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Abstract 

Moving software development into the engineering arena requires controllability, and to control a 
process, it must be measurable. Measuring the process does no good if the product is not also 
measured, i.e., being the best at producing an inferior product does not define a quality process. 
Also, not every number extracted from software development is a valid measurement. A valid 
measurement only results when we are able to veriQ that the number is representative of the attribute 
that we wish to measure. Many proposed software metfics are used by practitioners without these 
metrics ever having been validated, leading to costly but often useless calculations. Several 
researchers have bemoaned the lack of scientific precision in much of the published software 
measurement work and have called for validation of software metrics by measurement theory. This 
d i m t i o n  applies measurement theory to validate fifty proposed object-oriented software metrics 
(see Li and Henry, 1993; Chidamber and Kemerrer, 1994; Lorenz and Kidd, 1994). 



I. Background and Objectives 

The need for software metrics 

Software development historically has been the arena of the artist. Artistically developed code 

often resulted in arcane algorithms or spaghetti code that was unintelligible to those who had to 

perform maintenance. Initially only very primitive measures such as lines of code (LOC) and 

development time per stage of the development l ie  cycle were collected. Pro jas  often ran over 

estimated time and over budget. In the pursuit of greater productivity, software development evolved 

into software engineering. Part of the software engineering concept is the idea that the product 

should be controllable. DeMarw [I 9821 reminds us that what is not measured cannot be controlled. 

Measurement is the process whereby numbers or symbols are assigned to attributes of entities 

in such a manner as to describe the atbiiute in a rneaninfil way. We cannot take measurements and 

then apply them to just any attributes. Unfortunately this is exactly what the soha re  development 

community has been doing. [Fenton, 19941 

Because people wserve things differently (and often intuitively feel differently about things), 

a model is usually defined for the entities and attnies to be measured. The model requires everyone 

to look at the subject from the same viewpoint. Fenton [I9941 uses the example of human height. 

Should posture be taken into consideration h n  measuring human height? Shou!d shoes be allowed? 

Should we measure to the top of the head or the top of the hair? The model forces a reasonable 

consensus upon the measurers. 

As has already been stated, control of a process or product requires that the process or 

product is measurable; therefore, control of software requires software measures [Baker, et al., 
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19901. It does no good to measure the process if the product is not measured. Being the best at 

producing an inferior product does not define a quality process. 

The need for metric validation 

Choosing metrics becomes a horse and cart or a chicken and egg type of question. Which do 

we do first; choose the metrics of interest or validate the metrics? Since these metrics are already in 

use, I have chosen to validate them first The next step will be to choose from among the measures 

(valid metrics) a suite of them that is the smallest set of measures that is both necessary and sufficient 

to meastire the important dimensions of the software. The steps involved are: 

1. Identify important dimensions of the software. 

2. Classify measures by the diiension(s) they measure. 

3. Use multivariate statistical methods to investigate the parallelism/ orthogonality of the 

captured measures. 

It is not beneficial to measure the same dimension of an object by more than one method. Each 

method will have its own degree of accuracy and its own cost of applicztion. Once the necessary 

degree of accuracy has been established, the most wst effective method that delivers that level of 

accuracy should be the measurement of choice When building models with unvalidated metrics the 

degrec of accuracy cannot be known. 

Fenton [1994] argued that much of the software measurement work published to date is 

scientifically tlawed. Fenton is not the only scientist who has observed this lack of scientific precision. 

Baker, et al., [I9901 said as much when they wrote that research in software metrics oftem is suspect 

because of a lack of theoretical rigor. Li and Henry [1993a] argued that validation is necessary for 



5 

the effective use of software metrics. Schneidewind [I9921 st3ted that metrics must be validated to 

determine whether they measure what it is they are alleged to measure. Weyuker [I9881 stated that 

existing and proposed software measures must be subjected to an explicit and formal analysis to 

define the soundness of their properties. 

McCabe failed to validate his complexity metric. Gilb referenced empirical testing as his 

source of verification and validation, i.e., there was no theoretical validation of Gilb's metrics. 

