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Preface 

The Fifth Goddard Conference on Mass Storage Systems and Technologies has 
attracted more than forty papers which are included in these Proceedings. We plan to 
include audio and video and, if available, text and viewgraphs from the invited papers and 
the panel discussion in a CD-ROM which will be published before the end of 1996. 

A paper on application programming interfaces (API) for a physical volume 
repository (PVR) defined in Version 5 of the IEEE Reference Model (RM) for Open 
Storage Systems is indicative of ongoing activity to flesh out the RM. However, there 
still remain a number of other interfaces in the RM which lack APIs. A number of 
agencies have already deployed petabyte-sized archives with custom FSMS since there 
are no standards yet, and so there are no COTS software modules which can be 
combinedintegrated to provide file and storage management services. A user panel will 
discuss the problems and issues associated with available software and, it is hoped, will 
lay out the desiderata which experience has shown are required for the management of 
large archives. 

Storage architecture, database management and data distribution are covered in 
three sessions. The future of recording is not necessarily a mix of optical and magnetic 
technology; as the paper by Stutz and Lamartine shows, microchisels are around the 
corner, and may provide a solution to the problem of technology obsolescence which has 
been exacerbated by the ever shorter product development and life cycles. Optical 
technology is updated by papers from the Air Force’s Rome Laboratory, and from LOTS 
Technology. 

File system performance and modeling are dealt with by a number of authors, and 
there are progress reports on the definition and use of metadata in archives. 

Descriptions of specific archives and storage products have been moved this year 
to a poster session. Storage vendors will have a special session where they can explain, 
elaborate and extol their particular solutions. 

We are grateful to the members of the Program Committee: 

Jean-Jacques Bedet, Hughes STX Corporation 
John Berbert, National Aeronautics and Space Administration 
Jimmy Berry, Department of Defense 
Bill Callicott, consultant 
Sam Coleman, Lawrence Livermore National Laboratory 
Robert Creecy, Census Bureau 
Fynnette Eaton, National Archives and Records Administration 
Bernie O’Lear, National Center for Atmospheric Research 

... 
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Sanjay Ranade, Infotech SA 
Bruce Rosen, National Institute of Standards and Technology 
Don Sawyer, National Aeronautics and Space Administration 
Peter Topoly, National Oceanic and Atmoipheric Administration 

for their diligence in identifying the topics and securing the excellent papers for this 
conference. 

We also record our thanks to: 

John Otranto, Systems Engineering and Security, Inc for help with some of the figures; 
Len Blasso, Media Specialist Associates, for editing and layout; Jorge Scientific 
Corporation for logistics support. 

P C Hariharan 
Systems Engineering & Security, Inc 

Greenbelt MD 20770-3523 

Ben Kobler 
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Abstract 

This paper presents the design of derived virtual devices (DVDs). DVDs are the 
mechanism used by the Netstation Project to provide secure shared access to network- 
attached peripherals distributed in an untrusted network environment. DVDs improve 
Input/Output efficiency by allowing user processes to perform I/O operations directly from 
devices without intermediate transfer through the controlling operating system kernel. The 
security enforced at the device through the DVD mechanism includes resource boundary 
checking, user authentication, and restricted operations, e.g., read-only access. To illustrate 
the application of DVDs, we present the interactions between a network-attached disk and a 
file system designed to exploit the DVD abstraction. We further discuss third-party 
transfer as a mechanism intended to provide for efficient data transfer in a typical NAP 
environment. We show how DVDs facilitate third-party transfer, and provide the security 
required in a more open network environment. 

1. Introduction 

A network attached peripheral (NAP) is a device that communicates with the external 
world via a network interface, rather than a bus. System buses limit the sharing of devices 
and do not scale well in bandwidth, distance or number of devices. Communication via a 
local area network (LAN) provides flexibility in system design and avoids the problems of 
shared-bus communication, while allowing us to exploit the ever-increasing aggregate 
bandwidth provided by high-speed networks. These advantages are changing the way 
computer system architectures are defined [l], and we see NAPS becoming a significant 
component of new storage systems [2,3] and new multimedia architectures [4,5]. 

However, components of a system built around a LAN cannot depend on the tight 
coupling and simplifying assumptions provided by a bus-based architecture. The 

' This research was sponsored by the Advanced Research Projects Agency under Contract No. 
DABT63-93-C-0062. Views and conclusions contained in this report are the authors' and should not be 
interpreted as representing the official opinion or policies, either expressed or implied, of ARPA, the 
U.S. Government, or any person or agency connected with them. 
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boundary between the "inside" and "outside" of a system grows fuzzier, and the 
inherent level of trust that can be assumed among components of the system must 
decrease. Many current NAP system designs simply treat the LAN like a different type of 
bus, but do not address this added "open-ness" dimension and the consequent security 
issues. This may prove problematic unless the type and sources of network traffk are 
limited to prevent misuse of the NAPs. 

The Netstation Project is explicitly addressing the problems inherent in using NAPs in an 
open network environment. A Netstation is a heterogeneous distributed system comprised 
of NAPs brought together as a single system operating across a network. One of our 
primary goals is to support multiple Netstations made up of components connected via a 
single, shared LAN. The requirement to allow individual devices to be shared by multiple 
Netstation systems results in additional complexity. Moreover, we have chosen to support 
IP connectivity of these devices, to allow Netstations to be configured across LAN 
boundaries. Each of these goals introduces issues of safety and security. 

This paper presents derived virtual devices (DVDs) as the mechanism used by the 
Netstation Project to provide secure shared access to network-attached peripherals 
distributed in an untrusted network en- vironment. The security enforced at the device 
through the DVD mechanism includes resource boundary checking, user authentication, 
and operational restriction, e.g. read-only access. Yet, DVDs enable efficiency by allowing 
user processes to perform I/O transfers directly from devices without intermediate transfer 
of data through the controlling operating system kernel. DVDs also support nested or 
recursive granting of access to the device, allowing file and window systems to run 
recursively. 

The remainder of this paper is organized as follows. Section 2 presents an overview of the 
Netstation Project and its architecture to provide context for the discussion of DVDs. 
Section 3 describes the DVD abstraction, command interfaces for management and access, 
and security mechanisms in detail. In section 4, we illustrate the use of DVDs by 
presenting the interactions between a network-attached disk and a file system designed to 
exploit the DVD abstraction. Section 5 shows how DVDs can facilitate third-party transfer 
for efficient data transfer between NAPs. Sections 7 through 9 discuss related work, the 
current state of our implementation, and our conclusions. 

2. Netstation Envimnment 

The Netstation Project [6] evolved from research on the Atomic LAN [7], a 640Mbps 
point-to-point switched LAN developed at IS1 from parallel computing chips designed by 
Chuck Seitz and his group at Caltech2. The idea behind Netstation is to substitute a gigabit 
network in place of a workstation bus, similar to the efforts of the DAN [4] and 
Viewstation [SI groups. Devices such as disks, cameras, displays, and low-bandwidth 
input concentrators are connected to processing nodes via the LAN. Figure 1 shows 
a typical hardware configuration. 

The Atomic LAN has become a commercial product of Myricom known as Myrinet. 
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RAM Disk disk 

Figure 1: Netstation Architecture 

The primary advantage of a Netstation is allowing high-bandwidth devices to 
communicate directly, alleviating the shared-bus bottleneck. An example application 
would be the transfer of video data directly from an incoming network port to a network- 
attached display device, without passing through the main processor or the cpulmemory 
bus. A second potential advantage is the flexibility afforded by dynamically configuring 
workstation components from a shared pool of resources. 

The Netstation architecture includes (a) two related device abstractions (Network Virtual 
Devices and Derived Virtual Devices) which provide for the required system 
functionality, and (b) the management information and protocols needed to access and 
control the networked devices. The Network Virtual Device abstraction is used for higher 
level functions such as resource location and naming. Derived Virtual Devices are lower- 
level abstractions composed of two components: (1) some portion of an NVD resource (an 
object), and (2) an execution context which provides a functional interface 
(methods). A concise description of Netstation architectural components and their 
interactions is given below. 

2.1 Network Virtual Devices 

A Network Virtual Device (NVD) is a named physical device resource that is attached to 
the network. An NVD is the object granularity for device naming, resource location, and 
management within a Netstation system. One or more NVDs may be housed in a chassis 
along with a network media interface and sufficient processing power to provide and 

3 



manage the interface that is presented on the network. Each NVD is managed 
individually (i.e. it has a name and a description in a device management database), even 
though multiple devices may reside at the same network interface3. 

We have chosen to use Internet Domain Names [SI to identify NVDs on the network. The 
DNS can then provide the mapping from device name to the address of the network 
interface where the device resides. Given the Internet domain name (and address) of the 
device, a client that desires to use the device sends requests to a well-known NVD 
management port. 

The functions of system configuration and resource location are built on top of the NVD 
abstraction. In the simplest case, resource location can simply be obtaining a pre- 
configured device name. To configure a file system to use a particular NVD disk, the 
domain name of the NVD would be sufficient to identify the resource. For example, 
"sdOa.disk1 .isi.edu" would replace "/dev/sdOa" in a file system mount table. In the more 
complex case of dynamically finding available resources, space, the resource location 
library routines return NVD domain names. This scheme is modular and flexible as 
different resource location mechanisms can be used depending on the needs of the 
particular system that requires device resources. 

An important point to note is that data-related commands (e.g. READ) cannot be issued to 
an NVD. Instead, NVDs accept control commands that create and manage a set of abstract 
devices intended to support data I/O. These abstract devices are referred to as Derived 
Virtual Devices. 

2.2 Derived Virtual Devices 

A Derived Virtual Device (DVD) is an abstraction of a physical device that is comprised 
of (a) all or some part of an NVD's resources, and (b) a set of functions that provide access 
to, and control of, the device resources. DVDs are created (and destroyed) dynamically, 
and each is accessed through a port number that is unique for the lifetime of the DVD. This 
port number also serves as the identifier for the DVD resource; the Netstation system does 
not maintain a persistent DVD identifier similar to NVD domain names4. 

DVDs enforce the bounds checking and operational restrictions required for safe shared 
access, providing lower-level functionality than the naming and management functions 
based at the NVD level. 

DVDs can be derived from the resources of an NVD, or from the resources of a parent 
DVD. In the former case, the default information maintained about the NVD is sufficient to 

Requests sent to an interface will contain the name of the desired device in order to multiplex between 3 

different devices available via the interface. 

Services built on top of DVDs may retain persistent DVD information including an identifier for some 4 

portion of its resources. 
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specify the derived device mapping. In the latter case, the usedowner of the parent DVD 
may be offering a more complex, "value added" abstraction based on its DVD (e.g. a file 
system based on a DVD representing a set of blocks from a disk NVD). Creating a DVD in 
this case requires that the owner explicitly specify the portions of its DVD to be shared, and 
the required mapping into the derived DVD. 

Section 3 discusses DVD functions in more detail. 

2.3 Device Command and Access 

We chose RPC as the communication abstraction since it models the request-response 
nature of bus-based device interactions. Use of RPC implies that the NVD presents one (or 
more) procedural interface(s) to client applications. We distinguish between the following 
two types of RPCs: 

0 DVD Management Procedures (DMPs) are sent to NVDs to control and 
manage device access through the creation and maintenance of DVDs (e.g. 
create-DVD ( ) and install-DVD-map ( )). 

0 DVD Command Sets (DCSs) provide an execution context for each DVD 
which allows safe shared access to device resources (e.g. readblock ( ) and 
writepixel ( )). 

Authenticated W C  is used to avoid unauthorized device access, where the type/level of 
authentication can be configured locally and varies according to device type and RPC 
procedure. 

2.4 NVD Management 

Netstation systems are tied together with a local database that defines the available 
NVDs and DVDs. This database is known as the Network Virtual Device 
Manager (NVDM). The NVDM contains information as follows: 

0 NVD entries comprised of attribute-value pairs that describe characteristics of 
the available devices (e.g. NVDname: sd0a.diskl .isi.edu, NVDtype: disk, 
NVDblock cnt: 65536). 

0 DVD entries that associate (1) an NVD resource, (2) a subset of the DVD 
Command Set for the NVD resource, (3) an access control list to specify users 
allowed to create the described DVD, and (4) an indication of the required level 
of user authentication. 

Multiple DVD entries may exist for each NVD to grant different access privileges to each 
system user. An NVD definition language defines the permissible NVD attribute-value 
pairs, and includes an enumeration of the DVD command set universe. 

Users of Netstation devices consult this database to locate devices that can meet required 
specifications. Each NVD must consult this database to obtain configuration and access 
control information for the DVDs it will support. 
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3. Derived Virtual Devices 

A derived virtual device (DVD) is an abstraction of a physical device that can be viewed as 
a set of resources and an execution context at the device. The execution context enforces 
the desired constraints associated with the device5. Clients of a device see a virtual device, 
which provides a set of services such as nonvolatile storage of blocks (a disk drive DVD) 
or display of pixels (a frame buffer DVD). This virtual device is mapped to real physical 
resources by processing resources at the NVD (i.e. a device controller). 

DVDs are created by any entity with access to device resources. We use the term derived to 
indicate that the device is constructed from an already existing grouping of resources. The 
original resource is referred to as the parent, and the new DVD as the child. The parent 
resource can either be an NVD or another DVD. In either case, the access rights granted to 
a child must be a subset of the parent's access rights; this constrains both (a) the set of 
resources accessible, and (b) the operations that may be performed on the device. Note that 
NVDs are strictly a set of resources, and do not have associated data-access procedures. 
Hence, in the case of a parent NVD, the constraints placed on the Device Command Set 
must be obtained from the configuration information maintained by the local Netstation 
management database (i.e. the NVDM). 

The owner of a virtual device grants access to others by creating a mapping within the set 
of resources it owns, sending that mapping to the virtual device to create a new virtual 
device, granting client access to the DVD, and informing its client of how to communicate 
with the new virtual device. 

The new, secondary client is then allowed to communicate directly with the device (via the 
new DVD), without the intervention of the granting server. The key to ensuring that the 
secondary client does not overstep its newly-acquired authority to execute commands at the 
device is that the device enforces the constraints of the new DVD. These restrictions are 
implemented by creating a customized set of procedures, parameterized with the particular 
DVD limitations and lacking the restricted operations. 

DVDs can be nested; any client that has access to a DVD can create a child of that DVD. 
Although the focus is the use of DVDs for mapping files, once the client has access to the 
DVD it may assign any meaning to the blocks it chooses. Because a DVD presents the 
same interface as its parent, it is possible to run systems in a recursive fashion; file systems 
can be built on DVDs created by other instances of the file system, as in stackable filing 
[lo], or window systems can be run on virtual displays that are actually windows on larger 
virtual displays, much like Plan 9's 8-1/2 [ 111. For example, nesting is also used when the 
file server grants access to a user process, which can then grant access to other devices to 
facilitate third-party transfer, as described in section 5. 

Section 2.3 introduced the two types of DVD RPCs: DVD Management Procedures and 
DVD Command Sets. The following sections discuss these interfaces in more detail. 

DVDs are related to the concept of virtual store as defined in the Open Storage Systems Interconnection 5 

(OSSI) model [9]. Differences are noted in section 7. 
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3.1 DVD Management Procedures 

We have defined a protocol which describes the full functionality of a DVD. It is a set of 
commands used for controlling DVDs which we collectively call the DVD Management 
Procedures (DMP). These are the commands sent to NVDs which manipulate the DVDs 
themselves, rather than perform actual I/O operations. 

The create-DVD ( ) command is the most critical of these,procedures. To fully specify 
DVD creation requires all of the following information: 

An ID of the user that is to be granted access to the new DVD. 

A set of resources. This includes an identifiable resource (either an NVD or 
existing DVD), and a specification of the resource subset to be accessible by the 
new DVD. 

