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Introduction

This tutorial contains basic material - familiar to many. :This will be used as a fgundation

upon which we will build - bringing forth some new material and equations that liave been

developed especially for this tutorial. These will provide increased understanding toward

parameter estimation of clock arid clock system's performance.

There is a very important ITU Handbook being prepared at this tim,- which goes much further
than this tutorial has time to do. I highly recommend it as an excellent resource document. The

final draft is just now being completed, and it should be ready late in 1996. It is an outstanding

handbook, Dr. Sydnor proposed it to the ITU-R several years ago, and is the editor with my

assistance. We have some of the best contributors in the community from around the world

who have written the ten chapters in this handbook. The title of the Handbook is, "Selection

and use of Precise Frequency and Time Systems." It will be available from the ITU secretariat

in Geneva, Switzerland, but NAVTEC Seminars also plans to be a distributor.

Definitions and Concepts

If we ask the very simple question, "What is a clock?" We discover that essentially all clocks

can be considered two-part devices: a resonator or frequency .source and counter or divider for

keeping track of the number of oscillations. As an example, we have the definition of a second:

when 9,192,631,770 oscillations occur of the photon associated with the quantum ground-state

of the cesium-133 atom, we have a second. The electronics for counting are more sophisticated

than for the ordinary clock, but the concepts are the same.

Given this concept, it is important to remember that the counter (divider) will always deteriorate

the signal. In other words, the phase noise of the sine wave of the source, for exampk,

will be more stable than the clock's output. We will come back to this when we talk about

measurement noise and optimization algorithms.

Cx_nsider another very important concept: If we have two clocks, we feel obligated to ask the

question, which is correct tmder the basic statistical theorem that every clock disagrees with

209



every other clock? The disagreement may be very small, but they will always disagree except at

most an instant. In fact, you can make the very strong statement that it is impossible to have

two clocks perfectly synchronized, except at an instant, because of noise. So, you can never

have two clocks perfectly synchronized on a continuous basis.

In a fundamental sense, what is the difference between frequency and time? We can talk about

frequency in an absolute sense as in the definition of the second. Time is not absolute. It

is an artifact - depending on when we set the integrator as we started counting seconds, for

example. Independently, a frequency standard built in Braunschweig, Germany will agree with

one built in Boulder, Colorado within their accuracy limits because they are based on ;the same

fundamental phenomena within physics.

Time, on the other hand, depends upon when you set the integrator for counting the seconds.

Hence, two clocks may be arbitrarily different in their readings. There is no absolute time with

which to compare a clock.

Figure 5 compartmentalizes the perceived causes of clock deviations into four areas:

1) How we process the data is very important. Clock performance can be made worse

by improper processing.

2) The measurement noise limits our ability to see the true performance of a clock. A

classic example is GPS SA. If it were turned off, the venetian blinds would go up, and
we would be able to see the GPS satellite clocks very clearly. The measurement noise

should always be considered; it may be negligible compared to the clock noise, but often

it is not.

3) Every clock has intrinsic mechanisms which perturb its output time. By nature it is

convenient to have two sub-categories for the intrinsic clock perturbations - typically

denoted by the random variations and by the systematic variations. Random and systematic

variations also occur in measurement systems as well as in the environmental perturbations.

The environment perturbations can look like a random process, depending upon how it

couples into the clock. And

4) the environmental perturbations often adversely impact the long-term performance of a

clock. Clearly, it is desirable to design to minimize the environmental perturbing effects.

Let us now review some fundamental clock concepts (see Figure 6) A working definition of

time is the apparent reading of a clock. Synchronization is to have two or more clocks with

the same apparent time reading. In principle, this has to be within some level of uncertainty

since every clock disagrees with every other clock except at most an instant. Syntonization is to

have two or more clocks with the same apparent rate. In the telecommunication industry, they

word "synchronization" is often used when, in fact, what is meant is "syntonization." These

are two different useful concepts, and if used properly can help avoid a lot of confusion in

specifications and in system performance descriptions. Syntonization also needs to be specified

with an uncertainty.
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Simultaneitydoesn't really require a clock. Here two or more events occur at the same moment,

as perceived in some reference frame.

The environmental elements which we often see that perturb clocks are listed in Figure 7. This

list contains some of the more important ones. One of the fundamental breakthroughs wit',

the HP model 5071A cesium clock is that by active electronic control and feedback the effect

of the environment can be greatly reduced. This approach has improved the long-term stability

by more than an order of magnitude over other models.