Halstead's equations were tested statistically. McCall defined metrics based on heuristics. A metric 

was accepted by McCall if a chosen sample fell within a 90% confidence interval WcCall, et al., 

19771. DeMarw employed no theoretical base in the vaiidation of his metrics. Li and Henry [I9931 

used statistical analysis to validate the prediction of maintenance effort by the group of metrics that 

they publishe.!. No theoretical validation was attempted by Li and Henry. Chidamber and Kemerer 

mentioned measurement theory in their evaluation of each metric but made no attempt to assign a 

scale to the metrics (see the paragraph on scales in section II for an explanation of the importance of 

scale to the valid interpretation of a measurement). Lorenz and Kidd [I9941 ody used heuristics to 

validate their metrics. 

Software metrics and measurement theory 

Measurement theory was first used in software metric research to validate the myriad 

complexity metrics which dominated the early research in the field. Correlations were expected to 

exist between the complexity of a project and the achievement of acceptable parameters in its 

development. This was the rationale for the interest in software complexity and the development of 

metrics to measure this complexity [Anderson, 19921. 
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When defining a masure, first one must designate precisely the m i u t e  to be measured, e.g., 

the height of humans. Then a model is specified that capares the attribute, e.g., stand up straight, 

take off your shoes, do not include hair height in the measurement. The congruence that comes from 

the model must represent the attribute being measured, i.e , the intuitive order of the objects, with 

respect to the atbihte being measured, must be p r m e d  by the model. Finally, an order-preserving 

map fiom the model to a number system is defined, e.g., if we observe that Harry is taller than Dick, 

any measurement that we take of their height must result in nurnbers or symbols that preserve this 

relationship. [Baker, et al., 19901 

Before a model can be proposed, it must be known what is being measured. This basic 

measurement principle has been ignored in much of the software metric work of record. It is 

fundamental to measurement theory that the measurer have an intuitive understanding, usually based 

on observation, of the attribute being measured :Fenton, 199 11. 

The object-oriented paradigm 

An object combines both data structure and behavior in a single entity. Object-oriented 

software is organized as a collection of explicit objects. By contrast, data structure and behavior are 

loosely connected in traditional programling [Rumbaugh, et al., 19911. Authors have not been in 

agreement about the characteristics that identifj. the object-oriented approach. Henderson-Sellers 

[I9911 listed information hiding, encapsulation, objects, classification, classes, abstraction, 

inheritance, polymorphism, dynantic binding, persistence, and composition as having been chosen by 

at least one author as a defining aspcsct of object-orientation. Rumbaugh, et al. [I9911 added identity, 
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Smith [la911 added single type and Sully [I9931 added the unit building block to this list of d :fining 

aspects. 

The old software met~ics do not take into consideration these new concepts. Thqrefore, these 

characteristics necessitate the advent. of new metrics to measure object-oriented software The 

recent explosion ~f object-oriented software metrics (Li and Henry, 1993; Chidamber and Kemerer, 

1994; and Lorenz and Kidd, 1994) has hit the scene with little validation beyond regression analysis 

of observed behavior. 

Research objectiva 

"Validation of a software measure is the process of ensuring that the measure is a proper 

numerical characterization of the claimed attributen paker, et a1 . , 19901. Fenton [I 99 1 ] descri'bed 

two meanings of validation. Validation in the narrow sense is the rigorous measurement of the 

physical attributes of the software. Validation in the wide sense determines the accuracy of any 

prediction system using the physical attributes of the software. Accurate prediction is possibly the 

most valuable outcome to be gained from software measurement. Prediction systcms are validated 

by empiric experiments. Accurate prediction relies on careful measurement of the. Fredidive 

attiiites and carell observation of the depender~t attributes A model which accurately measures 

the attriiutes is necessary but not d c i e n t  for building an a m a t e  prediction system [Fenton, 19941 

In the past, validation in the wide sense has been conducted without firs! carrying out 

validation in the narrow sense. In this dissertation we intend to validate in the narrow sense the 
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objectaiented software metrics that have appeared in the literature. This is a necessary step before 

these matrics can be used :o predict such managerial concerns as cost, reliability, and productivity. 