A (possibly trivial) mapping from the new DVD address space (e.g. block 
numbers) into the physical resources. 

The subset of DVD Command Procedures that the user is permitted to use (e.g. 
cannot use write function). 

Ranges for parameters values for each DVD RPC to enforce constraints. 

Authentication levelhype required for each DVD RPC. 

All of this information is required so that the DVD creator can establish access constraints 
on the DVD. 

Other commands allow the creator to modify the operating environment of the DVD. For 
example, it must be possible to dynamically increase the size of a child DVD which 
represents a file mapping ( in s  tall-DVD-map ( ) ). This is superior to the simpler 
alternative approach where the DVD must be destroyed and recreated, forcing the client to 
reconnect. 

The creator must also be able to determine (normally at child DVD destruction time) certain 
information about the usage of the child DVD. For example, it may be necessary to receive 
a list of the blocks that were written to the child DVD, a feature necessary for effective 
implementation of write before read (described in section 4.4). 

Examples of semantic constraints that DVD creators must be able to specify include address 
remapping and limits and access control features such as read only, write before read and 
append only (for tape), and restrictions on management operations such as modification of 
NVD owner lists. 

The semantic flexibility provided means that it is possible to define new commands, which 
might be useful for compression, encryption, storage allocation, parity computation for 
distributed RAID [ 12,13,14], and "composite" virtual devices (striping for disks or tapes, 
treating multiple displays as a single large display, etc.). 
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Our prototype DVD creation mechanism is based on Scheme [ 151. The DVD creator 
downloads Scheme code at create time, specifying a Scheme function to be executed 
before and after the execution of each command at the NVD, to adjust argument values 
(block addresses, etc.) and determine if permissions would be violated by executing the 
command. Note that use of such a language in a non-prototype environment would raise 
security concerns that must be addressed. In principle, any of the currently proposed 
"safe" languages (Java, Safe-Tcl, Penguin, etc.) could be used; for ease of implementation 
we chose Scheme. 

3.2 DVD Command Sets 

DVDs provide a set of "data-related" or "I/O-related" commands that can be executed. We 
refer to these as the DVD Command Sets (DCSs). The interface provided is of course 
device-specific, and the same device may in fact present several levels of interface. A disk 
drive, for example, may present a lower-level block-oriented interface, such as the Small 
Computer Systems Interface (SCSI) or Intelligent Peripherals Interface (IPI), or a higher- 
level file-oriented interface such as NFS. A display may present a simplified pixel-oriented 
interface, or a high-level interface that includes windowing functionality, font management, 
etc., as X Windows does. In general, Netstation devices provide lower-level, device- 
oriented interfaces. The choice of interface for RPCs executed at the DVD for data I/O 
is, to a certain extent, orthogonal to the DMP. 

As an example, the RPCs appropriate for a disk drive patterned on a SCSI interface 
include: 

data operations: READ, WRITE, ERASE, COPY, VERIFY 

* block management: FORMAT UNIT, REASSIGN BLOCKS, READ 
DEFECT DATA, READ CAPACITY, error level control, etc. 

* buffer management: write caching policy, replacement algorithm, full/empty 
ratios for initiating data transfer, etc. 

physical control: TEST UNIT READY, START/ STOP UNIT (spin up 
and spin down, eject), and PREVENT/ALLOW MEDIUM REMOVAL (for 
removable drives), etc. 

In the normal SCSI model, READ returns data to the original requestor, and third-party 
copy is a complex variant of the COPY command. In Netstation, DVDs simplify addressing 
of data blocks, allowing commands such as READ to simply and nearly transparently 
become third-party transfers. Third-party transfers are discussed in Section 5. 

3.3 Security 

The havoc that can be wreaked on a disk drive by misuse of commands such as FORMAT 
greatly exceeds that of TEST READY. Thus, the level of authentication and 
privilege required to execute commands differs. 

The level of security required to execute specific RPCs is established at DVD creation. Two 
factors, the level of authentication and the level of integrity, can be specified independently 
for each of the two parts of an RPC, the RPC control block and the data. The two parts are 
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controlled separately because they transit the network separately, and may even have 
different destinations, as in third-party transfer. The large size of most data segments, 
compared to the RPC control block, also makes it desirable to allow data to be transferred 
without compute-intensive operations, such as encryption. 

Several levels of authentication are provided. Execution of some commands requires no 
authentication. Others may use known weak methods such as host source address, which 
has the two major flaws of being spoofable and not unequivocally identifying who at a 
particular node issued the RPC. The examples in this paper assume that the Kerberos 
authentication system is used, which we expect to be a common mode of operation. 

The integrity of the data transferred can also be selected. Some RPC control or data blocks 
may be protected only by the network's built-in mechanisms, such as checksumming, 
which can protect the data against accidental corruption in the network but not malicious 
tampering, while others require that the integrity of data be assured (perhaps via a one-way 
hash), a common choice for the RPC command block. Still others may require that all data 
be protected from modification. Management functions (such as the creation of new child 
DVDs) typically require the highest possible protection. 

4. A DVD File System 

DVDs can be used as an enabling technology in file systems. We refer to our file 
manager as STORM(ST0Rage Manager). In this section, we detail several system 
operations, including booting a device, booting the file system itself, reading a file, and 
extending a file for writing. 

Note that transport-level network overhead is not included in these diagrams. As these 
messages are typically sent reliably, additional packets for connection setup and control 
may be required. However, these message sequences do include some infrequent 
operations such as acquisition of an authentication key; such sequences will typically not 
have to be executed for every operation. 

4.1. Booting a Device 

When a Netstation device boots, it must configure itself, including determining who is 
allowed to access it. Some of this information must be retrieved from the device's NVDM. 
The device's built-in configuration must be adequate to allow it to find and communicate 
securely with its NVDM. The information the device starts with (stored in nonvolatile RAM 
or otherwise statically configured) includes the identifier of its NVDM and a secret key it 
shares with Kerberos. Because this secret key will unequivocally authenticate the Kerberos 
server, which will authenticate the NVDM, it is not necessary to know the locations of the 
Kerberos server and the NVDM; the locations may determined dynamically, perhaps by a 
multicast on the local network. The steps involved are, taking a disk as an example (see 
figure 2): 

1. The disk authenticates itself to Kerberos. 

2. The disk receives a Kerberos ticket to access the Ticket Granting Server (TGS). 

3. The disk requests a ticket to access its NVDM. 

4. The disk receives the ticket. 
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5. The disk requests its DVD configuration and Access Control List (ACL) from its 
NVDM. 

6. The NVDM sends configuration info to disk. 

Figure 2: Booting a Disk 

In our simple example, the disk receives an ACL indicating that STORM is the only user 
allowed, and it has unlimited access to the entire disk. 

4.2 Booting STORM 

Booting STORM requires the following steps (see figure 3): 

STORM authenticates, asks for DVD 

1. STORM must authenticate itself to Kerberos, the authentication server. 

2. STORM receives a Kerberos ticket to access the Ticket Granting Server (TGS). 

3. STORM requests a ticket to access the disk. 

4. TGS sends STORM the ticket, which contains, among other information, a 
session key for STORM and the disk to share. 

5. STORM requests access to the disk NVD. This is a create-DVD ( ) request. 
In the simple case of the disk containing only a file system managed by STORM, 
this request will be for unlimited access to the entire disk. 

6.  The disk checks the permissions, creates the DVD, and returns the DVD 
identifier to STORM. Setup is now complete, and STORM is free to access the disk 
NVD, subject to the constraints imposed by the DVD definition. 
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Data transfer 

7. STORM requests a read of the file system superblock. 

I 
I 

8. Data is returned. 

Kerb TGS f 

9. STORM requests a read of the block containing the file system root directory's 
inode. 

10. Data is returned. 

1 1. STORM requests a read of the block(s) containing the root directory. 

12. Data is returned. 

Figure 3: Booting STORM 

Note that near the end of the sequence, once the DVD has been established, data requests 
and responses are processed with a minimum of messages. This is typical of DVD 
operations; a large number of control messages are used to establish safe conditions for 
high-speed data transfer. This will be most effective when large amounts of data are to be 
transferred or many requests executed. 
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Parent DVD (real disk NVD) 

Child DVD (a single mapped file) 

Figure 4: Using a New DVD for a File Mapping 

4.3 Reading a File 

When an application program opens an existing file, the request is transmitted to STORM. 
STORM, as the owner of the DVD holding the entire file system, creates a child DVD (with 
an access list specifying the new user) that includes only the blocks that are part of the file, 
and returns a DVD identifier (port number) to the new DVD. Figure 4 shows a newly- 
created DVD that maps a simple three-block file. 

Figure 5 shows the steps involved in opening a file through STORM: 

1-4. rdv authenticates himself to Kerberos and acquires a ticket to access STORM. 
This is analogous to steps 1-4 of booting STORM. 

Establish DVD for rdv 

5. rdv sends a file open request to STORM. 

6. STORM determines that the best way to handle this request is to create a DVD 
for rdv at the disk drive, so it sends a create-DVD ( ) command to the disk NVD. 
This command, detailed in section 3.1, contains information about who the DVD is 
for as well as what access is being permitted. 

7. The disk ACKs the DVD create with the appropriate information. 

8. STORM bundles the DVD identifier into a package and sends it to rdv. STORM 
may have to include extra information for the file system library code being 
executed by rdv, such as what operations require the cooperation of STORM, 
how to handle partial blocks, what to do about EOF, etc. DVD setup is now 
complete. 

rdv pets a ticket 

9. rdv, who has not previously accessed the disk, requests a ticket for this purpose. 
If subsequent file opens access the same disk, this step will not have to be 
executed. 
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10. TGS returns the ticket. 

Data transfer 

11. rdv sends his first data request to the disk NVD. 

12. The disk NVD responds with the data. 

13, rdv sends his second data request to the disk NVD. 

14. The disk NVD responds with the data. 

Figure 5: Opening a STORM File 

The use of DVD file systems is most efficient for applications in which the data transfer 
phase is the primary performance bottleneck. The process of opening a file should happen 
only rarely compared to the number of readwrite operations to be performed on the file. If 
that is not the case (eg,  an application that opens many small files), a normal file system 
RPC is likely to be more efficient. A storage manager can maintain file-size information to 
recognize small file requests. Then, rather than establishing a DVD, it can retrieve data and 
forwards it to the client similar to a conventional NFS interaction. 
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Parent DVD (real disk NVD) 

Child DVD (a single mapped file) 

Write Before Read blocks 

Figure 6: Write Before Read DVD for a File Mapping 

4.4 Write Before Read 

An optimization we have developed in conjunction with DVDs is write before read (VVBR). 
It allows servers to grant access to resources containing sensitive data, without disclosing 
that data, and without requiring explicit, expensive erase operations. 

In a traditional kernel-based system, new blocks are allocated to a user's file when writes 
are made to the file, or, depending on the FS implementation, when the file's size is 
extended but not all of the blocks are written. These unwritten blocks cannot be read until 
they have been written, because they may have once been allocated to a different (now 
deleted) file containing someone else's private data. This constraint is enforced by the 
kernel and file system. The safest solution is of course to erase the blocks explicitly before 
granting access, however this has a large negative performance impact. Thus, the concept 
of write before read comes into play. 

The DVD abstraction allows STORM to create a DVD representing a file, and tailor the 
DVD Command Set so the WRITE procedure is parameterized to enforce the WBR 
restriction. STORM simply provides (as an optional argument to a create DVD RPC) a list 
of blocks to be written before they are read. 

Figure 6 shows the same file from figure 4, extended two blocks, presumably as a result of 
a client request to read or write past the end of the physical file allocation. The server that 
lengthened the file (the owner of the child DVD) marked the two new blocks as WBR, 
since it knows that those blocks may contain data from having previously been used as part 
of another file. 

When a child DVD is destroyed, the write-first list must be reconciled with its parent. This 
is executed at the parent DVD. The owner of the parent DVD can request notification of the 
destruction of the child DVD, and along with it an accounting of blocks that remain 
unwritten, data which it can use when creating its next child DVD. 

14 



5. DVD Third-party Transfer 

Third-party transfer is a mechanism that specifies movement of data, where the party 
requestingethe transfer is neither the source nor the destination of the data. This is a 
common mechanism in NAP systems that provides support for efficient data transfer 
between devices, without a copy through the controlling entity. 

In this section, we show how DVDs support third-party transfer by presenting an example 
transfer from a disk drive to a display DVD. 

In a Netstation, third-party transfer differs from a prim'ary transfer only in that the locus of 
control is different; the mechanics of the transfers are the same. It does, however, result in 
an increase in the number of messages transferred across the network. 

One DVD can transfer data to another. This can be done by creating two DVDs, one for the 
source and one for the destination, that each linearize the area to be transferred, creating a 
virtual mapping window in a fashion similar to the Parallel Transport Protocol (PTP) [ 161. 
As with PTP, the mapping to create the virtual mapping window is done at the storage 
server, rather than at the device. However, using DVDs, this mapping is then 
communicated to the devices in the form of the creation of child DVDs. The mapping is 
then enforced by the child DVDs themselves. 

Using a DVD as the destination has the advantage that improper behavior by the source of 
the data cannot corrupt data at the sink. Giving the source device unlimited access to the 
destination can allow overwriting or erasing of data if the source misbehaves due to 
programming errors, concurrency conflicts, or malicious misuse of the source. An 
important point is that the destination device does not have to trust the source, only the 
storage server from whom it receives the mapping it enforces. This helps limit the damage 
that can be caused by security breaches at the devices, though the storage server itself 
remains the ultimate key to overall system security. 

5.1 "Push" Transfer 

Figure 7 shows the operations necessary to initiate one type of third-party transfer, 
"pushing" data from a disk drive to a display. This figures assumes (1) rdv has already 
opened the file on the disk as detailed in section 4.3, and (2) the display has already booted 
and retrieved configuration information as explained in section 4.1). From this point, the 
steps in establishing the connection are: 

1-2. rdv gets a ticket to talk to the display. 

3. rdv sends a create-DVD ( ) request to the display, requesting write access to 
the whole screen for himself. 

4. The display ACKs the create with the appropriate information. 

5. rdv sends a create-DVD ( ) command to the display, giving the disk NVD 
write access to a rectangular region of the screen, and mapping it so that (0,O) for 
that DVD maps to the upper left hand corner of the rectangle. This simplifies the 
disk's access to the display. 

6. The display ACKs the create with the appropriate information. 
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7. rdv sends a third party copy command to the disk DVD he has access to, 
requesting that the disk drive send data to the display. This first request includes the 
ticket and DVD identification information the disk needs to access the display, but 
that information does not need to be transferred for subsequent requests. 

8-9. The disk has not accessed the display, so it gets a ticket from TGS. 

10. The disk sends data to the display. 

11. The display ACKs the command to the disk. 

12. The disk ACKs the command to rdv. 

Note that subsequent requests can execute much more quickly, since the DVD state is 
preserved; this eliminates steps 3,4,  5, and 6. Note also that interactions with Kerberos 
and TGS may be eliminated for subsequent setups if valid tickets are still held. Caching the 
ticket eliminates steps 1, 2, 8, and 9, leaving a eight-step process instead of twelve. 
Additional requests from rdv for data transfer result in four messages: 

13. rdv requests the disk drive to transfer data. 

14. The disk drive sends the data to the display. 

15. The display ACKs the command to the disk drive. 

16. The disk drive ACKs the command to rdv. 

This is the bare minimum of messages possible. STORM has not had to be involved at all 
in this child DVD create or the individual UO operations, because rdv is granting access to 
resources he already has access to. 

Note that this is asymmetric; the disk drive has access to the display, but not vice-versa, 
because no DVD allowing the display to access the disk drive has been set up. 
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Figure 7: Third Party "Push" Transfer 

5.2 "Pull" Transfer 

The previous example was shown as a "push" transfer, with the data source initiating the 
transfer. An equivalent transfer can be set up in the opposite direction, with the display 
sending READ commands to the disk drive rather than the disk drive sending WRITE 
commands to the display. This we refer to as a "pull" transfer. 