There is a new IEEE standard, 1193-1994, which gives guidelines for the measurement of

environmental sensitivities. Later, we will use some of the messages from this standard. This

standard is another good reference document. The place to order it is shown in Figure 8.

Measurement Models, Terminology and Concepts

Figure 9 shows the usual model for an oscillator's output. The frequency, v(t), always varies

with time; hence, its period, "r(t), also varies. One of our main goals in this tutorial is to

clearly and in a parsimonious way quantify these variations so that there is good communication
between the vendor and the user, and so that the designer or planner may work effectively

and efficiently. The output need not always be a sine wave. The following.characterization

procedures have been kept general enough to work as well for square, wave or for any periodic

signal. But since sine waves are fundamental to nature, this is the common representation.

Using the sine-wave as a conceptual model, we usually have a nominal frequency at which the
standard is designed to work, 1,0. By definition it does not vary with time. We then use 4_(t) to

denote all the phase variations around the nominal accumulated phase, 2_rvot. The cycles of an

oscillator are counted to create a clock. Again, the divider noise will degrade the signal from

the oscillator. Hence, without some special filtering, the integrated clock noise will always be

greater than the integrated oscillator noise.

As illustrated in Figure 10, what is measured in practice is never the time of a clock, since we

have no absolute reference with which to measure it alone. What, in fact is measured is the time

difference between two clocks. The time difference can be measured with arbitrary precision.

Today there exists instrumentation which can measure time differences at the femtosecond level

using the carrier phase.

Figure 11 shows the normalized representation of frequency offset y(t). This is a dimensionless

quantity which is simply defined as the free-running frequency, v(t) of the clock, minus its

nominal frequency, 1:0, all divided by the nominal frequency. Even though this is a conceptual

value, in practice it is very useful because v0 can be the reference oscillator of the pair being

measured. In addition, there is the big advantage that y(t) is a small number compared to

v(t). Conceptually y(t) represents the offset from the ideal. It is o|t:n referred to as parts in

101°, for example, or equivalently 1 × 10 -l°.

On the other hand, the time offset, x(t), is the exact integral of the frequency offset, y(t'),

integrated from 0 to t. It also can be written exactly in terms of the q_(t) shown in Figure 9,

x(t) = _ We often talk about time deviations or phase deviations interchangeably, and since
2_vo "
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they are directly proportional this is okay.

Because of the integral relationship shown in Figure 11, the fractional frequency offset, y(t) is

the time derivative of the time offset. Hence, the slope on a phase plot is proportional to the

frequency offset.

Figure 12 gives a simple parsimonious model for the time offset or time error of a clock. The

first term represents the synchronization error, z0. The second term contains the syntonization

error, y0. It gets multiplied by the running time to calculate its effect on the total time error.

The third term contains the linear frequency drift. Its dimensions will be fractional frequency

change per unit time interval, per second or per day, as examples. All of the rest of the

deviations are included in _(t). Here, we often .hide a multitude of sins! This last term,

for example, could represent all of the effects due to environmental perturbations while also

containing the random noise deviations. In addition, it may contain side-band components due
to diurnal effects, or to modulation or RFI.

If we subtract off the effects of the first three systematic terms, then z(t) = _(t). Analyzing

these residuals is very helpful in diagnosing the effects of the random and other perturbations

on the dock. Once the level and kind of random perturbations are known, then optimum

estimation procedures can be used to better estimate the systematic effects as well as being

able to calculate optimum predictions, for example.

Taking the derivative of the model equation in Figure 12 yields: y(t) = y0 + Dt + _(t). Writing

the equation this way will be useful later as we get into optimum parameter estimation.

Frequency and Time Accuracy and Stability

Figure 13 shows an example of two very simple systematic situations: a positive frequency

offset, and a negative frequency drift. The first drawing illustrates y(t) and the second one its

integral, x(t). The constant frequency offset turns into a ramp for the time error, and the drift

into a quadratic. We assume the same synchronization error (consta,t of integration) for both
situations.

In 1988, IEEE Standard 1139-1988 was published providing a recommended set of measures

for time and frequency characterization. Figure 14 gives some of those measures from this

standard. The exception is a_(r), as it had not been developed at that time. Subsequently, it

has been adopted by the telecommunications community and by the ITU-R. As we need them,

we will describe the functionality of some of these measures.