Fenton [I9911 states: "Good predictive theories only follow once we have rigorous 

measures of specific well understood attributes." 

11. Research Approach and Methodology 

Introduction 

There are two fundamental problems in measurement theory; the first is the representation 

problem. The representation problem is to find sufficient conditions for ihe existence of a mapping 

from an observed system to a given mathematical sysiem Another aspect of the representation 

problem is pointed o ~ t  by Weyuker [1988]. How unique is the result of the measurement? A 

measurement system must provide results that enable us to distinguish one class of object fiom 

another class of object. 

The other hndarnental problem af measurement theory is the cniqueness problem. 

Uniqueness theorems define the properties and valid operations of different measurement systems 

and tell us what type of scale results fiom the measurement system. A ~iniqueness the~rem 

contributes to a theory of scales which says tha; the scale used dictates the meaningfblness of 

statements made about measures Eased on the scale [Hong, et al.,  1943; Roberts, 19793. A 

statement involving numerical scales is m ~ h n g f b l  if the truth of the statement is maintained when 

the scale involved is replaced by another (admissible) scale. 
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The ernpiricaWformal relational system. A relational system is a way of relating one ernPily (or 

one event) of a set to another entity (or event) of the same set. In the physicd sciences the relations 

take the form longer than, heavier than, of equal volume, etc. In the mial  sciences (and thus in 

software metric measulement) the relations take the form is preferred to, is not preferred to, is at 

least as good as. 

Definition 2.1 : T)ae ordiml rekrtional system is an ordered tuple (A, R l ,  ..., h) where 
A is a noth7mpty set of objects aard the Ri, i- I , .  . . ,n are k-ary refalions on A. [Zuse, 
1 9901 

The extensive structure. The extensive structure is an expansion of the ordinal relation system to 

include binary operations on the objects of the set. The extensive structure is required to measure 

objects on the interval or ratio scales. The binary operation in the empirical relational system 

usually is designated concatenation, denoted by e. The usual manifestation of the binwy operation 

in the formal relational system is addition (+) although multiplication may be the proper operation 

under some circumstances. 

Definition 2.2: The extensive relational system is an ordered tuple 
(A,Ri,. ., Rn,el, ..., m)whereA isammptysetofobjects, he&, i = I  ,..., nare k-ary 
relations on A and the ts-j, j j- 1, ..., m are closed binary relatiom. [Zuse, 19901 

Homomorphism. A software measurement can be a homomorphism only if the meaning and 

interpretation ofthe empirical relationship is clear [Zuse, 19901. Let * denote is larger than (or is 

preferred to). Given the empirical scale @A,b,e) which we wish to measure using the real numbers, 

we must map 8"to 3t(B,>,+) while preserving the relation * and the operation e, i.e., M: A-*B is 

a valid mapping fiom A to B ifl'al* a2 -* bl > b2. In order to b o w  whether or not the relation 
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and the operation have been yreservod, the meaning and interpretation of $&-,and e must be 

precisely defined. 

The weak order. Suppose you must select from a list of dternatives. For each pair of alternatives 

ul and a2, yew prefer al to a2, you are indifferent between al and a2, or you prefer a2 to al. If you 

always p ~ f e r  a1 to a2, you are said t ~ ,  have a strict preference. It, however, you sometimes prefer 

a1 to a2 and sometimes you rue indifferent between al and at, you are said to have a weak 

preference. When you haw a weak preference and the measurements exhibit the axioms of 

completeness, reflexiveness, and transitivity, the alternatives are said to constitute a weak order. 

Meaningfulness. When does it make sense to state: 

Progrm A is more complex t h a ~  progarn B7 

Program A is twice as com~lex as program ll? 

Program A is twice as maintainable as program B? 

Program A displays more quality than program B? 

The quality of program A was increased by 20%? 