The choice of whether to use a push or pull transfer can be made based on the relative 
capabilities of the two nodes. If rdv's latency to the two devices is significantly different, 
the choice can be made to reduce the total time for the four messages necessary for each 
transfer. A push transfer would be appropriate if rdv has low latency to the disk drive and 
high latency to the display, and a pull would be the correct choice in the opposite case. 

6. Implementation Issues 

The client of a DVD (for example, a user process) accesses the DVD as if it were a regular 
block-oriented device. Library code would implement read ( ) and w r i  t e ( ) 
transparently to application code, thus preserving the investment in software development. 
A relink may be required, however. 

This library code will run entirely in user mode; once the mapping of the file has been done 
and the DVD created by the device's owner, no further communication with the owner (the 
storage manager) is required. Reads and writes are done via user-level RPCs directly to the 
DVD. If the network code runs in the user's context as well (as is done on some high- 
performance systems), file I/O may be executed entirely without leaving the context of the 
application. This can be especially useful on systems that provide low latencies on RPCs. 
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The library read and write code maintains some structures similar to those normally handled 
by the kernel file system, such as the EOF marker, which must be returned to the true file 
system at file close (or process termination) time. 

The ability to execute file UO without the intervention of another process or kernel may be 
especially useful on distributed systems or on multicomputers, where the file system 
manager may not be local to the client's node. This allows separation of the operations for 
actually executing UO from those for managing disk space, directory structures, etc., which 
may be centralized or distributed without regard to where the UO must be conducted. 

This limited-functionality library will also result in less memory use at the compute nodes. 
On massively parallel processors (MPPs), for example, the memory savings of not running 
the full file system code locally on each of a thousand nodes can result in savings of tens to 
hundreds of megabytes of RAM. 

When the process attempts to write past the end of the existing block allocation, 
the library code recognizes this, and communicates a request to the file manager to extend 
the file. The file manager then allocates additional data blocks and communicates an 
updated file mapping to the child DVD. Should the application (either deliberately or 
through a mistake in the library code) attempt to read or write past the end of the child 
DVD, an error is returned. See section 4.4 for more details. 

7. Related Work 

The projects most similar to the basic concept of Netstation are MIT's Viewstation [SI and 
Cambridge's Desk Area Network (DAN) [4]. Both projects are ATM-specific, and 
concentrate more on local-area traffic, with careful distinctions between the "inside" and 
"outside" of the system, whereas Netstation is fully Internet-accessible and has no 
system boundary. 

As already discussed, DVDs have much in common with virtual stores from the IEEE 
Open Systems Storage Interconnect model [9,17]. DVDs differ from virtual stores in 
several respects. DVDs do not support composite devices, while a virtual store may 
represent striping across more than one disk, for example. However, DVDs provide 
more semantic flexibility, in that the owner of a device (or DVD) is allowed to grant any 
arbitrary subset of its own capabilities (including management functions) to its children 
when creating DVDs, while virtual store is limited to a data mapping of storage devices. 
Moreover, although the focus of this paper is on DVD use in file stores, DVDs are more 
general and may be used for other network attached peripherals such as displays. 

Numerous projects have proposed giving the disk node more autonomy, as part of parallel 
file systems [18,19] or to execute their own space allocation [20,21]. DVDs, with their 
flexibility and programmability, provide a platform which could be used for similar 
purposes. 

8. Status and Future Work 

Much remains to be implemented before Netstation can be considered complete. 
The network-attached display hardware is complete, and programming of it nearly 
so. An implementation of the X Window System using the display, with a prototype 
implementation of the DVD definition mechanism, is complete. A prototype software 



version of the keyboard device is under way. Design of the hardware for the camera is 
under way. 

STORM itself, and the user library that accesses it, are in the early stages of 
implementation. Early goals for the implementation include the ability to use third-party 
transfer to move data to and from the display, via DVDs. The details of the API for file- 
related and non-file I/O are still in development. The Kerberos authentication system has 
not yet been incorporated into the system. 

Future research includes defining a composition function so that multiple devices can 
behave as a single virtual device. As mentioned above, DVDs are typically derived from a 
single device, however it is desirable to provide a.higher-level abstraction to create 
composite devices. 

9. Conclusion 

We have shown the design of a device abstraction, derived virtual devices, which provides 
the efficiency of low-level device access while maintaining many of the protections of 
higher-level abstractions such as files. We have described a file system design based on 
DVDs which supports third-party transfers from device to device and allows direct access 
to the devices by clients at all levels. Derived virtual devices also recurse to allow clients to 
safely grant access to subsets of their resources to their clients. 
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Abstract 

The use and acceptance of new high-performance, parallel computing platforms will be 
impeded by the absence of an infrastructure capable of supporting orders-of-magnitude 
improvement in hierarchical storage and high-speed UO. The distribution of these high- 
performance platforms and supporting infrastructures across a wide-area network further 
compounds this problem. We describe an architectural design and phased implementation 
plan for a distributed, cooperative storage environment (CSE) to achieve the necessary 
performance, user transparency, site autonomy, communication, and security features 
needed to support the Accelerated Strategic Computing Initiative (ASCI). ASCI is a 
Department of Energy (DOE) program attempting to apply terascale platforms and 
problem-solving environments (PSEs) toward real-world computational modeling and 
simulation problems. The ASCI mission must be carried out through a unified, multi- 
laboratory effort, and will require highly secure, efficient access to vast amounts of data. 
The CSE provides a logically simple, geographically distributed, storage infrastructure of 
semi-autonomous cooperating sites to meet the strategic ASCI PSE goal of high- 
performance data storage and access at the user desktop. 

Introduction 

The Accelerated Strategic Computing Initiative (ASCI) [l] is a critical element of the 
Department of Energy (DOE) response to recent decisions ending nuclear testing. In the 
past, a large part of integrating fundamental science into nuclear weapon safety, reliability, 
and performance was accomplished through underground testing. In the future, the 
simulation capabilities provided by ASCI will provide much of that integration. The DOE 
Science-Based Stockpile Stewardship (SBSS) program, which encompasses ASCI, plans 
to build upon a strong foundation of simulation capabilities, non-nuclear testing, and basic 
science to assess the performance of nuclear stockpile systems, predict their safety and 
reliability, and certify their functionality. 

A primary ASCI strategy is to facilitate an unprecedented level of cooperation among the 
three DOE Defense Programs (DP) laboratories (Lawrence Livermore, Los Alamos, and 
Sandia National Laboratories). These three DP labs (Tri-Lab) will share ASCI code 
development, computing, storage systems, and communication resources across laboratory 
boundaries in joint development efforts, while still maintaining a high degree of local 

This work was performed under the auspices of the U.S. Department of Energy by Lawrence 
Livermore National Laboratory under contract number W-7405-Eng-48, and supported by DOE Defense 
Programs Accelerated Strategic Computing Initiative funding. 
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autonomy. Together with a philosophy of creating a cooperative management environment, 
there are several technical strategic thrusts within ASCI. Each of these technical strategies 
influences the need for a high-performance, cooperative storage environment. 

ASCI is developing new software applications for virtual testing and prototyping that 
integrate 3-D capabilities, fine spatial resolution, and accurate physics. These applications 
will generate much larger quantities of simulation data (multiple petabytes) than ever 
before. Access to other large data collected from non-nuclear testing and historical 
underground tests will also be needed to verify and validate results of new applications. 
ASCI is pushing the computing industry to develop high-performance computers with 
processing speeds and memory capacities thousands-of-times greater than currently 
available computers, and tens-to-several-hundred-times greater than the largest computers 
likely to result from current trends. Much larger capacities and data transfer rates will be 
required from ASCI storage resources to keep up. 

ASCI will require an effective problem-solving environment (PSE) to support application 
code teams. The PSE provides a robust computing environment where codes may be 
rapidly developed. The PSE also provides an infrastructure to allow applications to execute 
efficiently on ASCI compute platforms and to allow easy accessibility to terascale 
resources from the desktop. This computational infrastructure will consist of local-area and 
wide-area high-speed networks, software development and visualization tools, and 
advanced storage facilities (see Figure 1). 

High Performance 
Computing Environment 

MPPS 
Archival Storage 

Scientific Data Management 
Parallel VO 

High Speed LAN 
Distributed Resource Mgmt 

Tri-Lab 
Distributed Computing 

Network 

Encryption 
SecureNet 

Network Management 
DCE Services 

High Speed 
Wide Area 

Application Development 
Environment 

Compilers 
Debuggers 
Profilers 

Visualization Tools 
Parallel Tools 

Figure 1. The ASCI Problem Solving Environment 

Motivation 

To make effective use of terascale platform and application capabilities be,,ig developec in 
ASCI, scientists will need to store, access, and manipulate unprecedented amounts of data. 
The inability of existing data storage systems and IVO capabilities to perform these tasks are 
now being recognized. Recent projects, such as the San Diego Supercomputer Center 

22 



initiatives in data-intensive computing and massive data analysis, have started to explore 
better architectures for multi-teraFLOP computing, multi-petabyte storage, integrated 
databases and archives [2]. Without improvements, users will spend significant time and 
effort working around storage problems and UO bottlenecks, and therefore be unable to 
realize gains from the ASCI terascale environment. The ASCI PSE concentrates heavily on 
high-performance archival storage, hierarchical storage management, and scalable I/O to 
address successful use of data. Other important areas in the PSE, closely related to storage 
but outside the scope of this paper, are scientific data management and visualization (Le., 
tools to aid locating and understanding data), parallel file system advancements (Le., 
mechanisms for intelligent application use of scalable VO), and high-speed interconnect 
fabrics (i.e., networks to provide efficient local and remote transmission of data). 

ASCI is an application-driven effort, and as such, an overall PSE goal is to develop needed 
software and deploy necessary hardware to intelligently present designers and developers 
with all of the resources they will need. This view of convenient one-stop, black-box 
desktop access implies that individual components comprising the overall resource 
environment must cooperate. Requirements of cooperative storage differ from those of the 
scientific data management and visualization areas of the PSE. Cooperative storage is 
primarily a data logistics problem, concerned with how data is moved, shared, supplied, 
and stored. In contrast, scientific data management is more accurately a data semantics 
problem, concerned with finding and understanding meaningful data. Both are needed to 
provide a true end-to-end data management solution within ASCI. 

Site A 
High Performance 

Hierarchical Storage 

Locally Used Global Shared 
Storage Storage 

Site B 
High Performance 

Hierarchical Storage 

Locally Used Global Shared 
Storage Storage 

Site C 
High Performance 

Hierarchical Storage 

Locally Used Global Shared 
Storage Storage 

Figure 2. Integration of Autonomous HSM Systems 

In this paper, we concentrate on the data logistics problem. We define cooperative storage 
as an interworking group (sometimes called a federation) of autonomous, hierarchical 
storage management systems (HSMs), joined to meet terascale computational needs 
through common shared vision and coordination, but employing local integration and 
administration (see Figure 2). HSMs provide management of a hierarchical set of storage 
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devices and file stewardship services to its clients. Individual systems tend to view their 
resources as local and other systems’ resources as remote. Within ASCI, systems will 
contribute part of their storage resources to the cooperative ASCI whole in compliance with 
well-defined Tri-Lab global policies. At the same time, systems can also provide local 
resources that are not sharable, again in agreement with management policy. 

Coordination of networked block-data servers to implement a distributed, parallel data 
storage system has been investigated in other work, notably the Image Server System 
network-distributed data server [3]. Still other projects have explored integration of mass 
storage with file systems [4,5]. Unlike those efforts, ASCI attempts to integrate 
autonomous HSMs into a cohesive whole across a high-speed WAN, each HSM 
composed of multiple servers distributed across a local network. The NASA EOSDIS 
Project [6] has similar HSM requirements in its attempt to build a globally distributed, 
heterogeneous, autonomous data system for the Earth Sciences community. EOSDIS is 
based on a cooperative architecture where data archiving and distribution services can be 
configured to achieve a balance between centralized management and distributed authority. 

Requirements 

There exists a rich literature on the requirements of distributed file systems [7]. In this 
section, we investigate critical requirements that an ASCI cooperative model places on 
HSMs. Many distributed file system and cooperative HSM requirements overlap due to 
common issues of resource sharing and remote access. ASCI will require its terascale 
resources to be viewed in uniform ways (i.e., as part of a seemingly single, local, scalable 
resource space that can be globally optimized). Scalability becomes especially important as 
systems grow more complex. One of the ASCI PSE goals is to bring what appears to be 
unlimited storage and processing capacities to the desktop. 

Transparency 

In a black-box view, users should not be concerned with how, where, or in what format 
data is stored. Various transparencies can be provided to reduce or hide the complexity of 
system interaction and internal detail, but there may be disadvantages if efficiency is lost in 
resource utilization or performance. We discuss some important transparencies for ASCI 
below. 

Access and location transparency are related. Access transparency (sometimes called 
network transparency) hides whether objects or services are local or remote. Location 
transparency hides where objects or services are physically located. Both help make a 
system easier to use. A related transparency is migration transparency, where users are 
unaware that an object or service has moved. These are key requirements of a cooperative 
storage design. In many systems, a user often must explicitly know where objects 
(typically files) are stored. An example is FTP access to a remote site where, to obtain data, 
a user must 1) know where the data is, 2) contact that site explicitly, and 3) login to view or 
access files. ASCI’S black-box philosophy will require that the burden of multiple access 
methods and needing to specify data location be eliminated or made easier for users and 
applications. 

A related transparency is data representation transparency, where users are not aware that 
different data representations may be used in local and remote parts of the system. FTP 
may require the user to specify binary or ASCII for proper data transfer. Although 
standard access interfaces such as FTP are required and will be supported by ASCI, 
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distributed file system interfaces that can better support these transparencies will also 
required. An important ASCI requirement is that data stored using a specific type of 
interface be accessible by another. For example, a file stored using a local parallel file 
system interface should be accessible to the user (at the desktop) through a distributed file 
system interface. Note that, although the data may have been stored in parallel, actual 
distributed file system access may be serial. The data may also be physically stored in 
several different formats throughout the HSM. 

Another transparency is naming. We define naming transparency as the ability to obtain a 
single namespace view, typically as a directory structure, independent of data location or 
access interface. Storage objects should have globally unique identifiers independent of 
resource location and access mechanism. Satisfying the naming transparency requirement 
presents users (logged into any part of the ASCI cooperative environment) with identical 
namespace views of storage resources. 

Two other transparencies are replication and administration. Replication transparency hides 
the fact that objects or services may be replicated within the system (usually for 
performance or reliability reasons). Clients may not necessarily know if objects or services 
are replicated, 'and services may not know if clients are replicated. Administration 
transparency provides a management process with the same view of manageable 
resources, independent of the location of those resources. This allows administrators to 
assemble resources to fulfill user needs without an obligation to know what resources were 
local or remote. Such administrative transparency will, of course, be constrained by global 
management policies. 

Site Autonomy 

While transparency eases access and use, maintaining local autonomy or control of local 
resources is also important. Some sites will have local policies that they may be required to 
enforce, such as security, accounting, scheduling, and system administration. A site may 
also need to restrict access to particular data or hardware resources on a need-to-know 
basis, or may simply desire a greater degree of control over local assets. There are failure 
scenarios where a site may need to isolate itself from the cooperative whole while still 
providing service to local users. Likewise, sites need to be able to operate, possibly in a 
degraded fashion, when other sites or components of the cooperative are unavailable. To 
support these situations, interworking sites must strike a balance between local 
management of resources through site-specific policies and continuing to function as a 
usable part of the cooperative environment. The introduction of greater autonomy may 
result in much more visible component boundaries to users. 