Figure 15 gives some time-domain definitions and some useful measures. For example, y(t) is

a direct indicator of frequency accuracy if the reference, u0, is the definition of an agreed upon

standard. Similarly, z(t) is a direct indicator of the time inaccuracy if it is taken with respect

to UTC, which is the correct time by definition. The other three sigma measures shown are

for determining the level and kind of instabilities, as will be shown later.

As was mentioned before, the design of the relatively new HP 5071A cesium-beam clock was

for increased accuracy and improved immunity to environmental perturbations - resulting in
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greatly improved long term stability. Figure 16 is a histogram of y(t) for the_94 HP 5071A

clocks contributing to TAI/UTC during 1994. Figure 17 shows the 311 total participating clocks

during 1994 plotted with the same abscissa. It is apparent that the design goals have nicely

been met. The accompanying paper gives more details as well as documenting the performance

of TAI/UTCtII. The introduction of the HP 5071A docks, as Dr. Thomas has pointed out, is

having a major impact toward improving the performance of International Atomic Time.

In both Figures 16 and 17 the mean is significantly larger than the standard deviation of the

mean. So in both cases the standards would not be considered in statistical control. Hence,

the need for primary standards, so that calibrations with same can provide frequency accuracy;

i.e. agreement with the definition of the second.

Figure 18 a frequency stability diagram - using tru(r ) - showing the range of values available

for most of the important clocks to our community. This stability diagram is taken from an

ITU-R document giving the characteristics of these clocksl21. QZ stands for quartz crystal

oscillators, RB stands for rubidium-gas-cell frequency standards, CS stands for cesium-beam

frequency standards, and HM stands for hydrogen-maser frequency standards. For CS stabilities,

an extended line has been drawn in representing the improved long-term frequency stability of

the relatively, new HP 5071As.

Figure 19 is a plot of the time accuracy of three time scales over the last approximately 200 days:

UTC(NIST), UTC(OP), and UTC(USNO-MC). These three time scales are taken with respect

to UTC, the official time for the world. By definition, how well a clock agrees with UTC is a

measure of its true time accuracy. All three have been within nominally 100 nanoseconds for

about the last half year. The time accuracy of many of the worlds time scales have improved

significantly over the last three years. This has been primarily driven with the introduction of

the HP 5071As into these sundry time scales.

One of the most significant challenges that a timing center has toward time accuracy is in

predicting where UTC will be at the current time, because UTC is calculated and distributed

about one and one-half months after the fact. Each country maintains its own real-time

estimate of UTC - denoted UTC(i) for the ith timing center. Clearly, if UTC were available in

real-time, it would be far simpler to have a high-level of time accuracy. Through international

cooperation, this direction is being pursued.

The limiting noise for the cesium docks contributing to TAI/UTC is white-noise FM. The

optimum RMS prediction error for this noise is -rpa_(-rp), where -rp is the prediction interval.

For the USNO data over the last half of year, the RMS error is 6 ns. This is not the same as

the standard deviation; the 6 ns is with respect to the truth, which is UTC by definition.

An RMS error of 6 ns with -rp ffi about 45 days implies that %('r_) < 1.5 × 10-1.5, since any

prediction algorithm cannot be better than optimum. If the USNO time scale and UTC were

independent, then this number would be directly related to the square root of the sum of the

variances from each scale. The weight of the USNO clocks contributing to TAI/UTC is about

40 percent. The effect of the bias of a time scale contributing is given approximately by 1/(1 -

weight). Hence, we can conclude that either of the two time scales is equal to or better than

2.6 × 10 -1.5 at -r -- 45 days, and one of the scales is better than this number divided by x/_, or

213



than 1.8x 10-t'_.

This level of stability represents a major advancement during the last three or four years.

And again, it comes mainly as a result of the introduction of the HP 5071A clocks with their

excellent environmental insensitivity. One would also conclude that the prediction algorithm

used by USNO is very close to optimum.

Random Processes, Models and Measures

Characterizing the random deviations in a clock's performance allows us to determine the

noise type. Knowing the type of noise then allows us to design optimum parameter estimation

procedures. Figure 20 illustrates two very important types of noise. Since one flip of a coin

is independent of the next flip, a series of flips generates a random and uncorrelated series.