Following Zuse [ I  9901, a statement is meanin&l if and only if the truth of the statement holds 

against all admissible transfbv iations. Therefore, the meaningfulness of these statements depends 

on the scale assignable to the metric used to measure the attniute of question. 
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Table 1, 

Scale 

Ratio 

- 
Interval 

- 
Ordinal 

-- - 

Nominal 

Properties of Measurement Scales 
-r 4 

Basic empirical operations Admissible transformations 

a 3  similarity transformatinn 

hf=aM+P, a>O positive linear 
transformation 

- - - - - -- 

I 
-- 

=,<, and > M'=JTM) whereflM) is any monotonic 
increasing transformation I 

- - M'=m my one-to-one transformation 

Scales. When groups of objects are measured on the nominal scale: many statistics can not be used, 

proportions can be taken; the mode is the only meaningfil measure of centrality. When groups of 

objects are measured on the ordinal scale: rank order statistics and non-parametric statistics can be 

used (assuming that the necessary probability distribution can be reasonably assumed to be present); 

the rncdian is the most powerfir1 meaningfi~l measure of centrality. When groups of objects are 

measured on the interval scale: parametric statistics as well as all that apply to ordinal scales can be 

used (it must be reasonable to accept that the  necessary probability distribution is premt); the 

arithmetic mean is the most powefil meaningfbl measure of centrality. When groups of objects are 

measured on the ratio scale: percentage calculations as well as all statistics that apply can be used; 

the arithmetic mean is the most powerful rneaningfbl measure of centrality. 



Desirable properties of measures 

Intuition. A measure should make sense based upon the professional experience of the measurer. 

Objects that appear better in the attribute being measured (based on the observer's experience) 

should score higher on the metric being used. Objects which appear similar should score roughly 

about the same. 

Monotony. Monotony (or consistency) goes along with intuition. The measurement must be such 

that very nearly the same score is achieved regardless of the measurer. Also, the order that the 

objects appear in, in relation to each other, must be consistent fiom measurement to measurement. 

Mathematical foundation. It is important that the measure be grounded in mathematical theory. 

This foundation is necessary but not sufficient to make the metric an appropriate gauge of the 

property being measured. 

Understandability. The measurement process as well as the meaning of the metric should be 

understandable by interested persons [Tsai, et al., 1986 (as cited in Zuse, 1990)l. 

Variation. If all articles score the same on a metric, then that metric measures nothing. In order 

to measure a property there must be variation in measurement from object to object. 

Dispersion, A measure is not precise enough if all articles fiall into only a few categories. Ideally, 

the measure should be sensitive enough to measure the appropriate propeny on a continuum. 
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Especially grievous is the case that assigns the property to a set with discrete units of limited 

cardinality [Weyuker, 1988 (as cited in Zuse, 1990)J. 

Before a model can be proposed, it must be known what is being measured. This basic 

measurement principle has been ignored in much of the s o h a r e  metric work of record. It is 

hndamental to measurement theory that the measurer h v e  an intuitive understanding, usually based 

on observation, of the attribute being measured [Fenton, 19911. 

The basis of the methodology to be followed will be Zuse's model. 

Zuse's model 

Before a metric can be said to possess scale, 1) enough atomic modifications must be defined 

to completely describe any changes that can affect the metric, 2) the partial properties of the metric 

must be ascertained, and 3) the intuition of the measurer must agree with the partial properties 

established. 

The concatenation operator for each metric must be defined based on the properties of the 

metric. Since Zuse always evaluated static measures of software code, he used the sequential and 

alternative stnlctures offlowgraphs to define the concatenation operation. 

Definition 2.3 : AJowgrqh G = (E,N, s, l )  is a directed graph with a finite, nonempty 
set of n&s N, a finite, nonempty set of edges E, a ~ lar t  node scN, and a terminal 
node t FN. EQch nocte x EN lies on some puth in G from s to t along the edges. An 
edge is an orderedpair of nodes (x,y}, [Zuse, 19901. 

Figure 1 is a flowgraph. Nodes 3, 7, and 11 are called predicate (decision) nodes. Nodes 

4, 5, 8, and 9 are called processing nodes. An atomic modification to a flowgraph is defined as 
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adding, deleting, or transferring edges or nodes iu the flowgraph [Zuse, 19901. Specifically, we 

define: 

AM1 as adding (deleting) an edge at an arbitrary location, 

AM2 as adding (deleting) a node and an edge at an arbitrary location, and 

AM3 as transferring an edge from one losation in a flowgraph to another location. 