Communication and Security 

Because extending the reach of scientists from the desktop to Tri-Lab resources is key, an 
ASCI cooperative storage infrastructure must not be isolated from the communication and 
security infrastructure shared by other ASCI elements. The ASCI communication and 
security infrastructure provides services and tools to support creation, use, and 
management of distributed applications in a heterogeneous environment. It also provides 
services that allow distributed applications to interact securely with a collection of possibly 
heterogeneous computers, operating systems, and networks, as if they were a single 
system. It is a requirement that cooperative storage work with, and be manageable within, 
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this infrastructure. It would also be prudent for the HSM’s internal component interactions 
to use this same communication and security infrastructure. 

Pegormance 
Even if all of the requirements listed above are satisfied, a system must meet minimum 
performance requirements for its users. Providing transparency, autonomy, security, and 
communication is valueless if the software and hardware resources providing them are 
unable to provide data storage and access in acceptable time. For ASCI, performance will 
be a dominant requirement. 

Architecture 

To satisfy the above requirements, the ASCI PSE effort has established a preliminary 
architectural vision for a cooperative high-performance storage environment (CSE). This 
vision brings together distinct elements of storage to form a cohesive, unified, orderly 
whole. The desired result is a logically single, geographically distributed, storage system of 
semi-autonomous cooperating sites. The system will be designed and implemented to meet 
the goal of high-performance data access at the desktop. In this section, we describe aspects 
of a cooperative architecture that target our requirements. We address each area and discuss 
the planned architectural approach to satisfy the requirement. ASCI is a multi-year effort, 
and therefore a phased implementation approach is planned. 

Achieving Transparency 
To achieve the transparencies described in the requirements section, our approach uses 
interfaces that naturally provide transparency to users, and tie those interfaces through 
additional linkage of Tri-Lab name spaces and data spaces. This provides ASCI users of 
non-transparent interfaces many of the beneficial properties afforded users of transparent 
ones. The CSE will use DFS [SI as a key file system interface. This interface provides 
users with a serial interface to storage that satisfies many transparency requirements. 
Interfaces to local NFS systems will also exist and be supported by CSE HSMs. We chose 
to concentrate on DFS because it is better able to support the wide-area requirements of 
ASCI and the PSE middleware infrastructure. 

DFS uses a set of cooperating clients and servers to provide geographically separated users 
with a single, seamless view of a distributed name and data space. DFS also has enhanced 
data caching capability and consistency guarantees. While DFS satisfies several 
transparency requirements of ASCI, it lacks an archival back-end needed to support the 
petabytes of data generated by ASCI. To address this problem, we plan to exploit an 
extended definition of the DMIG DMAPI [9] specification to link DFS with an appropriate 
back-end HSM capable of satisfying the large storage requirements of ASCI. An HSM- 
DMAPI gateway will provide interoperability and communication between the DFS Server 
and the HSM (see Figure 3). 

Another deficiency of DFS is that it does not currently satisfy the high-performance, 
parallel-access requirements of many ASCI applications and users. Overcoming the serial 
performance shortcomings of DFS will be challenging. We plan to investigate ways to 
expand the DFS interface for parallel transfer of data, where possible. While we hope to 
enhance DFS data transfer performance, we also need to provide other user interfaces 
capable of satisfying the performance requirements of ASCI. To satisfy transparency 
requirements, these storage interfaces will all need to operate within a common namespace 
shared by all user storage interfaces. 
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The strategy to allow all storage interfaces to view, and operate within, a single namespace 
is grounded in two architectural decisions. The first is that the namespaces of interworking 
sites will be linked together, thus allowing users to navigate a single global namespace. 
This linking will be accomplished by allowing the software that implements naming at 
each site to. link leaves of its directory structure to points in other site namespaces. This 
approximates the idea of a UNIXTM mount, but more accurately mimics a UNIX soft link. 

The second architectural decision concerns namespace consistency. Storage interfaces that 
have their own namespaces by design ( e g ,  DFS), must be integrated into the CSE such 
that the namespace provides a global namespace view. If interfaces are implemented as 
multiple namespaces joined to provide a single view, they must be kept consistent with 
other views. This presents a significant challenge. For example, back-ending DFS with an 
archival HSM as was done in [5] will not be enough. We require that the DFS namespace 
provide users with access to all data (given proper authorization) created by every interface 
in the CSE. This means that a file created by a non-DFS parallel interface will need to 
appear in the DFS interface's namespace. 

Hierarchical Storage 
Management System 

Y Y  Network 

DFS 
Client 

Figure 3. Integration of DFS and HSM Name and Data Space 

The above architectural decisions lead to a design with location, access, and name 
transparencies, but do not necessarily satisfy requirements for administration or replication 
transparency. Administrative transparency implies the ability to assemble resources located 
across interworking sites into useful configurations, taking advantage of the strengths and 
bypassing the weaknesses of each site. Later phases of CSE design encompass linking the 
storage system management (SSM) internals of the server components of each site 
together and with all server components. This enables construction of hierarchies that span 
geographically separated sites. There are also plans for introducing future file and physical 
volume replication capabilities into the CSE that can span sites. 

Achieving Site Autonomy 
Satisfying site autonomy requirements in an architecture that links name spaces and joins 
administrative domains is difficult. Our design maximizes site autonomy within a single 
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system through incorporation of policy modules, and by allowing a site to continue 
functioning, albeit in degraded fashion, when disconnected from other participants in the 
CSE. Similarly, sites remaining in the CSE are allowed to operate in the absence of one or 
more sites. 

Policy modules allow enforcement of SSM concerns that are likely to differ from site to 
site by isolating local rules or decisions into separate modules that may be implemented or 
modified by each site to suit its own needs. The CSE design provides for integration of 
policy modules by establishing well-defined interfaces to and from storage service 
components. Modification of the main components of the system is not required; only the 
policy modules need to change. An example is implementation of accounting. The CSE 
maintains a well-defined interface to an accounting policy module. As accounting events 
are encountered, policy module interfaces are used to communicate accounting 
information. The module that accepts this information will be customized by the site and 
will then perform site-specific actions appropriate to log, report, or ignore the information. 
The CSE design currently includes policy interfaces for accounting, scheduling, security, 
migration and purge and system management. The modeling of policies as general objects 
in distributed systems is explored in considerable detail in [ 101. 

Architecting the system to allow independent operation, in the face of communication 
failure or other adverse events, relies on how server components of the CSE are linked. If 
servers are connected in a way that requires all information to be successfully exchanged 
over inter-site communication lines for a server to function, then autonomy will be lost. If 
servers are instead connected through simple remote location linking information, more 
autonomy is possible. The CSE uses the latter approach. Imagine two name server 
components residing within separate sites (see Figure 4). Each name server represents an 
autonomous directory structure that may have leaf nodes that are links or pointers to 
directory or file resources located in the other name server’s structure. When traversing a 
pathname that crosses one of these links, the CSE is designed to realize that the next 
component is actually managed on a remote name server and contact that server for 
continued parsing of the path name. 

Site A Site B Site B 

Figure 4. Linked Name Servers at Multiple Sites 
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Under the above scenario, one can imagine a situation where Name Server B is not 
reachable. Site A still has the ability to traverse all of its own namespace, but cannot access 
names located in Site B’s space. In this case, depending on the distribution of data across 
sites, the absence of Site B will degrade access to data, even if names are accessible. This 
demonstrates a tradeoff between autonomy and administration transparency. Typically, as 
administrative transparency increases, site autonomy decreases. Striking a balance between 
these two requirements will affect the eventual implementation. Note that if an HSM is 
well designed and thus able to scale within a single site, many difficulties linking multiple 
sites will be moot. In the linked name server example above, one could have easily 
considered the two name servers to be at a single site, scaled because the namespace was 
too large to be supported by a single name server. Single-site name server scalability 
requires the ability of pathnames to span local name servers. Thus, solving this problem 
addresses many issues concerning multi-site name server cooperation. 

Communication and Security Infrastructure 

Because the ASCI environment is built on a wide-area fabric of distributed services, it is 
important that the CSE function as an integral part of this fabric. In our design, the HSM is 
constructed using this fabric to tie together its various distributed components. The ASCI 
PSE uses OSF’s Distributed Computing Environment (DCE) as a convenient middleware 
layer to tie ASCI PSE components together. DCE provides services and tools that support 
the creation, use, and maintenance of distributed applications and servers in a 
heterogeneous computing environment. DCE also provides services that allow distributed 
applications and servers to interact securely with a collection of possibly heterogeneous 
computers, operating systems, and networks as if they were a single system. The CSE 
uses these services as the glue between each of its server components as well as for the 
mechanism linking HSMs with their clients and other components of the ASCI 
environment. 

Because much of the work to be done within ASCI is classified and requires the use of 
need-to-know boundaries, authorization techniques will be critical to successful information 
sharing. The DCE Security Service maintains a replicated registry database that includes 
principals, users, groups, organizations, accounts and administrative policies. Sites within 
the CSE can make use of this security service by implementing calls to the service within 
their site-specific policy modules. Access Control List (ACL) entries in the database are 
used to define and grant permissions to an object. Any request by a user or application to 
use an object, such as an archival storage device, is accompanied by the requester’s 
credentials which are checked against the ACL for that service. 

Of equal importance to the authentication and authorization mechanisms provided by DCE 
is the security of data itself as they traverse communication networks. The security of 
WAN communications between distributed ASCI sites is provided by networks front- 
ended by high-performance encryptors, providing NSA-approved encryption of all data 
passing between classified ASCI sites. 
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Achieving Performance 
As stated above, the transparencies inherent in the CSE architecture are not really useful if 
minimum performance needs of applications and users are not met. If performance is 
lacking, users will recognize the difference in speed when accessing data on remote 
systems, and as a result will find ways of working around the system to avoid delays, 
often at the expense of the system as a whole. 

To support the performance requirements of ASCI, the CSE uses a scalable, parallel 
architecture to support high-performance data access. Under this design, sites can enhance 
performance by adding server components and/or wider stripes of data until a target 
performance level is achieved. For example, if a site requires a 100 megabytehec transfer 
rate for a file, but only has 20 megabytehec devices, the CSE allows the site to attain the 
desired transfer rate by storing data using a five-wide stripe across multiple devices at a 
site. 

While the architecture we have chosen provides, in theory, the performance necessary to 
satisfy the requirements of ASCI, realizing this goal is highly dependent on additional 
advances in networking hardware, protocols, and encryption technology. Without gains in 
these areas matching the I/O performance gains seen in storage devices and platforms, the 
functionality required by ASCI will not be easily obtainable. The CSE architectural design 
and implementation will closely track these disciplines and react as necessary to integrate 
advances in these areas as they become available. 

Implementation 

The ASCI implementation strategy for a CSE focuses heavily on the High Performance 
Storage System (HPSS), an on-going effort to develop a scalable, high-performance, HSM 
for data-intensive applications and large-scale computers. Coordinated by IBM 
Government Systems, three of the principal developers for HPSS are also the three ASCI 
DP laboratories: Lawrence Livermore, Los Alamos, and Sandia National Laboratories. 
Oak Ridge National Laboratory, other federal agencies, and universities also participate in 
HPSS development. From the beginning, a major motivation for HPSS was to develop a 
high-speed storage system providing scalability to meet demands of new high- 
performance computer applications where vast amounts of data are generated, and to meet 
the needs of a national information infrastructure [ 1 11. 

HPSS has a scalable, networked-centered architecture [ 121 and is based on the concepts of 
the IEEE Mass Storage System Reference Model, Version 5 [13]. The architecture 
includes a high-speed network for data transfer and a separate network for control. The 
control network uses OSFDCE Remote Procedure Call technology. In an actual 
implementation, control and data transfer networks may be physically separate or shared 
[14]. Another key feature of HPSS is support for both parallel and sequential YO. The 
parallel I/O architecture is designed to scale as technology improves by using data striping 
and multiple data movers [15]. HPSS was designed to support data transfers from 
hundreds of megabytes up to multiple gigabytes per second. File size scalability must meet 
the needs of billions of data sets, some potentially terabytes in size, for total storage 
capacities in petabytes. 

The scalability features of H P S S  are important for enabling distribution and cooperation of 
storage resources. The ability to introduce multiple, distributed servers as needed into an 
HPSS implementation is critical for both performance and autonomy reasons. 
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Distributable HPSS servers allow us to obtain a geographically distributed single-system 
view required by ASCI applications and users. Because HPSS supports network-attached 
peripherals [ 16,171 and third-party data transfer capabilities, new hardware can easily be 
added to provide incremental performance scalability. Each ASCI site maintains a degree 
of local autonomy and can tailor data rates and capacities needed for its local requirements 
and for resources shared across the Tri-Lab environment. The tailoring of storage resources 
and the access to them can be controlled and used through the HPSS Class of Service 
structures [18] and device hierarchy structures. Class of Service provides the control and 
management flexibility needed to implement a truly distributed storage hierarchy. HPSS 
also supports policy modules and uses a management-by-policy philosophy in its storage 
system management design. 

The ASCI PSE working group defines a four-phase approach to realize a fully cooperative 
storage environment. These phases, described in the next sections, are: 

* Independent HPSS systems linked via an encrypted WAN 
* Independent HPSS systems with a single OSFDCE DFS name space 
* Cooperative distributed systems linked at the internal server level 

Cooperative distributed systems with single systedmanagement view 

Phase Z 
The first phase establishes independent autonomous HPSS systems at each of the Tri-Lab 
sites. Each site will operate a stand-alone HPSS system with the only linkage being a high 
speed encrypted WAN connecting each site (see Figure 5). Over this WAN, users will be 
able to use explicit interfaces such as FTP (assuming they are granted remote privileges) to 
communicate with remote sites. No transparency will be provided for remote access, but 
site autonomy will be more or less total. During this phase, significant planning and 
coordination will be undertaken to ensure that the site policies and DCE configurations at 
each site do not preclude any cooperation necessary when migrating to future 
implementation phases. 

LANL HPSS ’ 

Local Servers and 
Storage Hierarchies 

LLNL HPSS 

Local Servers and 
Storage Hierarchies 

SNL HPSS 

Local Servers and 
Storage Hierarchies 

- - - * -  ..... 

Figure 5. Phase I - Independent HPSS Systems 
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Phase 11 
In Phase 11, the Tri-Lab sites will attain linkage of name spaces and gain some access 
transparency, using DFS. Each of the sites will support a DFS server or servers that are 
back-ended by HPSS (see Figure 6).  The DFS namespace will export the view of each 
site's files to other sites that have linked their DFS servers to the global DFS space. Files 
created by DFS clients will be created and stored in the HPSS system that back-ends the 
DFS server where the new file is placed. Users will be able to access files at all sites using 
DFS, but will have to explicitly contact the location that stores a file to access the resource 
using any interface other than DFS. Thus in Phase 11, the only interface that can see and 
access all of the storage resources at all sites without explicit login to remote sites will be 
DFS. Although the DFS interface provides functional transparency to users in this phase, 
users will be able to discern latency when accessing remote files. Note that data stored in 
parallel at a remote site will be accessible serially through DFS and other serial interfaces. 
Phase I1 introduces the first transparency aspects to the CSE while maintaining all of the 
autonomy provided in Phase I. 

.__._________________________ 
DMAPI (DMIG) DMAPI (DMIG) 

Episode File System Episode File System 

Figure 6. Phase I1 - Linked HPSS Namespaces with DFS 

Phase 111 

Phase 111 builds on Phase 11 by linking the Name Servers of each site's HPSS system and 
allowing clients to seamlessly communicate with other sites for data access when 
necessary. The Phase 111 feature making this possible is implementation of links within a 
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namespace pointing to a directory or file in the namespace of a remote HPSS system (see 
Figure 7). Parsing a pathname that crosses a link between two sites will be performed 
transparently, as will remote data access. This provides the ability for all CSE user 
interfaces to automatically and transparently view or access the namespace of all Tri-Lab 
sites. 