In other words, a flip of heads at one point in time has no bearing on whether the coin will

come up heads or tails at another time. The spectral density of these flips is then a white-noise

process.

We can integrate these flips by taking one step forward with heads and one step backwards with

tails. Our displacement from the origin is now a random-walk process and has an f-2 spectral

density. These same arguments are very analogous as to why the random time deviations

out of most atomic docks are a random-walk process. The atomic-clock servo hunts for the

resonance frequency being limited by white noise in the search; the integral of these white

frequency deviations generates a random-walk in the time deviations. Vice-versa, if a derivative

or first difference is taken of random-walk time deviations, the process turns into one with a

white-noise spectrum.

The HP 5071A is an excellent example of a clock with classical white-noise frequency spectrum

over many decades of Fourier space. This kind of noise causes au('r ) to go as r -112, and

for the high-performance model of this clock the white-noise behavior extends from about 10

seconds to as long as l0 T seconds in some cases with a performance specification given by the

top equation in Figure 21. Such behavior results in long-term stabilities well below 1 x 10-14.

As also illustrated in Figure 21, whereas white-noise FM is the ideal classical noise for most
atomic clocks, white PM is the ideal classical measurement noise. That measurement noise

can, of course, contribute to e(t) in the general model equation for the time error between two
clocks.

As shown in Figure 22, typically five different noise processes are employed to model clocks,

oscillators and measurement systems. These seem to be fairly basic in nature. Figure 23 gives

the Fourier transformation relationships between the time-domain measures and the frequency-

domain representation, as well as the region of applicability. Using these relationships and

going back to Figure 17, one can see both the regions of applicability (from the different slopes

corresponding to the f values) as well as the different levels of random variations.

Figure 24 gives the abbreviation, the name and the mathematical expression for each of these

three time-domain measures. Their square roots are: ADEV, MDEV and TDEV, respectively.

The first two measures are explained in detail in NIST Technical Note 1337131 and all three
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in the upcomingITU-R Handbook. The transformationcoefficientsfrom the time-domainto
the frequency-domainor vice-versa (preserving the noise type and level) may be found in
reference[41 and for AVAR and MVAR in NIST TN 1337. TVAR = r2Mod.a_(r)/3 has been

shown to be a very good measure for measurement system stability, network stability, and time

dissemination stability. TVAR was developed after the publication of NIST TN 1337.

Note that the equations for AVAR, MVAR and TVAR in Figure 24 are all represented in terms
of a second difference of the time deviations, x. In the case of MVAR and TVAR, the x values

making up the second difference are each averaged over a separate, but sequentially adjacent
interval r - rather than being a time error measurement at a point as for AVAR. The effect

of averaging the data in an appropriate way, applies a filter in the software so that it effectively
modulates the bandwidth of the software processor. This bandwidth modulation removes the

ambiguity associated with AVAR; i.e. AVAR has essentially the same slope (# = -2) value,
for either white-noise PM or for flicker-noise PM. MVAR and TVAR can distinguish between

white-noise PM and flicker-noise PM - having different slopes when plotted logarithmically

versus 1-.

Applications of Optimum Parameter Estimation and Prediction

As shown in Figure 25, optimum parameter estimation means that once a model parameter

has been determined, the residuals around that parameter model have been minimized in a

squared-error sense. Similarly, for prediction, the errors of prediction are minimized in a

squared-error sense. Of course, both parameter estimation and prediction will depend upon

the type and the level of the noise processes involved. Hence, knowing the noise type and

level is essential for optimum parameter estimation and prediction.

The statistical theorem given in Figure 26 is important, as well as usefid and simple. In

particular, it is useful for parameter estimation and for prediction. Since nature gives us white
PM and white FM, this theorem is directly applicable in these cases. In addition, the long-term

performance of most clocks may be reasonably well modeled as a random-walk FM process;
this is sometimes called white acceleration because the second derivative of x (d2x/dt 2) has a

white spectrum. Here again we may use the above theorem.