Every metric increases, decreases, or remains 

the same in reaction to each of these atomic 

modifications. The ptlrtial property of the metric is 

defined as the sensitivity of the metric to an atomic 

modification, i.e., the measure M has the partial 

propcrty <=> (either it is less desirable, you bave 

idifl'erence, or it is more desirable) with respect to the 

atomic modification AM. 

A measure can be placed on the ~rdinal scale if 

the user accepts the partial properties of the atomic 

modifications defined for that measure and the axioms 
Fig. 1 A FlOWGRAPH 

of the weak. order (completeneos, reflexiveness, and 

transitivity) hold. A measure can be used as an interval scale if all conditions of the ordinal scale 

are met and the distance defined on the interval is consistent for all intervals. A measure can be 

placed on the ratio scale if all conditions of the ordinal scale are met and the user accepts the b i  

concatenation operation(s) defined on the meam.  



Let us now consider Zuse's methodology more specifically. 

Description of the measures. The origind definition (as provided by the author of the measure) 

is given for each metric. Each metric is then defined using a uniform method. The flowgraphs of 

Zuse will be used whenever static code is being measured. Other, appropriate, structures will be 

defined as needed for each metric being validated. 

Examples of the calculation of the measures. Simple and uniform examples are given for each 

metric. 

Partial property description of the measures. Atomic modifications are used on each metric to 

d e s c n i  its partial properties. Atomic modifications to flowgraphs consist of adding, deleting, and 

moving edges and nodes. Other atomic modifications will be developed as necessary for other 

structures. 

Complete description of the measures as an ordinal scale. Atomic modifications are defined 

sufficient to describe the criteria for the use of the metric as an ordinal scale then the measures are 

examined to determine if the axioms of the weak order (completeness, reflexiveness, and 

transitivity) hold. 
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Consideration of the measures as an interval scale. The mapping which results fiom the atomic 

modifications are compared to determine if a uniform difference between integer results can be 

discerned. 

Extensive structure and ratio scale. Binary concatenation operations to flowgraphs consist of 

sequential and alternative addition of two flowgraphs. When it is necessary to define another 

structure, other binary concatenation operations must also be defined. The ways the metrics respond 

to the b i i  concatenation operations, as defined, are investigated to determine whether or not the 

metric possesses the properties of the extensive structure. The rules are given for the use of the 

metrics as a ratio scale. 

Metric summary. The properties of the metric are summarized and compared to the properties of 

similar metrics. 

The seven steps of Zuse's model are applied to each metric to determine what meaningfir1 

statements may be made using the information gleaned from the metric. 



111. Expected Contribution 

Contribution and significance of this study 

Many object-oriented metrics are being proposed. Because they have not been validated 

using measurement theory, it is not clear that these metrics are valid measures of the attributes that 

they claim t o  measure. Some of these metrics are touted as predictive without being rigorously 

defined. This study looks at each of the object-oriented metrics and scrutinizes them for validity in 

the narrow sense of Fenton [199 11. 

Does the metric measure what its author proposes to measure? If not, what can be said about 

the metric in terms of what is being measured? Is there another metric which does measure the 

desired attribute? Are the statistics used with the metric vdid considering the scale attributed to the 

metric? Is the measurement an assessment measurement or meant to be a predictive measurement? 

Does the metric hold up under vigorous scrutiny of the conditions of representation and uniqueness? 

Do intuitive and empirical undecstandings survive under all allowable transformations? 

The answers to  these questions are pertinent to the valid use of these metrics. Since the 

collection of data for the calculation of metrics is very expensive [Deutsch and Willis, 19881, this 

study will help the practitioner by separating those object-oriented metrics that are not worth the cost 

of calculation from those that are and by differentiating those metrics that are valid for assessment 

purposes from those that are valid f ~ i  use in prediction systems. 

Additionally, the software engineering community should gain insight into further use of the 

metrics, other metrics which might replace them, the valid statistics that each metric supports, and 

ftture research that needs to  be carried out. 
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