In Phase 111, given adequate networking performance, many of our transparency 
requirements are met while still maintaining a high level of site autonomy. Because each 
site still runs its own HPSS system, it can function independently, possibly in degraded 
fashion, when other Tri-Lab sites are unreachable. In such a failure scenario, all accesses to 
files or names stored at remote sites will fail. Because users will be allowed to use remote 
resources, Tri-Lab sites will have some common aspects of storage system management. 
While this in-common management does not preclude use of unique policy modules at 
each site, it will be necessary to work out issues such as accounting for remote user 
accesses. While Phase I11 goes far toward the final vision of a single distributed HSM, it 
does not achieve administrative transparency. 

Phase IV 

Phase IV maintains all functionality of Phase 111, but adds administrative transparency 
across the Tri-Lab sites. This addition will be made possible through linking and 
coordination of the Storage System Management components of each site. This allows an 
administrator at one site, given adequate privileges, to assemble storage resources existing 
at multiple sites into storage hierarchies that take optimum advantage of the array of 
capability and capacity devices distributed throughout the Tri-Lab environment. The 
addition of administrative transparency capabilities yields a single logical HSM from a 
management view, but. results in some sacrifice of site autonomy as hierarchies are built 
requiring resources at multiple sites to all be available in order to provide service. The level 
of autonomy lost will be related to how much inter-site sharing of resources occurs. 

How far the CSE implementation should proceed is a matter of debate. Accomplishing 
Phase 111 may satisfy those CSE requirements deemed most critical without sacrificing too 
much site autonomy. On the other hand, Phase IV, or a slightly enhanced version of Phase 
111 implementing rudimentary administrative transparency, may provide ASCI with more 
optimal capabilities. A third perspective is to de-emphasize site autonomy. This position 
argues that a geographically distributed, yet single HPSS system is best for ASCI (note 
that Phase IV as presented is a logically single combination of independent HPSS 
systems). Time, experience, and the performance of remote data transfers will determine 
the proper choice. 
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I ASCI Cooperative Storage Enviroement 

LANL HPSS 

Figure 7. Phase I11 - Linked HPSS Servers Across Sites 

Current Status 

We plan to continue the long-standing DOE collaboration to develop HPSS with assistance 
from ASCI funding. HPSS Release 3, containing over 500 integration and system tests 
and approximately 200,000 lines of executable code, was released on June 30, 1996. Work 
continues in 1996 on the next deliveries of HPSS (known as Release 3+ and 4). In 1997, 
all three ASCI DP sites plan to deploy Release 3+ in production classified and unclassified 
computing environments. These three systems will initially function independently as 
described in the Phase I description above. Work on DFS/HPSS integration is on-going to 
meet the implementation described above as Phase II, as well as work to meet some of the 
scalability requirements of Phase III. Work is also underway at Lawrence Livermore to 
provide support in HPSS for the emerging MPI-IO interface standard [19,20] as a basis 
for parallel I/O portability in ASCI applications. 

Conclusions 

ASCI is an application-driven program. The fundamental goal of ASCI'S Problem Solving 
Environment program is to give users the tools they need to do their job. This means 
ensuring that the power of the ASCI applicatiodplatform combination can be readily 
applied to the challenges of science-based stockpile stewardship. This will require the 
development of a balanced, supporting infrastructure far more capable than any available 
today. In particular, hierarchical storage management, archival storage, and parallel I/O 
must scale together with the growth in platform capability. 

We have discussed the critical requirements that an ASCI cooperative model places on a 
storage infrastructure. ASCI will need terascale storage resources to be available from the 
desktop and viewed as a black-box. Users should not be concerned with how, where, or in 

34 



what format data is stored. Several transparencies must be provided to reduce or hide the 
complexity of system interaction and internal detail, but must be balanced such that 
efficiency is not lost in resource utilization or performance. There are critical site autonomy, 
communication, and security issues that must also be considered. 

We described an architectural design and phased implementation plan for a distributed, 
cooperative storage environment (CSE) to achieve the necessary performance, user 
transparency, site autonomy, communication and security features needed to support ASCI 
requirements. The CSE provides a logically single, geographically distributed, storage 
infrastructure of semi-autonomous cooperating sites. The ASCI implementation strategy 
focuses heavily on integration of the High Performance Storage System (HPSS), a 
scalable, high-performance system for data-intensive applications and large-scale 
computers, and OSF/DCE DFS, a popular distributed file system. While DFS satisfies 
several transparency requirements of ASCI, it lacks the archival back-end and performance 
needed to support the petabytes of data generated by ASCI. We have shown how we plan 
to exploit the DMIG DMAPI interface to provide DFS with an appropriate back-end 
capable of satisfying ASCI’S large storage requirements, and a phased implementation 
approach satisfying the cooperative storage requirements of ASCI. 
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Abstract 

This paper describes an implementation of the proposed MPI-IO [5] standard for parallel 
UO. Our system uses third-party transfer to move data over an external network between 
the processors where it is used and the UO devices where it resides. Data travels directly 
from source to destination, without the need for shuffling it among processors or 
funneling it through a central node. Our distributed server model lets multiple compute 
nodes share the burden of coordinating data transfers. 

The system is built on the High Performance Storage System (HPSS) [2, 12, 141, and a 
prototype version runs on a Meiko CS-2 parallel computer. 

1 Introduction 

The Scalable I/O Facility (SIOF) project2 is an effort to develop an I/O system for 
parallel computers that offers both high aggregate bandwidth and the ability to manage 
very large files [8]. To meet these needs, the SIOF project is developing a hardware 
infrastructure that will connect the processors in a parallel computer to multiple storage 
devices through a Fibre Channel network [3]. The project is also developing an 
application programming interface (API) that will give large scientific codes flexible, 
efficient access to the I/O system without forcing programmers to manage low-level 
details. This paper describes the implementation of the SIOF API software. 

1.1 Background 

Parallel programs use a number of strategies to manage large data sets. Most parallel 
computers offer a global file system that all the processors can access. Data typically 
travels over the internal communication network between the compute nodes and one or 
more UO nodes, which manage a set of storage devices. This arrangement gives all the 
nodes access to all the files, but I/O traffic must compete with regular message traffic for 

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract number W-7405-Eng-48. Specific funding came from the Gas and Oil 
Information Infrastructure initiative and the DOE Digital superLab project. 

SIOF should not be confused with a different project that has a similar name, the Scalable UO Initiative 
[91. 
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access to the communication network. Depending on the configuration of the system, the 
I/O nodes may become a bottleneck to data transfer. Some parallel machines have local 
disks attached to each compute node, and programs may write separate files from each 
node to its local disk. This approach offers high aggregate bandwidth, since nodes 
transfer data through separate, dedicated channels. However, merging the data in these 
separate files or reading the files on a different set of nodes can be inconvenient. 

The SIOF architecture uses a separate I/O network to connect each compute node to the 
storage devices. This allows YO to proceed in parallel at a high aggregate bandwidth. It 
also lets a program treat data distributed over multiple devices as a single logical file. 
The system supports third-party transfers, so one compute node can orchestrate data 
transfers between a file and several processors. SIOF uses the High Performance Storage 
System (HPSS) [2, 12, 141 to manage distributed files and third-party transfers. HPSS is 
a joint development project of IBM and several U.S. national laboratories and 
supercomputer centers. Since the HPSS API is designed mainly for shared-memory 
systems, and since it requires programmers to specify many details of a parallel transfer, 
the SIOF project is developing a separate API for message-passing systems. This API is 
based on the proposed MPI-IO standard [ 5 ] ,  which in turn is based on the popular MPI 
(Message-Passing Interface) standard [ 101. Our initial implementation of the SIOF 
hardware and software runs on a Meiko CS-2 parallel computer. 

1.2 The SIOF application programming interface 

Several MPI-IO development efforts are now underway; however because the 
architecture of our underlying I/O system is unique, the SIOF implementation has some 
noteworthy features: 

* Control of access to a given open file is centralized, but data transfer is distributed 
and direct. 

* A distributed sewer model spreads the burden of controlling different open files 
among multiple compute nodes. 

When multiple processes participate in collective read or write operations, the system 
can determine dynamically how to group these requests for high throughput based on 
the transfer size, the distribution of data among the compute nodes and I/O devices, 
and other parameters. 

The next two sections give the background to SIOF, HPSS, and MPI-IO. Section 4 
examines the architecture of our MPI-IO implementation, and Section 5 describes how 
we manage collective I/O requests. Section 6 reports the current status of the project and 
our future plans for it. We conclude in Section 7 with a summary of the SIOF API. 

2 The Scalable YO Facility and HPSS 

The SIOF project goal is to provide a “network-centered, scalable storage system that 
supports parallel YO” [8]. To this end, SIOF is collaborating with HPSS developers to 
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extend the H P S S  environment in two areas. First, it is addressing some issues (such as 
protocols and security) pertaining to network-attached peripherals [ 151. Second, it is 
providing an MPI-IO interface to the HPSS client API, as described in the sections that 
follow. 

The SIOF implementation uses a crosspoint-switched FC fabric that will connect the 
processors of a Meiko CS-2 directly to disk arrays, parallel tapes, and frame buffers. 
Each compute node is capable of independent UO across the FC fabric so that all nodes 
may perform I/O in parallel. The SIOF API orchestrates coordinated accesses across the 
processors in a distributed computation, with each processor working on a part of a file. 
The envisioned architecture is shown in Figure 1. 
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Figure 1: The Scalable YO Facility architecture consists of a Meiko CS-2, an 
IBM RS6000 HPSS server, and a collection of tape drives and disk arrays. A 
Fibre Channel network connects the storage devices to the Meiko compute nodes. 

The SIOF extensions rely on HPSS to achieve this implementation. HPSS is a standards- 
based, modular, hierarchical storage system that supports scalability in a variety of 
parallel environments. HPSS consists of multiple layers of interfaces that provide secure 
parallel access to the files of a storage system. The interfaces are implemented using 
DCE (Distributed Computing Environment) [6] and Transarc's Encina [ 131 transaction- 
based remote procedure calls. 
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The higher-level interfaces implement the administration (e.g., naming) and security 
(e.g., access control) of the storage system, while the lower-level interfaces implement 
the mechanics of the parallel data transfers required by file access commands. The 
interfaces of particular interest to the SIOF are the data movers. 

Source blocks 

For any given data transfer there is a mover on the application (client) side,.and a 
corresponding mover on the HPSS side. These two movers determine the details of a 
given data transfer from a data structure called an IOD (UO descriptor). This descriptor 
treats a data transfer as a mapping from the source of the transfer into a data transfer 
stream and a corresponding mapping from the transfer stream into the destination or sink 
of the transfer (see Figure 2). 

In the simplest case, both the source and sink of the transfer are one contiguous block of 
bytes. But with distributed files and distributed applications, blocks may be 
discontiguous at either the source or the destination. The descriptive flexibility of the 
HPSS IOD allows a single transfer to consist of bytes striped across multiple nodes, 
multiple storage devices, or both. In each IOD, the transfer stream mappings from the 
source and to the sink are represented by a list of one or more descriptors, where each 
entry on the list describes a contiguous block of bytes. 

Transfer 
___) stream - Sinkblocks 
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Simple transfer 

Source blocks Transfer stream Sink blocks 

Node 0 

Node 1 

Node 2 

Distributed transfer 

Device 0 

Device 1 

Figure 2: In a simple transfer, is mapped from a source into a transfer stream and 
then to a sink with no reordering. In a distributed transfer, HPSS can move 
blocks of any size from source to sink in any order or interleaving. 
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To initiate a simple contiguous transfer, a client application can call HPSS through Unix- 
like read and write commands. These interfaces construct an IOD for the transfer 
automatically. More complex transfers require the application to construct its own IOD 
with the necessary mappings and to deliver this IOD to HPSS through readlist and 
writelit commands. 

Application programs using the SIOF API (rather than the HPSS API) do not create IODs 
directly. Instead, the SIOF API code creates IODs using the MPI datatypes (see Section 
3) specified in MPI-IO open, read, and write operations. The motivation for hiding the 
details of the IOD construction is twofold: the client application can use the simpler 
MPI-like interface to describe the transfer, and the new interface layer introduces the 
possibility of optimizing transfers. 

The HPSS architecture is also designed to allow for potential optimizations as a data 
transfer request is processed. The higher-level servers rewrite the client IOD and 
dispense one OL more IODs to HPSS movers to complete a given transfer. In the process, 
HPSS uses its knowledge of how the file being accessed is distributed across storage 
devices, and which HPSS movers control those devices, to break the client IOD into 
component IODs to be distributed to the HPSS movers. Although HPSS does not 
currently reorder or combine client IODs, its design allows this in the future. 

Note that although there is one logical mover for the client and another for HPSS for each 
transfer, there may in fact be multiple movers active on both sides: one per participating 
node on the client side, and one per device on the HPSS side. These movers are threads 
that are spawned when a transfer begins, and they terminate when the transfer is 
complete. 

As shown above, the architecture of HPSS allows full generality of how source blocks 
are mapped into a data transfer and thence into sink blocks, but it is expected that the best 
performance will always be achieved when source and sink blocks match in size and 
number exactly. This will reduce contention (e.g., where more than one node is 
attempting to access the same device) and allow maximum parallelization of the transfer. 

3 MPI-IO 

In choosing an interface for SIOF that would work well in message passing programs, we 
examined several parallel file systems. We selected MPI-IO because it offers a good 
range of parallel YO features and because it appears to have a good chance of becoming a 
widely-implemented standard. 

MPI-IO was first developed by a group of researchers independently of the MPI Forum. 
Although the work used many ideas from MPI, it was not a formal part of the standard. 
However in April 1996, the MPI Forum voted to begin work on an I/O chapter, and the 
MPI-IO standard was presented as the initial proposal. As a result, while MPI-IO is now 
more likely to become a standard, its interface may change significantly as more people 
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contribute to it. In this paper, we refer to the version of MPI-IO that existed before the 
MPI Forum made any changes. 

Like most parallel I/O libraries, MPI-IO supports collective requests, where multiple 
processes participate in an operation such as reading or writing a file. In many cases, an 
I/O system can gather collective requests from multiple nodes into a single I/O request. It 
can often complete this joint request more efficiently than a group of independent 
requests. In some implementations of parallel I/O systems, collective requests may 
perform an implicit barrier synchronization on the participating nodes. The 
synchronization allows a server to collect data from all the nodes participating in the 
operation before completing the operation. However, the MPI-IO standard does not 
require synchronization and warns users not to depend on it. 

In a parallel environment, multiple processes can access a file simultaneously. Parallel 
processes often make interleaved accesses, and they may also access separate portions of 
the file. Some parallel file systems have an interface that is based on the POSIX [7] 
standard for file YO, but this interface is designed for an environment where files are not 
shared by multiple processes at once (with the exception of pipes and their restricted 
access possibilities) [ 1 11. Furthermore, POSIX file operations do not allow access to 
multiple discontiguous parts of the file in a single operation. 

MPI uses user-defined and built-in datatypes to describe how data is laid out in a memory 
buffer. In MPI-IO, datatypes used in this way are called bufSer types. MPI-IO also uses 
MPI datatypes to describe the partitioning of file data among processes. AfiZe type 
describes a data pattern that can be repeated throughout the file or part of the file. A 
process can only access the file data that matches items in its file type. Data in areas not 
described by a process’ file type (holes) can be accessed by other processes that use 
complementary file types. 

MPI associates a datatype with each message. The length of the message is an integral 
number of occurrences of the datatype. This method of defining a message is more 
portable than specifying the message length in bytes. Similarly, MPI-IO defines a third 
datatype called an elementary type or etype. Both the buffer type and the file type 
contain an integral number of e-types. This allows offsets into a file to be expressed in e- 
types rather than bytes. Using MPI datatypes has the advantage of added flexibility and 
expressiveness, as well as portability. 