Two very important examples are the following. In Figure 21 it was pointed out that white
FM is the classical noise for most atomic clocks, and white PM is the classical noise for an

ideal time-difference measurement system. Hence, as illustrated in Figure 27, in the presence

of white FM, AVAR is the optimum estimator of frequency change (or instability). This is true

since each of the average frequencies, taken over an interval _-, is the optimum estimate of

frequency over that interval. Comparing an optimum with an optimum causes the difference

to be an optimum estimate of the change. AVAR then is an RMS computation of this optimal

estimate of change over the interval r. Similar arguments hold for TVAR in the presence ot

white-noise PM making it an optimal estimate, in an RMS sense, of the change in the time

each averaged over an interval -r.

Flicker models also are very common; they are more arduous to deal with, but filters have been

designed that turn flicker residuals into white noise - providing the opportunity of developing
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optimum estimation and prediction procedures for 1/f type noise processes. These have only

been partially developed because of their complexity.

Figure 28 gives the uncertainties associated with optimum estimation for three different circum-

stances. The first equation is an applicable model if the same clock signal is fed into both input

ports of a time-difference measurement system. In the ideal case _(t) would have a white-noise

PM spectrum with mean zero. Hence, the mean value over a data set would be the optimum

estimate of the time-delay difference, z0, in the cable delays feeding the two input ports. The

standard deviation of the measurements is given by _r_('r0), and the uncertainty in this estimate

is given by the standard deviation of the mean, where N is the number of measurements. Such

a model may also be appropriate if two very good atomic clocks, remote from each other, were

being compared using the GPS common-view technique. The day-to-day measurement noise is

often characterized by white-noise PM, and if this noise is significantly higher than the clock

noise at 7- = 1 day, then the simple mean gives the optimum estimate of the time difference

between the remote clocks as averaged over the interval -r.

The second equation in Figure 28 would be a reasonable model if two independent clocks

had negligible noise as compared to the measurement system's white PM level over the time

of the measurement. This model also assumes there is no frequency drift between these two

independent docks. In this case, a linear regression provides the optimum estimate of the

synchronization error, z0, and the syntonization error, Y0, between the two clocks, since the

residuals will have a white spectrum. The uncertainty is given at the right; notice that the

confidence on the frequency-difference estimate improves as N -3/2, whereas the confidence

on the time-difference estimate only improves as N -1/2. This is because we are estimating

frequency in the presences of white-noise time residuals, and frequency and time are related

by a derivative, y = d_/dt. We will show later that this N -3/2 factor may be used to significant

advantage in some frequency transfer experiments, such as with GPS and with Two-Way Satellite
Time and Frequency Transfer.

In the third equation in Figure 28, the model, for example, could be for two clocks with

relative frequency drift between them along with having time and frequency offsets. Again,
the clock's random noise is negligible as compared to the white-noise PM measurement noise

over the length of the measurement. This model could also be applicable for a clock with

intrinsic white-noise PM, such as active hydrogen masers and quartz crystal oscillators have

in the short-term. In this case, the quadratic regression line is the best fit, because the time

residuals, _(t), have a white spectrum. For similar arguments, the confidence of the estimate

of the drift term improves as N -_/2. That is, 4D = d2z/dt 2 is being optimally estimated in the
presence of white-noise time residuals.

If we apply the second equation in Figure 28 to Dr. Mattison's experiment, reported in this

conferencelSl, we get some very impressive results. With data taken once a second, having
100-picosecond white PM measurement noise, and having the satellite in view for 5 minutes,

the uncertainty on the frequency measurement would be about 6.7 × 10-14. Now if the data

rate could be speeded up to a 1 ms rate, then the uncertainty becomes 2.1 x 10-1_ --J a factor

of 30 improvement for the period of observation. The uncertainty expression at the right of

the second equation in (28) is equivalent to 2 Mod.tru(r), where r is the observation interval.
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Figures29 through31apply to the casewhereclassicalwhite-noiseis predominantasfor most
atomicclocks.The first equationin Figure29 representsthe true averagenormalizedfrequency
over the interval T0as determinedfrom the time differenceat the beginningand the end of
the interval. Sucha measurementis much like is donein a time intervalcounterover its gate
time. The secondequationis the definitionof the averageover the wholedata length. Hence,
if the first equation is substitutedinto the secondequation,the result is the third equation.
Therefore, the end point time-differencevaluesyield the optimum estimateof the frequency
in the presenceof white-noiseFM. The algorithm is extremelysimple: the differenceof the
last point minus the first point dividedby the data length. It is well to checkeither visually
or statisticallythat neither of these two points is an outlier, which would contaminatethe
result. It is alwaysgoodpracticeto checkthe datavisually. Looking at the time residualsafter
subtractingthe systematicsis one of the mostusefulvisual inspectiontechniques.

