer

?f<-(consume $?a)

=>

mlsl processing

(retract ?f)

(assert (produce a)) )

(defrule producer

?f<-Cproduce a)

=>

Speclflc producer Info

(retract ?f)

mlsl processing

(assert (consume $?a)) )

91s



Figure 5 - Interrupt Rule

(defrule flre-rule

(declare (salience 10000))

(fire ?room)

(sprinklers ?room $?sprks)

=>

(sound-alarm)

(bind ?i i)

(while (< ?I (length $?sprks))

(do_command ?room (member ?I $?sparks) ON)

(blnd ?I (+ ?I i))

)

Interrupt asserts (flre rooml).

919



Figure 6 - Input/Output Port Definitions

INPUTS

Port Port Port Port Port Port Port Port

0 1 2 3 4 5 6 7

NULL XlO House Room Device Device

Type

Command Dim

Value

OUTPUTS

Port Port Port Port Port Port Port Port

0 I 2 3 4 5 6 7

NULL XlO NULL NULL NULL NULL NULL NULL

02o



Figure ? - Application Independent Fact Structures

The following Informatlon consists of the structure of the

facts that are used by the controller. These facts are generic

to all appllcatlons that run on the controller. In the house

rule, data and alarm files, their use Is further illustrated.

Application Facts: These rules deal wlth the contents of

application specific information. The format of the rule does

not change only the contents of the $?Info field.

_actlon ?actlon-type $?info ?state ?time)

Csensor $?info ?state ?tlme_

Cstate $?Info ?state)

6status $?info ?state ?time)

Where :

?actlo:_-type - Action descrlptlon: Usually user defined
based on sensor information sensor reset

is signified by break in ?actlon-type

field.

$?Info - Appllcatlon specific Informatlon

?state - State location Is In Ci.e. , on, off, O, I, etc.)

?time - Time status was returned from controlled object.

J



Figure 8 - Alarm Types

ALARM EVENT TYPES

TYPE

one-t Ime

dally

week-day
weeK-end

weekly

biweekly

monthly

every-day

every

DESCRIPTION

Fires on speclfled date and tlme and Is removed from

the system.

Fires every day.

Fires Monday through Friday.

Fires on Saturday and Sunday.

Fires each week on the same day.

Fires on the first week day and then 3 days later.

Fires each month on the same day.

Fires every specified number of days.

Fires every specified number of seconds.



Figure 9 - Yact Structures and Tlme Constants

Alarm Facts:

(alarm ?Id ?event-type ?event-repetition ?year ?month

?day ?time $?Info)

(iaiarm-mark 7i4 ?event-type ?_vent-repetltlon ?year

?month

?day ?time $?info)

(date ?year ?month ?day ?day-of-week ?jullan-date)

(duration ?Id ?from ?to)

(new-date ?year ?month ?day ?time ?day-of-week

?Jullan-date)

(time ?secs)

Where:

fired.

run •

?Id

?event-type

- Alarm ld - either number or character

string.

- Determines how and when alarm is

See above table for event types.

?event-repetltlon - Determines frequency of event.

Used by

weekly - Day of week to

activate alarm.

biweekly - First day of week

to activate

alarm on.

every-day - Number of days tlll

next alarm.

every - Number of seconds
till next alarm.

?year - Last two digits of year.

?month - Month Id based from zero.

?day - Day of month.

?time - Time of day In seconds.

$?Info - Application speclflc information.

?secs - Number of seconds since midnight.

?from -Tlme In seconds to start alarm.

?to - Number of seconds to allow alarm to

present.

?day-of-week

?Juilan-date

- The day of the week with Zunaay as O.

- Days from beglnnlng of year to

Constant Facts: These facts are constant through out the llfe of

an application and from appllcation to application.

(blweekly-map 1 2 3 4 5 6 0 1 2 3>

(month ?month-ld ?month-name ?days-in-month)

(week-days i 2 3 4 5)

(week-end-days 0 6)

Cyear-lengt h 3659

9_S



Whe re :

?month-ld - Id of month CJanuary - 09

?month-name - Jan, Feb, etc.

?days-ln-month - length of month in days



Figure I0 - House Controller Fact Structures

The followlng conslsts of the structure of the facts that

are unique to the house controller application.

(door ?house ?door ?rooml ?room2>

(door-sensor ?house ?room ?sensor ?door-type ?door]

(outslde-sensor ?house ?room ?sensor]

Cpeopie-in-house ?house ?number)

Cpeople-in-room ?house ?room ?number>

Cwlndow-sensor ?house ?room ?sensor ?window]

Where :

?house - House Id door Is In

?door - Door Id

?rooml - Room 1 Id

?room2 - Room 2 %d

?sensor - Id of sensor

?door-type - Door type: door, outslde-door

?number - Number of people

?window - Window Id

GZ5