4 SIOF API architecture 

Having chosen MPI-IO as our application programming interface, we designed our 
implementation with several goals in mind: 

Make efficient use of I/O resources, including the storage devices, the external 
network, the processing nodes, and HPSS. 

Avoid creating bottlenecks that would limit the scalability of the IVO system. 
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* Minimize barrier synchronizations among the processes of the application, since these 
can slow down operation and a risk of deadlock. 

This section describes how we designed the SIOF API to achieve these goals. 

We consider an application to have one process per node, and in this description we 
assume that all of the application code executes in one thread per process. The SIOF API 
spawns several additional threads in each process that share its address space. 

The thread executing the application is called the client thread, and each process spawns 
a server thread when the API is initialized. The client thread includes code that 
implements the interfaces of the MPI-IO functions. The.server thread executes the code 
that issues requests to HPSS. 

One server thread manages a given open file on behalf of all the nodes, and servers on 
different processors can manage different open files. This prevents any single node from 
having to manage all the open files. We call this aspect of the architecture the distributed 
sewer model. Conceptually, the server and client threads could be separate processes, 
since they share no data structures. However MPI cannot at present direct messages to 
different processes on the same node, so using MPI for communication requires the 
server and client to reside in the same process. 

Any time a client thread needs to operate on a file, it sends a request via MPI to the server 
thread on the appropriate node. Each server maintains a table of the open files it 
manages. When a request arrives, the server looks up the HPSS file descriptor and other 
information about the file and then spawns a driver thread to issue the HPSS request. 
When this request is complete, the driver thread sends a response message to the client 
and then terminates. The client thread receives the message, and the original MPI-IO call 
returns a result to the application program. 

4.1 Opening and closing a file 

Opening a file in MPI-IO is always a collective operation, which means that all the nodes 
in the program (or a specific subset of them) participate. The nodes select a server by 
hashing the file name and other parameters to the open call to produce a node number. 
Since all the nodes must specify the same parameters to the call, they will all select the 
same node without needing to communicate with each other. The server’s node number 
is stored in a local file table on each node for use in future requests. 

Each node sends a request to the server as soon as it is ready; there is no barrier 
synchronization upon opening a file. When the server receives the first open request for 
a given file, it creates an entry in the file table and spawns a driver thread to call HPSS. 
Subsequent requests from other nodes to open the same file will find a matching request 
in the file table. If the HPSS open call has already completed, the server will send a 
reply containing the data from the completed (or possibly failed) call. If the HPSS call is 
still pending, the new request will be placed in a queue. As soon as the driver thread 
completes the HPSS call, it will send responses to the nodes with queued requests. This 
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arrangement guarantees that each open request generates exactly one call to HPSS, and 
requests from other nodes to open the same file share the results of this call. 

Closing a file is also a collective operation, and the nodes again send individual requests 
to the server. This time, however, the server delays closing the HPSS file until all the 
requests have arrived. Therefore, closing a file is a synchronizing operation. This is 
necessary because the file cannot be closed until all the nodes are finished with it, and 
any errors that occur when HPSS closes the file must be reported to all participating 
nodes. Moreover, if the close operation does not synchronize, a node might treat a file as 
if it were closed and its buffers flushed when the file is in fact still open and handling 
requests from other nodes. 

4.2 Reading and writing 

Programs can read and write files collectively or independently, and they can intermix 
these operations freely on the same file (provided that all nodes that open a file 
participate in the collective operations). 

For an independent read or write operation, the client first spawns a mover thread that 
will copy data between the memory buffer and the network channel to the storage device. 
When this thread has started, the client sends a read or write request to the server. The 
request includes the information that the server will need to construct an HPSS IOD (see 
Section 2). The server spawns a driver thread to issue the HPSS readlist or writelist call. 
HPSS transfers the data directly between the node and the storage device and then returns 
from the readlist or writelist call. Part of the return data is a structure called an IOR (UO 
reply), which the driver thread sends back to the mover before terminating. The driver 
thread the IOR to its own record of the transfer, then returns status information to the 
client thread and terminates. The SIOF API code in the client thread transforms the 
status information into MPI-IO return data before finally returning from the MPI-IO call. 
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Figure 3: The SIOF API is implemented in several threads on each node (shown 
here as four large, vertical rectangles). Outer shaded boxes represent threads; 
inner boxes are functional modules within a thread. Boxes with heavy outlines 
show servers not participating in an operation. For read and write operations, 
control is centralized at a server thread, but data travels through separate, high- 
bandwidth channels between devices and compute nodes. 
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Collective operations require a few extra steps. The details appear in Section 5, but the 
main difference from independent operations is that the server may gather up several 
requests from different nodes and issue them together in a single HPSS call, as depicted 
in Figure 3. 

4.3 File types and buffer types 

Section 3 noted that MPI-IO programs can use file types and buffer types to access 
discontiguous regions of data. MPI-IO translates these datatypes into an internal format 
called a chunk map. A chunk map is a list of contiguous data blocks, and it contains only 
the information that the SIOF API needs from an MPI datatype to construct an IOD. 

Because MPI specifies no functions for accessing the layout information in a datatype, 
the SIOF API code must explicitly read the internal data structures of the MPI 
implementation on which it is based (MPICH [ 11). One reason for using chunk maps is 
to isolate the system-dependent code as much as possible, so most of the SIOF API code 
works with chunk maps rather than MPI datatype structures. 

The SIOF API stores the chunk map of the file type for each node and each open file in 
the server thread’s file table. When a file is read or written, the server constructs an 
HPSS IOD for the data to be transferred, with source and sink mappings for each 
contiguous chunk of data to be accessed. It passes this IOD to a single HPSS call. 

Meanwhile, the mover thread parses the chunk map corresponding to its node’s buffer 
type to determine which data to access in memory. The SIOF API does not compare 
buffer types with file types or decompose them with respect to each other; HPSS and the 
client mover thread can each behave as if the other is accessing a single, contiguous 
stream of data. 

5 Managing collective operations 

The SIOF API currently supports four types of data access: the independent read and 
write operations, and collective versions called read-all and write-all. Structuring the 
server to permit collective operations on reads and writes requires that several issues be 
addressed: 

How are collective operations implemented? 

How is the decision made to dispatch them? 

What optimizations are available for collective operations? 

This section discusses these three issues. 
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5.1 Collective implementation 

A group of client nodes initiates a collective operation by sending requests to the server. 
The server queues these requests as they arrive in a data access list, which it traverses 
either after the receipt of a client’s message for a file operation or after a predetermined 
period of time has elapsed, whichever comes first. As the server traverses the list, it 
updates a dispatch priority for each pending collective operation. The dispatch priority 
determines when the server will initiate the data access; if the priority is over a 
predetermined threshold, the server spawns a thread to issue the HPSS readlist or 
writelist call. If a collective write request includes overlapping file accesses by different 
nodes, the server constructs an IOD that resolves the conflict in a well-defined way. 

The data access list also records the number of outstanding clients, which is needed to 
handle cases where the server dispatches a request before all clients have checked in. 
The number of clients is initially the number of nodes that have jointly opened the same 
file, but if two or more dispatches are used for the same operation, it will be the number 
of clients remaining for the operation (i.e., the number not already checked in and 
previously dispatched). 

5.2 Determining dispatch priority 

How the dispatch priority is determined will have a strong effect on performance and 
utilization of the I/O system. For example, one can imagine a scenario in which 15 
clients of a 16-client application check in at nearly the same time, but the 16th client 
checks in much later. In such a scenario, it may be more efficient to dispatch the 15 
pending requests as a group and wait for the 16th request separately. On the other hand, 
issuing a request too soon will reduce the ability of the SIOF API library to amortize 
latency costs involved in setting up a data access. A number of factors may play a part in 
determining the dispatch priority. At the present, our implementation for MPI-IO read- 
all and write-all operations blocks until all client nodes have checked in. However, we 
plan to investigate several algorithms to determine their effect on utilization and 
performance. These algorithms will consider, to varying degrees, the time since a request 
was first issued, information on which clients have checked in, the transfer size, the 
granularity of the file types, and whether the access is to tape or disk. 

5.3 Optimizations 

The architecture of the SIOF API makes several optimizations feasible. These include: 

Asynchronous operation. 

Grouping accesses on the same storage device. 

Grouping accesses on the same processor. 

Coalescing small accesses. 
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The first optimization reduces a server’s sensitivity to the latency of HPSS calls. By 
spawning a thread for each such call, the server can handle multiple requests 
concurrently. (However independent requests for access to the same file are serialized to 
preserve atomicity.) 

Grouping accesses to the same storage device can help improve cache performance. For 
example, certain decompositions of matrices among processors can produce requests for 
small, interleaved chunks of data [4]. By constructing IODs so that requests for 
sequential data appear in order, the server can increase the probability of cache hits on a 
disk. On the other hand, sending small blocks of data between one disk and multiple 
nodes in round-robin order may produce excessive switching latency in the external 
network. In that case, it may be better to group requests so that data residing on one node 
is accessed sequentially. Performance tuning will help us determine how best to arrange 
the parts of a collective request. 

Even if there is no locality to be exploited in a collective operation, grouping requests 
from multiple nodes into a single readlist or writelist call can amortize one-time 
expenses incurred in I/O operations, such as the cost of an RPC transaction between the 
parallel computer and the HPSS controller. 

6 Current status and future work 

We demonstrated a prototype of the SIOF API at the Supercomputing ‘95 conference. 
This version included independent and collective reading and writing with independent 
file pointer and explicit file offsets. The prototype supported file types and buffer types 
using any MPI datatype. We are currently working on a production quality version of the 
SIOF API that will implement the full MPI-IO specification. We plan to include this 
interface in a future release of HPSS. 

Meanwhile, the MPI-IO specification itself is changing. The MPI Forum continues to 
work on a standard for parallel I/O, and we plan to incorporate whatever changes they 
make to MPI-IO. 

In addition to the interface changes, we are also considering structural changes to the 
SIOF API that will improve its efficiency and robustness. The robustness changes will 
mainly involve implementing the MPI exception handling mechanism. 

To improve efficiency, we would like to reduce the amount of processing that the server 
threads do. For example, we are considering whether independent read and write 
requests could be sent directly from the requesting node to the HPSS server instead of 
being routed through the server node for the open file. Implementing this change would 
require finding a way for multiple nodes to access the same HPSS file correctly and 
efficiently. Another change we are considering is to use the MPI-Reduce command to 
combine requests from multiple nodes for a single collective operation. At present, when 
a group of nodes issues a collective write request, for example, the server receives 
messages from each requesting node and builds up a description of the operation 
incrementally. As an alternative, MPI-Reduce could use a customized combiner 
function to distribute the work of creating a collective request over many nodes. The 
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server node would then receive a single, merged request instead of many separate parts. 
The reduction in memory management and message handing activity on the server node 
would be significant, but this approach would cause collective operations to synchronize 
the nodes. For loosely-synchronous programs, the synchronization delays could 
outweigh other gains. Therefore, we will have to consider carefully the merits of 
implementing this strategy. 

7 Conclusion 

The SIOF API is a new implementation of the proposed MPI-IO standard. It is designed 
as a high-level user interface for the HPSS file system, and its initial implementation is 
on a Meiko CS-2 parallel computer. Because HPSS supports third-party transfers over an 
external network, our implementation can transfer data in parallel between processors and 
storage devices while presenting a global view of the file system that all nodes can 
access. Our distributed server model spreads the burden of coordinating data transfers 
over multiple nodes. Control of a given open file is centralized, but data transfer can 
proceed in parallel. We believe this combination of features will offer the high aggregate 
1/0 bandwidth for large data transfers that many parallel scientific codes need. 
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Introduction 

The IEEE Storage System Standards Working Group (SSSWG) has deveioped the 
Reference Model for Open Storage Systems Interconnection, Mass Storage System 
Reference Model Version 5. This document, dated September 8, 1994, provides the 
framework for a series of standards for application and user interfaces to open storage 
systems. More recently, the SSSWG has been developing Application Programming 
Interfaces (APIs) for the individual components defined by the model. The API for the 
Physical Volume Repository is the most fully developed, but work is being done on APIs 
for the Physical Volume Library and for the Mover also. The SSSWG meets every other 
month, and meetings are open to all interested parties. Further information on the SSSWG 
may be found at http://www.arl.miVIEEE/ssswg. html. 
The Physical Volume Repository (PVR) is responsible for managing the storage of 
removable media cartridges and for mounting and dismounting these cartridges onto 
drives. This document describes a model which defines a Physical Volume Repository, 
and gives a brief summary of the Application Programming Interface (MI)  which the 
IEEE Storage Systems Standards Working Group (SSSWG) is proposing as the standard 
interface for the PVR. 
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The IEEE Reference Model 

The Reference Model is described in [ 11. What follows is a very brief overview. 

The Reference Model determines the following key definitions: 

0 Store: an addressable storage space, either physical or virtual 
- 
- 
Device: A set of media access points (for data access) and mount points (for 

Fhysical Volume: The recording medium accessible without intervening load 

0 

Physical attributes defined by the media type 
Virtual attributes defined by the client request 

hysical access. 

o erations. 
&rtridge: A set of physical volumes or cartridges. 

It also defines the following modules 

Physical Volume Repository (PVR): It sees cartridges and drive mount points, and 
ration is to mount cartridges. 

Physical its T olume Library (PVL): It makes the volume to cartridge mapping and 

Mover (M $1 ): It manages B ata transfer and is designed in particular to manage 

causes the PVR to mount cartridges. Its major operation is to mount physical 
volumes. 
Virtual Storage Server (VSS): It creates virtual stores and performs the store to 
volume ma ing. Its major o eration is to create and manage virtual stores. 

high-speed data transfer. Its major operation is to load media to media access 
points and to perform data transfer. 

Figure 1 depicts the IEEE Reference Model 
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Figure 1 

The PVR System 

The PVR model and API define a consistent interface that client applications can use to 
interact with a variety of media-handling systems. The model and API that are described 
in this paper are based on a paper written by Rich Wrenn [2]. The PVR services are 
realized by servers which exist for each PVR within an enterprise. That is, the PVR server 
for various vendors’ robotic systems, and humans performing manual operations, will be 
implemented uniquely. However, with a standard interface implemented, the interface 
presented to the client applications and the functions provided are exactly the same, 
regardless of the server implementation. According to this standards-based model, multiple 
PVR servers can exist on a single node, within a cluster, or within the enterprise. It is also 
possible for multiple client applications to share a PVR provided within the node, cluster, 
and enterprise. 
Definition of a PVR 

The physical volume repository is defined in the following way. 

PVR Objects: 

One or more storage locations organized into partition objects 

* 

Zero or more cartridge objects 

One or more media location domains for grouping cartridges 
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* Zero or more drive objects 

Zero or more device location domains for grouping drives or dependent PVRs 

Zero or more area objects for staging cartridges prior to mounts 

Zero or more port objects for ejecting cartridges from or injecting cartridges into 
the PVR 

One or more transfer mechanisms, either mechanical or human, operating in the 
same context, and capable of moving cartridges between their storage locations, 
drives, and ports 

One or more controllers which command the transfer mechanism within a single 
context 

* 

PVR Operations 

Mounting cartridges on drives and dismounting cartridges from drives 

Injecting and ejecting cartridges through ports. The PVR provides a controlled 
interface which defines directives that perform the above operations, and which 
allow object attributes to be accessed and modified. 

Note that PVR does not access the drive data path and has no knowledge of the contents of 
cartridges. 

Definition of the PVR Objects 

Figure 1 depicts the relationships between the objects of the PVR. Child objects of the 
PVR are top level partitions, ports, drives, device-location domains, media-location 
domains, and cartridges. Partitions are arranged in a hierarchy, with the lowest level 
partition containing cartridges. 