Sinceit is not uncommonfor people to subtracta linear regressionfrom the phaseor time
residualsto determinethe frequencyof their atomicclock from the slopethusderived,Figure
30 is a simulation showingthe degradationin this estimateas comparedwith the optimum.
This figure givesthe resultsfrom a Monte Carlo analysisof 100 simulationsof 100 points
each.The meanfrequencyfrom the regressionline slopewas72% worsethanoptimum. The
standarddeviationof the frequencyresidualswas8.5%worse. The simulationswere derived
from a normallydistributedset with unit variancefor the white-noiseFM frequencyresiduals.
The columndenoted"Mean z0" is the average value of the synchronization term derived at the

origin of each set and is zero by design in the optimum estimation procedure. The optimum

value for time prediction is the last value, which is the value used in the optimum estimate of

the frequency for the measurement period.

USNO has 40 HP 5071A clocks. They are well modeled by the first pair of equations in

Figure 31 for r values out to the 45 day prediction time needed to bring the UTC estimate

forward to the current time. Using the white-noise model equation for the HP 5071A clock

given in Figure 21, and the uncertainty relationship given at the right in (31), we obtain for the

frequency measurement uncertainty, for r = 45 days and for 40 independent clocks, 6.4 × 10 -16.

We previously deduced from the data an upper limit of 2.6 × 10-1'_ as derived from the actual

prediction error in UTC(USNO-MC) as observed over the last half year.

The prediction upper limit is about a factor of four worse than optimum. From the previous

analysis, we cannot tell whether the major contributor to the instability is TAI/UTC or USNO.

It is possible that the white-noise FM model starts to break down for some of the docks for

-r values of the order of a couple of months. An other explanation for the disparity could

be that optimum parameter estimation and prediction may not be used in the generation of

TAI/UTC. In talking to personnel at USNO, it seems that their procedure is very close to

optimum. Regardless, the results obtained are greatly improved over what they were a fev

years ago.

One may notice that the expression for the uncertainty at the right .of the first pair of equations

in Figure 31 is the same as the standard deviation of the mean. The second pair of equations in

Figure 31 is the model for two clocks having relative frequency drift and where the predominant

noise is white FM. In this case the linear regression on the frequency is the optimum estimator,

because the residuals around that regression line are white. The uncertainty on that drift
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estimatedecreasesasN -3/2. This kind of regression analysis is often used in our community,

and is obviously very useful.

Figure 32 considers the random-walk FM model as the predominant noise. This is often the

model used for clocks for their long-term stability performance. The model in Figure 32

assumes the presence of frequency drift. The second difference of the x(t) data has a white

spectrum. Hence, from our statistical theorem the mean value of the second difference is an

optimum estimator. This mean value is directly relatable to the drift as shown and which has

an uncertainty given at the right. This uncertainty is equivalent to the standard deviation of
the mean.

Unfortunately, as shown in Figure 33, life is not so simple. We almost never have single

noise processes in a data set. But a filter can almost always be designed which will give white

residuals. It may be a complex filter.

Figure 34 is an illustration usefid to our community: the case of white PM and/or white FM

with long-term random-walk FM. An appropriate filter may be designed to average down
the white-noise PM and/or the white-noise FM, and then we can analyze the random-walk FM

residuals. If the random-walk FM is the predominant noise in the long-term, as it often is,

then a simpler algorithm for determining a near optimum estimate of the frequency drift is

as follows. If the first, the middle, and the last time-difference points are used to compute

the estimate of the frequency drift, D, this estimate has two distinct advantages. First, as a

second-difference estimate it is optimum for random-walk FM. Second, the effect of the higher

frequency noise processes (e.g. white-noise PM and white-noise FM) is diminished if the r

for half the data length is long compared to those r values where the higher frequency noise

processes predominate. If these higher frequency noise processes have been filtered, so much
the better.

In the case of white-noise FM and frequency drift a linear regression to the frequency,gives the

optimum estimate of the drift. But in this case, if the second-differehc.e estimator per equation

Figure 34 were used, how much worse than optimum would it be? The uncertainty is given in
I

Figure 35, and it is only 15% wof.se than optimum. However, in the case of random-walk FM,

the three-point estimator is optimum and the linear regression is worse by some similar factor.