Physical Volume Repository 

Partition X Port Drive Device Location Media Location Cartridge 
Domain Domain I 

I 
Partition Y 

Partition 2 

Figure 2 
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Magazine loaders are modeled through the concept of dependent and independent PVRs, 
so that a device into which cartridges may be mounted may be either a drive or a dependent 
PVR. 

PVRs which are not serviced by other PVRs are defined as independent PVRs. An 
independent PVR is serviced by a tender who is responsible for transferring cartridges 
between the PVRs ports and the outside world. The tender must be able to remove 
cartridges which have been ejected through an outport and enter cartridges which have been 
injected through an inport. 

PVRs which are serviced by other PVRs are defined as dependent PVRs. Dependent 
PVRs are not serviced by tenders. A dependent PVR has, by definition, one cartridge slot 
which can be mounted by another PVR. This cartridge slot is the location at which a 
compound cartridge (magazine) is mounted and dismounted. 

The Partition Object 

A partition describes the physical characteristics of a collection of media storage locations. 
It has finite capacity and stores media of exactly one cartridge type. The PVR cartridge 
storage locations are physically grouped and have equal characteristics with regard to 
location, cartridge type, and disaster protection. A top-level partition is a child of one, and 
only one PVR. Partitions may be created in a hierarchical fashion with a partition having a 
number of child partitions. A partition may contain one or more MLDs which may contain 
PVR cartridges. 
The Media Location Domain (MLD) 

The media location domain describes a logically grouped set of PVR cartridges with 
equivalent attributes located under a single top-level partition. It has finite capacity and 
stores PVR cartridges of exactly one type. 

The Device Location Domain (DLD) 

A device location domain (DLD) is a logical collection of PVR drives or dependent PVRs 
which have equal static attributes and may be used interchangeably. DLDs are characterized 
by connectivity, location, management policies, media types supported, and disaster 
protection. A DLD is a member of one and only one PVR. 

The PVR Cartridge 

The PVR cartridge is the PVRs view of the cartridge, which, as noted above, does not 
include any knowledge of the contents of the cartridge . Each cartridge resides in an MLD 
within a PVR and is referenced by PVR cartridge name. The PVR catalogs the exact 
physical location used to store the cartridge within a partition. 

The PVR Drive 

The drive is the PVRs view of the drive--essentially a place where it mounts and 
dismounts cartridges. A PVR drive name identifies the drives within a DLD. Each drive 
object resides in a DLD within a PVR. A PVR drive is a member of one and only one 
DLD. 
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The Area Object 

An area is an optional, temporary location used to optimize mounting of cartridges into 
devices. Two types of areas are defined: stage areas and scratch areas. Cartridges are 
moved from their home location in the MLD to an area with either a stage or scratch 
directive in anticipation of a subsequent mount or mount scratch directive, respectively. 
This has the potential to reduce the apparent mount time of the PVR cartridge. 

The Port Object 

Ports are the physical portals through which cartridges are inserted and removed from 
PVRs. PVR ports are only associated with independent PVRs and are associated with 
globally named stations such that they are visible to external services, such as a 
transportation service. A single physical portal may function both as an inport and an 
outport. 

The Task Object 

PVR directives cause the instantiation of tasks. All tasks operate asynchronously from the 
thread which issued the directive, and there is a directive that allows for that thread to wait 
for the completion of the task. Directives are also provided which allow one to check on the 
status of a task or to cancel it. 

Object Status 

In general, each PVR object may be in one of three states: 

* 
0 

Enabled The object is available for use. 
Disabled The object is not available for use. 
Error: The object is in error. 

Routines exist to enable or disable objects, and when an object is to be reconfigured or 
deleted, it must first be disabled. 

Basic Directives 

All objects (except cartridge and task objects) have four basic directives: create, delete, set, 
and show. 

Create creates the object and specifies some of its attributes; Delete deletes the object, 
providing it is in the disabled state, and contains no references to other objects; Set changes 
or initializes a list of the object’s attributes; Show displays a list of the object’s attributes. 

Cartridges have set and show directives, but no create and delete attributes. The enter and 
inject directives, which introduce a cartridge into its proper place in the PVR, correspond to 
the create directives for other objects, while the eject directive, which ejects the cartridge 
from the PVR, corresponds to the delete directives for other objects. 

Tasks are created when a directive is issued which causes a task to begin. 
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Access Control 

In the full implementation of the IEEE Reference Model, the primary clients of the PVR 
would be Storage Management and the Physical Volume Library. 

The PVR server enforces access control through access control lists for all of its objects. 
The PVR, media location domain, device location domain, and task objects each have 
access control lists (ACL). Access control for each of the partition and PVR port objects is 
governed by the access control list on the PVR. Access control for each of the PVR 
cartridge and PVR area objects is governed by the access control list on the associated 
medialocation domain, and access control for each of the PVR drive objects is governed 
by the access control list on the associated device location domain. 
Sharing the PVR by Non-Cooperating Clients 

The PVR cartridges within an MLD have equivalent attributes, and are stored in locations 
such that all locations within the MLD yield equivalent cartridge attributes. Similarly, the 
devices within a DLD have equivalent attributes and reside in locations such that all 
locations withifi the DLD yield equivalent device attributes. MLDs, as well as DLDs, are 
mutually exclusive (non-overlapping). 

The MLD and DLD concepts greatly simplify mount operations. In addition, the access 
lists on the MLDs and DLDs may be used to partition the PVR for use by non-cooperating 
clients. Each client would only see its collection of MLDs and DLDs, so that contention 
for drives and cartridges could not occur, and the possibility of deadlock is eliminated. The 
robot or human operator, however would be shared because it operates within a single 
context. 
Access Control Rights 

Within each of the access control lists, the following list of seven basic rights is used, with 
additional object specific rights defined as needed. 

Show is used for the sole purpose of limiting who can show the instance's 
attributes. 
Set is used primarily to control who can change or initialize attributes of instances 
governed by the access control list. 
Control is used for the sole purpose of limiting who can change the instance's 
access control list and other attributes (such as owner) which control access to the 
object. 
Delete is used primarily to control who can delete instances governed by the access 
control list. 
Execute is used for several purposes relating to action directives issued to the 
instance. 
Read is used to control the ability to read data contained in the instance. 
Write is used to control the ability to write data on the instance. It is also used to 
control who can change the membership of the instance and who can create 
subordinate objects of the instance. 

Device Selection 

The client applications can make three types of mount requests to the P W .  
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* Explicit Device Selection (EDS): The client application directs the PVR to mount 
the PVR cartridge object onto a specific device. 
Automatic Device Selection (ADS): The client application directs the PVR to 
mount the PVR cartridge onto any device within a device location domain (DLD). 
The PVR selects a device and mounts the PVR cartridge onto that device. Finally, 
the PVR .re lies to the client-application with the narpe of the device that it selected. 
Automatic qolume Recognition (AVR): The PVR i s  directed to mount the PVR 
cartridge onto any device within a device location domain (DLD) and the PVR 
selects a qualified device. The PVR does not return the name of the selected device 
to the client application. The client is required to determine the selected device 
through alternative means. 

Populating PVRs with Cartridges 

A PVR is populated with PVR cartridges in a two-step process. Either step may be 
performed first, but both steps must be completed before the PVR cartridge becomes 
available for use. 

Znject is a PVR directive issued by the PVR client which logically creates the PVR 
cartridge and assigns it to an MLD. The PVR cartridge name is provided by the 
client through the inject directive. It is not necessary for the PVR cartridge to be 
physically resent for the inject to succeed. - 

- 

- 

Enter is an asynchronous action wherein a P d  cartndge is physically inserted into 
the PVR. The PVR cartridge name is provided when the cartridge is entered - 
manually or via a PVR vision system. - If the PVR cartridge name is in the PVR and is in the entered or available state, 

reject the cartridge. 
- If the PVR cartridge name is in the PVR and is in the injected state, move the 

cartridge to the proper MLD and change the PVR cartridge state to available. 
- If the PVR cartridge is not in the PVR, create a PVR cartridge object placing it 

in the entered state. 

If the &R cartridge name is in the PVR and is in the injected or available 
state, re'ect the directive. 
If the P ' h  cartridge name is in the PVR and is in the entered state, move the 
cartridge to the proper MLD and change the PVR cartridge state to available. 
If the PVR cartridge is not in the PVR, create a PVR cartridge object placing it 
in the injected state. The PVR will then issue a request to a PVR tender that the 
PVR cartridge be physically entered throu h the PVR jnport. 

* 

Object Attributes 

Each object has four classes of attributes: 

Identifier attributes are used to name the object. Objects have a single identifier 
which is sometimes referred to as its primary identifier. Primary identifiers are 
specified during the creation of the object, or in the case of cartridges, when the 
cartridge is entered. 
Characteristic attributes describe the oeject and can be modified with the set * 
directive. Some characteristic attributes- must be specified when the object is 
created while others are optional and have default values. Frequently, the object 
must be in-the disabled state in order for a characteristic attribute to.be set. 
Status attnbutes descnbe the objects current status and its relationship to other 
objects cannot be modified with the set directive. In all cases, status attributes have 
default values. 

* 
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9 Counter attributes count events or actions. Initial values of counter attributes may 
be optionally specified on the object's create directive, but counter attributes cannot 
be modified with the set directive. Creation time is considered a counter attribute. 
On object creation, if creation time is not specified, it is set to the current time. For 
other counter attributes, if no initial value is specified, the attribute is set to zero 
during object creation. 

Events 

PVR objects generate events; in fact each counter attribute except creation time corresponds 
to an event. Typical events are access denied and access granted. A mechanism is 
provided to poll the PVR for a list of its events. 

Characteristics of the Application Programming Interface 

The Application Programming Interface which is being put forward as a proposed standard 
is a C-language interface which may be implemented in a distributed environment, such as 
the Distributed Computing Environment (DCE). References to objects are generally made 
through handles, which are opaque types containing information that allows the server to 
optimize access to the object. Each directive returns 0 on success and - 1 on failure. In the 
case of failure, it sets the status variable to give further information (similar to the UNIX 
errno). 
The following sections summarize the Application Programming Interface. It is fully 
documented in [3]. In addition to the directives listed below, there are convenience 
functions which free memory, handles which the server has allocated for the client, 
directives which list an object's members, and directives which enable or disable objects. 

Handle Directives 

The following routines take as input a name, or a name and another handle, and create a 
handle to the named object. Note that the task name is a 32-bit unsigned integer. 

int pvr-area-get-handle (pvr-t pvr, wchar-t *area-name, pvr-area-t 
*area, pvr-status-t *status); 

int pvr-dld-get-handle (pvr-t pvr, wchar-t *did-name, pvr-dld-t *dld, 
pvr-status-t *status); 

int pvr-drive-get-handle (pvr-t pvr, wchar-t *drive-name, pvr-drive-t 
*drive, pvr-status-t *status); 

int pvr-get-handle (wchar-t *pvr-name, pvr-t *pvr-h, pvr-status-t 
*status) ; 

int pvr-mld-get-handle (pvr-t pvr, wchar-t *mid-name, pvr-mld-t *mld, 
pvr-status-t *status); 

int pvrpart-get-handle (pvr-t pvr, wchar-t *part-name, pvr-part-t 
*part, pvr-status-t "status); 

int pvrport-get-handle (pvr-t pvr, wchar-t *port-name, pvrport-t 
*port, pvr-status-t *status); 
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int pvr-task-get-handle (pvr-t pvr, mss-unsigned32-t task-id, 
pvr-task-t *task, pvr-status-t *status); 

Basic Create and Delete Directives 

The following create and delete directives are available. The create directive supplies a 
linked list of attributes to be initialized upon creation. The error id identifies the first 
attribute, if any, that was in error. 

int pvr-create (pvr-t pvr, pvr-id-attr-t *attribute-list, pvr-attr-t 

int pvr-delete (pvr-t pvr, pvr-status-t *status); 
*error-id, pvr-status-t *status); 

int pvr-area-create (pvr-area-t area, pvr-id-attr-t "attribute-list, 

int pvr-area-delete (pvr-area-t area, pvr-status-t *status); 
pvr-attr-t *error-id, pvr-status-t *status); 

int pvr-dld-create (pvr-dld-t dld, pvr-id-attr-t *attribute-list, 

int pvr-dld-delete (pvr-dld-t dld, pvr-status-t *status); 
pvr-attr-t *error-id, pvr-status-t "status); 

int pvr-drive-create (pvr-drive-t drive, pvr-id-attr-t 

int pvr-drive-delete (pvr-drive-t drive, pvr-status-t *status); 
"attribute-list, pvr-attr-t *error-id, pvr-status-t *status); 

int pvr-mld-create (pvr-mld-t mld, pvr-id-attr-t *attribute-list, 

int pvr-mld-delete (pvr-mld-t mld, pvr-status-t "status); 
pvr-attr-t *error-id, pvr-status-t "status); 

int pvrjort-create (pvrgort-t port, pvr-id-attr-t "attribute-list, 

int pvrjort-delete (pvr-port-t port, pvr-status-t *status); 
pvr-attr-t *errorwid, pvr-status-t *status); 

int pvrsart-create (pvrjart-t part, pvr-id-attr-t *attribute-list, 

int pvrjart-delete (pvrjart-t part, pvr-status-t *status); 
pvr-attr-t *error-id, pvr-status-t "status); 

int pvr-task-delete (pvr-task-t task, pvr-status-t *status); 

Basic Set and Show Directives 

The set directives change or initialize the attributes in the linked list of attributes. Error 
identifies the first attribute, if any, that was in error. The show directive takes a linked list 
of attribute identifiers and creates a linked list giving the current state of the attributes of the 
object. 

int pvr-set (pvr-t pvr, pvr-id-attr-t *attribute-list, pvr-attr-t 
*errorwid, pvr-status-t *status); int pvr-show (pvr-t pvr, 
pvr-attr-id-request-t *input-list, 

pvr-id-attr-t **output-list , pvr-o-flag-t flag, pvr-status-t 
*status) ; 
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int pvr-area-set (pvr-area-t area, pvr-id-attr-t *attribute-list, 

int pvr-area-show (pvr-area-t area, pvr-attr-id-request-t 
pvr-attr-t *error-id, pvr-status-t *status); 

*input-list, pvr-id-attr-t **output-list, pvr-o-flag-t *flag, 
pvr-status-t *status); 

int pvr-cart-set (pvr-t pvr, wchar-t *name, pvr -id-attr-t 
*attribute-list, pvr-attr-t *error-id, 

int pvr-cart-show (pvr-t pvr, wchar-t *name, pvr-attr-id-request-t 
*input-list, pvr-id-attr-t **output-list, pvr-o-flag-t *flag, 
pvr-status-t *status); 

int pvr-cart-set (pvr-t pvr, wchar-t *name, pvr-id-attr-t 
"attribute-list, pvr-attr-t *errorwid, 

int pvr-cart-show (pvr-t pvr, wchar-t *name, pvr-attr-id-request-t 
"input-list, pvr-id-attr-t **output-list, pvr-o-flag-t *flag, 
pvr-status-t *status); 

int pvr-drive-set (pvr-drive-t drive, pvr-id-attr-t "attribute-list, 

int pvr-drive-show (pvr-drive-t drive, pvr-attr-id-request-t 
pvr-attr-t *errormid, pvr-status-t "status); 

*input-list, pvr-id-attr-t **output-list, pvr-o-flag-t *flag, 
pvr-status-t *status); 

int pvr-mld-set (pvr-mld-t mld, pvr-id-attr-t *attribute-list, 
pvr-attr-t "error-id, pvr-status-t *status); 

int pvr-mld-show (pvr-mld-t mld, pvr-attr-id-request-t *input-list, 
pvr-id-attr-t **output-list, pvr-o-flag-t *flag, pvr-status-t 
"status) ; 

int pvrgart-set (pvrjart-t part, pvr-id-attr-t "attribute-list, 

int pvrgart-show (pvrgart-t part, pvr-attr-id-request-t 
pvr-attr-t *error-id, pvr-status-t *status); 

*input-list, pvr-id-attr-t **output-list, pvr-o-flag-t *flag, 
pvr-status-t *status); 

int pvrgort-set (pvrgort-t port, pvr-id-attr-t "attribute-list, 

int pvrjort-show (pvrjort-t port, pvr-attr-id-request-t 
pvr-attr-t *error-id, pvr-status-t *status); 

*input-list, pvr-id-attr-t **output-list, pvr-o-flag-t "flag, 
pvr-status-t *status); 

int pvr-task-set (pvr-task-t task, pvr-id-attr-t *attribute-list, 

int pvr-task-show (pvr-task-t task, pvr-attr-id-request-t 
pvr-status-t *status); 

*input-list, pvr-id-attr-t **output-list, pvr-o-flag-t "flag, 
pvr-status-t *status); 

Additional Area Directives 

Theflush directive returns all cartridges from the area to their home positions. The stage 
and scratch directives put the list of cartridges into the stage and scratch area respectively. 