In telecommunications, very often the frequency drift of quartz oscillators as it affects the

time-interval-error (TIE) is an important specification. Figure 36 gives a relationship between

ax(r) = TDEV, the frequency drift, D, and the corresponding TIE.

Figures 37 and 38 show the effect of modulation on av(T ) and on try(r). In the latter case,

a background noise of white PM is also included in the simulation. Notice that the effect of

the modulation averages down as 1/-r.

If there is a need to estimate an effect due to temperature, pressure, humidity, etc., then the

following procedure will be helpfid. Suppose the clock has a aU(r) diagram .something like that

shown in Figure 39. Denote T/too_ as the averaging time where the clock reaches its flicker

floor. Now average the frequency for this length of time with the parameter in question fixed

at some value. Switch the parameter to some new value, allowing for settling, and measure the

frequency again for an interval _/loo_. Switch the parameter back to its original setting, again
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allowing for settling,and measurethe averagefrequencyfor the third time. Keep repeatin_
the switchingof the parametersettingasoften asneededto get the uncertaintydesired. In
principle, the uncertaintyin the sizeof the effectof this particularparameteron the frequency
will decreaseas 1over the squareroot of the numberof the independentswitches.In thisway,
we arenot limited by the flicker floor, and candeterminethe sizeof the effectarbitrarilywell.

Now consideroptimum procedures in using some of the clocks contributing to TAI/UTC.

Figure 40 is a stability plot for 78 of the HP 5071As contributing to TAI/UTC during 1994.

Clearly, there is not a single representative model for all of these clocks. The best possible

stability obtainable from these clocks is given by the equation at the bottom right of Figure

41 and represented by the 'x's. These results are reasonably modeled by the equation given:

au(r ) = 8.7 × 10-13r -1/2, where r is in units of seconds. The dots are the estimated stabilities

under the assumption that the 78 docks are all equal; square root of the average variance

divided by the square root of the number of clocks. These two stability plots give an upper

and a lower bound to the actual stability one could obtain using these clocks. The circles are

the composite stabilities for the hydrogen masers used in TAI/UTC for this same period.

The above are only theoretical estimates since there is no clock good enough with which to

measure this level of stability. In an effort to estimate the actual stability, a three-cornered

hat experiment was performed between a time scale generated foT each of three clock sets:

the primary standards running as clocks, the hydrogen masers contributing to TAI/UTC, and

78 HP 5071A cesium clocks analyzed in Figure 40. The two plus '+' points were the i'esultin_

estimated stability for the HP 5071A clocks. The 7--3/2 slope would indicate we are only seeing

measurement noise and are not limited by the clocks for these -r values.

Figure 42 is the time stability, cr_(_'), and Mod.au(_- ) for several important time and/or frequency

transfer techniques. Both can be plotted on the same graph since cry(7-) = "r Mod.cru(r)/x/3.

Most of the plots are for state-of-the-art techniques except for Loran-C, which is plotted for

comparison purposes.

The Two-way Satellite Time Transfer Technique has excellent short-term stability, but due to

equipment delay variations to date it only reaches somewhat better than 1 × 10 -13 before

these variations significantly contaminate the estimation process. In the very long-term these

instabilities start to average down again.

The enhanced GPS, EGPS, technique was developed to utilize the new multichannel GPS

receivers and to over come to some degree the effects of the Selective Availability (SA)

degradation present for the civil users of GPS. The degree to which the SA can be filtered

away is a function of the quality of clock used with the multi-channel GPS receiver; i.e.

quartz, rubidium or cesium. For example, if a very good quartz oscillator is properly used and

servoed to GPS and the SA is optimally filtered, then the short-telxu stability will be that of

the quartz oscillator, which is usually excellent, and the very long-term will be that of GPS.

The intermediate-term stability will depend on the i_ltermediate-term stability of the quartz

oscillator, which is not as good as a rubidium gas-cell frequency standard; and the rubidium in

turn is not as good as a cesium-beam frequency standard for the intermediate term.

The GPS carrier phase technique has outstanding frequency transfer capability - reaching
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about 2 x 10 -15 in 10 .5 seconds (about one day). The data plotted here came from a comparison

of hydrogen masers located in Goldstone, California and in Algonquin Park, Canada. The

baseline distance is about 3.2 Mm (2,000 miles); the circumference of the Earth is about 40 Mm.

Some 35 tracking stations were used to determine accurate orbits. Notice that the classical

measurement noise only persists for about five minutes, then some random-walk errors start to
come in. Notice also that the time instability averages down to below 10 ps; that is the time

it takes a light signal to travel 3 millimeters! Clearly, Earth tides had to be included in this

analysis. One also sees the power of these kinds of measurements to study plate tectonics for
the Earth.

The GPS common view (GPS CV), which has been used since 1981 and still is the best

operational means of comparing time and frequency standards remote from each other, starts

at r = 1 day and integrates down to below the 10-14 level. This is the main means of time

and frequency transfer for the clocks and frequency standards providing input into TAI/UTC.

If we go back to the second equation in Figure 28 - remembering that the confidence of the

estimate of frequency improves as the degrees of freedom N to the 3/2s power - one can

think of some very exciting opportunities with the new multi-channel GPS receivers. These
receivers are able to take one second data. If the measurement noise is white PM at a level

of 8 ns and four satellites could always be tracked in common-view with another site, then the

frequency transfer uncertainty would be 1.4 x 10-1G for a one day's regression analysis. This

technique is called the Advanced Common-view approach (GPS ACV).

Two eight-channel receivers were tested with common clock and common antenna to study

instrumentation noise and to check the theory of the above paragraph. The results are plotted

in Figure 42. A complex digital filter was developed to take advantage of all the degrees of

freedom while increasing the averaging time to ten seconds in order to reduce the data rate.

This digital filter explains the little hump at about 30 seconds. The curve generally follows the

white-noise PM power-law spectral model with the data averaging as _.-1/2 down to a level of

about 70 picoseconds. This data is taken from the accompanying paperIll, and is thanks to Dr.

Robin Giffard. We next need to study the performance with separate antennas, as a function

of temperature, and with the receivers located at sites remote to each other. The effects of

the ionosphere, the troposphere and multipath can be measured and/or averaged and can be
driven below the nanosecond level. Much work is yet to be done, but the GPS ACV technique

appears to have the potential to be very practical and useful.

Notice the effects of diurnal and annual variations in the Loran-C stability. As better and

better standards are being compared, it may be that in some cases temperature control will be

necessary to avoid such variations as they may occur in other techniques as well. As we move

time and frequency metrology forward, it is always well to keep in mind the basic concepts

and methodologies for parameter estimation and prediction. Those presented here are not a

complete set, but it is hoped that they will be usefid to those interested in utilizing the powerful

time and frequency resources and tools we now have available within our community.
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Gi_ten White FM and flicker-floor:
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effect, hold the parameter constant and
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the oy(r) curve starts changt-_-g Irom r i2
toward a flattening (flicker floor) Then

change the environmental parameter being

evaluated and repeat the integration time to
measure the frequency change Ill "N" is the

number of changes back and forth, then the

confidence on the frequency change is the

value of Oy(rnoor) times IA/'N
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Questions and Answers

MICHAEL GARVEY (FREQUENCY AND TIME SYSTEMS): You showed the slide

in which you were trying to pull an environmental sensitivity out of the noise; and you said

"Wait until you hit the flicker floor." Is there any reason not to modulate the environmental
effect at a faster rate?

DAVID ALLAN (ALLAN'S TIME): You have to wait for setthng, so that increases the

amount of time it takes to do the experiment.

MICHAEL GARVEY (FREQUENCY AND TIME SYSTEMS): I know. But if I wait

for the flicker floor in a cesium standard, I might wait weeks.

DAVID ALLAN (ALLAN'S TIME): Yes, and if you can't hold the environmental parameter

stable for that long, you should change it more often. For cesium and rubidium clocks the

frequency averages as I--1/2. If you can hold the parameter constant, then you're much better

off to let the clock do the averaging because of the delay associated with settling for each

switching time. If the parameter can be held sufficiently constant, then average all the way
down to the flicker floor.

MICHAEL GARVEY (FREQUENCY AND TIME SYSTEMS): Rather than wait for

the square root of N in the denominator.

DAVID ALLAN (ALLAN'S TIME): Yes, you buy information at the same rate except for

the settling time. _ It is a trade-off between the parameter's instability and the length of the

settling time. In the case of humidity effects in quartz, for example, the settling time can be

very long.
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