The list directive lists the cartridges in an area. The mount scratch directive mounts from 
the scratch area. 

int pvr-area-flush (pvr-area-t area, mss-unsigned32-t *task, 

int pvr-area-stage (pvr-area-t area, pvr-string-list-t *cart-list, 

int pvr-area-scratch (pvr-area-t area, pvr-string-list-t *cart-list, 

int pvr-area-list (pvr-area-t area, pvr-string-list-t **output-list, 

int pvr-area-mount-scratch (pvr-area-t area, pvr-mount-type-t type, 

pvr-status-t *status); 

mss-unsigned32-t *task, pvr-status-t *status); 

mss-unsigned32-t *task, pvr-status-t *status); 

pvr-status-t *status); 

wchar-t "device-spec, wchar-t "info, mss-unsigned32-t *task, 
pvr-status-t *status); 

Additional Cartridge Directives 

The enter and inject directives place the cartridge into the PVR. The eject sends it out of the 
PVR. The relocate directive places the cartridge in a different location. There are different 
kinds of mount directives, and one dismount directive. 

int pvr-cart-eject (pvr-t pvr, wchar-t *cart-name, wchar-t *port, 
mss-unsignedl6-t *cell, pvr-status-t *status); 

int pvr-cart-enter (pvr-t pvr, wchar-t *cart-name, wchar-t *port, 
pvr-status-t *status); 

int pvr-cart-inject (pvr-t pvr, wchar-t *cart-name, wchar-t *port, 
mss-unsignedl6-t *cell, wchar-t *mld, pvr-status-t *status); 

int pvr-cart-relocate (pvr-t pvr, wchar-t *cart-name, wchar-t *mld, 
pvr-status-t *status); 

int pvr-cart-bind-mount (pvr-t pvr, wchar-t *cart-name, 
pvr-comp-cart-list-t *list, pvr-mount-type-t type, wchar-t 
*device, mss-enum-boolean-t read-only, wchar-t *info, 
mss-unsigned32-t *task, pvr-status-t "status); 

int pvr-cart-bind-mount-scratch (pvr-t pvr, mss-unsignedl6-t 
quantity, wchar-t *area, pvr-mount-type-t type, wchar-t *device, 
wchar-t *info, mss-unsigned32-t *task, pvr-status-t *status); 

int pvr-cart-mount (pvr-t pvr, wchar-t *cart-name, mss-unsignedl6-t 
side, pvr-mount-type-t type, wchar-t *device, mss-enum-boolean-t 
read-only, wchar-t *info, mss-unsigned32-t *task, pvr-status-t 
*status) ; 

int pvr-cart-dismount (pvr-t pvr, wchar-t *cart-name, wchar-t *area, 
mss-unsigned32-t *task, pvr-status-t *status); 
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Additional PVR Directives 

The pvr-ack-mount acknowledges that the client has detected that a mount or mount 
scratch operation has completed. The client provides the name of the device and cartridge 
that has been mounted 

int pvr-ack-mount (pvr-task-t task, wchar-t *device-name, wchar-t 
*cart-name, mss-unsignedl6-t *side, mss-enum-boolean-t process-check, 
pvr-status-t *status); 

The pvr-update-mount-status function is sent to a dependent PVR to update the cartridge 
name that was mounted. 

int pvr-update-mount-status (pvr-t pvr, wchar-t *mounted-cart-name, 
pvr-status-t *status); 

Additional Drive Directive 

The following directive enables the client to configure a drive. 

int pvr-drive-configure (pvr-drive-t drive, wchar-t *node-name, wchar-t 
"local-drive-name, mss-enum-boolean-t *excluded-flag, pvr-status-t 
"status) ; 

Additional MLD Directive 

The following directive lists the cartridges within an MLD. 

int pvr-mld-list (pvr-mld-t mld, pvr-cart-state-t *state, 
pvr-slot-list-t **carts, pvr-status-t *status); 

Additional Partition Directives 

The pvr-part-copy directive streamlines configuration of partitions by allowing one to be a 
copy of another. The pvr-part-inventory directive starts a task which inventories the 
cartridges of a partition. The pvr-part-list directive provides a list of the cartridges in a 
partition. 

int pvrpart-copy (pvrpart-t part, pvr-id-attr-t *attribute-list, 
mss-enum-boolean-t descendent-flag, wchar-t *oldpart-spec, 
pvr-status-t *status); 

int pvrpart-inventory (pvrpart-t part, mss-unsigned32-t start, 
mss-unsigned32-t count, mss-unsigned32-t *task, pvr-status-t 
*status) ; 

int pvrpart-list (pvrpart-t part, pvr-cart-state-t *state, 
pvr-slot-list-t **carts, pvr-status-t *status); 

63 



Additional Task Directives 

Directives are provided to manage tasks within the PVR. Tasks execute asynchronously, 
and the pvr-task-wait function allows the calling thread to wait for the task to complete. 
The pvr-task-cancel, pvr-task-pause, and pvr-task-resume allow for task management. 

int pvr-task-cancel (pvr-task-t task, pvr-reason-code-t code, 

int pvr-taskjause (pvr-task-t task, pvr-status-t "status); 
int pvr-task-resume (pvr-task-t task, pvr-status-t *status); 
int pvr-task-wait (pvr-task-t task, pvr-task-completion-status-t 

pvr-status-t *status); 

*task-status, pvr-status-t *status); 

Polling Directives 

There is a collection of polling directives which allows the client to poll one instance or all 
instances of an object for a specified list of events. 

int pvr_poll-events (pvr-t pvr, time-t start-time, pvr-event-request-t 

int pvr-driveqoll-events (pvr-drive-t drive, time-t start-time, 
*input-list, pvr-id-event-t **output-list, pvr-status-t *status); 

pvr-event-request-t *input-list, pvr-id-event-t **output-list, 
pvr-status-t *status); 

pvr-event-request-t *input-list, pvr-id-event-t **output-list, 
pvr-status-t *status); 

pvr-event-request-t *input-list, pvr-id-event-t **output-list, 
pvr-status-t *status); 

pvr-event-request-t *input-list, pvr-id-event-t **output-list, 
pvr-status-t *status); 

pvr-event-request-t *input-list, pvr-id-event-t **output-list, 
pvr-status-t *status); 

pvr-event-request-t *input-list, pvr-id-event-t **output-list, 
pvr-status-t *status); 

pvr-event-request-t *input-list, pvr-id-event-t **output-list, 
pvr-status-t *status); 

pvr-event-request-t *input-list, pvr-id-event-t **output-list, 
pvr-status-t *status); 

pvr-event-request-t *input-list, pvr-id-event-t **output-list, 
pvr-status-t *status); 

pvr-event-request-t *input-list, pvr-id-event-t **output-list, 
pvr-status-t *status); 

int pvr-all-driveqoll-events (pvr-t pvr, time-t start-time, 

int pvr-portqoll-events (pvrqort-t port, time-t start-time, 

int pvr-all-port_poll-events (pvr-t pvr, time-t start-time, 

int pvr-area-poll-events (pvr-area-t area, time-t start-time, 

int pvr-all-areaqoll-events (pvr-t pvr, time-t start-time, 

int pvr-taskjoll-events (pvr-task-t task, time-t start-time, 

int pvr-all-task_poll-events (pvr-t pvr, time-t start-time, 

int pvr-dldqoll-events (pvr-dld-t dld, time-t start-time, 

int pvr-all-dldqoll-events (pvr-t pvr, time-t start-time, 
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int pvr-dldgoll-events (pvr-dld-t dld, time-t start-time, 
pvr-event-request-t *input-list, pvr-id-event-t **output-list, 
pvr-status-t *status); 

int pvr-all-dldgoll-events (pvr-t pvr, time-t start-time, 
pvr-event-request-t *input-list, pvr-id-event-t **output-list, 
pvr-status-t *status); 

pvr-event-request-t *input-list, pvr-id-event-t **output-list, 
pvr-status-t *status); 

pvr-event-request-t *input-list, pvr-id-event-t **output-list, 
pvr-status-t *status); 

int pvr-mldgoll-events (pvrmld-t mld, time-t start-time, 

int pvr-all-mld_poll-events (pvr-t pvr, time-t start-time, 
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I. Introduction 

NSA architects and planners have come to realize that to gain the maximum benefit from, 
and keep pace with, emerging technologies, we must move to a radically different 
computing architecture. The compute complex of the future will be a distributed 
heterogeneous environment, where, to a much greater extent than today, network-based 
services are invoked to obtain resources. Among the rewards of implementing the 
services-based view are that it insulates the user from much of the complexity of our 
multi-platform, networked, computer and storage environment and hides its diverse 
underlying implementation details. In this paper, we will describe one of the fundamental 
services being built in our envisioned infrastructure; a global, distributed archive with 
near-real-time access characteristics. Our approach for adapting mass storage services to 
this infrastructure will become clear as the service is discussed. 

II. High Level Architecture 

As a world-wide organization, NSA's storage and retrieval services must provide for 
rapid, efficient, and user-driven data access from any node in our organization. Storage 
services must be accessible yet secure, scalable, reliable, cost effective, and manageable. 
The technologies used to implement storage must be commercial-off-the-shelf (COTS) 
wherever possible and the user interface to these services must be clear and simple. 
Moreover, a key requirement of the services is that they must support the notion of near- 
real-time access to data. 

Because traditional file-based solutions, with their induced latency, are inadequate to 
meet the near real-time processing requirements being levied today by our users, we are 
developing the Byte Stream Storage and Transfer Service. The user sees the Byte Stream 
Storage and Transfer Service as a globally distributed archive with near-real-time access. 
The service is intended as a mechanism that allows a user to access and manipulate data 
streams. It is a critical feature of the stream service that while a producer is creating a 
stream at one location, a consumer, possibly at a geographically remote location, can 
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begin to access the producer’s data. One of our design goals is that no matter where users 
are located, a consumer can begin accessing data within seconds of its creation. 

One of the most radical aspects of the proposed s service is the assumption of all 
storage management by the service. There is no concept of an “archived‘, stream. Once 
data has been written into the service, the user has one, and only one, view of it. The user 
sees “a stream”, not “a local disk copy” or “an archived copy”, each with its own 
interface involving different commands and even operator intervention to gain access. 
No knowledge of data location is required on the part of a user. No special commands to 
access storage are required. No special commands to transfer data to the processing 
system are required. No thought, beyond initial system configuration, is given to 
availability of space. No application code is required to handle file boundaries and file 
names for a stream of data. These mechanisms are created once and for all in the service 
and then applied consistently to every stream. Users must only know the name of the 
stream they wish to access and the service will find and deliver the data. 

A user-level application that processes live, non-burst signals should be able to work with 
a data abstraction that models the “stream-oriented” nature of these signals. The notion 
of a Byte Stream Storage and Transfer Service was devised to support such a data 
abstraction. A by-product of adopting the stream data abstraction is that it supports the 
notion of near-real-time processing of live data quite naturally. When moving a byte 
stream, we do not assume that the entire stream is present or, in fact, that the entire stream 
even exists yet. We cannot think in terms of transferring the entire stream to a specified 
host and processing it. Rather, we are constantly transferring bytes of the stream as they 
are created. The concept of a service that moves and stores streams is not upriori 
necessary, but its advantages are huge. One cannot overstate the value of a single, 
universally accepted abstraction for a byte stream, captured in a stream service. Not 
having such a service requires producing distinct, possibly incompatible, file-based 
solutions for each new production data flow, with all of the attendant naming, storage, 
movement, administration, accounting, and maintenance issues that the new solutions 
would demand. 

Internally, the byte-stream service is a set of geographically distributed relayktorage hubs 
(Figure l), that cooperate with each other and with interface software running within a 
stream consumer or producer process, to accomplish the movement and storage of data. 
The hubs are connected via a network and control software within the hubs 
communicates via standard protocols (TCP/IP or UDP/IP). Hubs are logical entities that 
may consist of several systems. A stream might reside.-within a single hub or be 
distributed among multiple hubs. Multiple copies of pieces of the stream may exist in 
different hubs. A consumer will receive a copy from the neqest hub. There are no 
coherency issues because a stream can be written only once (archive semantics). There 
are, however, issues of deleting extra copies when they become old or inactive and the 
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stream service must d 

Figure 1 : High Level Architecture of the Global Archive 

The stream service interface will mimic the POSIX system call YO interface, with 
common UNIX extension, using the C-language binding. There are at least two 
compelling reasons for doing this. First, the POSIX system call interface has been used 
in countless settings and has proven its versatility. It is safe to assume that the interface 
will support both current and future requirements. Second, developers are already 

69 



Figures 2 and 3 provide simple examples of how these routines can be used to read or 
write a stream. To read, a user application will open a stream, referring to it by a name. 
The application then seeks to the position of interest and repeatedly reads and processes 
data. When done, the application will close the stream. Writing a stream will be a 
similar sequence of calls (open, repeated writes, and close). Both of the code segments 
are extremely simple and dramatically illustrate the virtues of the stream service. Note 
that there is no reference to location, no concern about file boundary conditions, no 
concern about storage. There is also no notion of whether the data is being obtained from 
storage or from a live source. The program only requires a name to access the stream. 
All of the general problems of movement and storage are handled transparently. It should 
be noted, again, that one assumption of the stream service is that, once created, a stream 
cannot be edited. In order to modify a stream, it must be read, processed, and a new 
stream created for the resultant output. 

s t ream -id 
c h a r *  
in t  

s id ;  
buf fer [M A X  I ;  
b y tes - read;  

s id  = yopen(" s t r eam-name" ,  Y 0 - R D O N L Y ) ;  
y lseek(s id ,  P O S I T I O N ,  Y S E E K - S E T ) ;  
wh i l e  ( (bytes - read  = yread( s id ,  buf fer ,  M A X ) )  != E R R O R )  { 

I* P r o c e s s  the b y t e s  read f r o m  the s t r e a m  ...... * I  

1 
y clo s e (  s id)  

F igu re  2:  R e a d i n g  a by te  s t ream 

s t ream -id 
cha r*  
in t  

si  d ;  
buf fer [M A X  1 ;  
bytes-w r i t ten;  

s id  = yopen("s t ream-name" ,  Y O - C R E A T  I Y 0 - W R O N L Y ) ;  
w h i l e  ( N O T D O N E )  { 

I* G e t  d a t a  a n d  pe r fo rm p r o c e s s i n g  ...... * I  
bytes-wr i t ten  = ywri te (s id ,  b u f f e r ,  M A X ) :  

1 
y clo s e( s id)  

F i g u r e  3: Crea t ing  a n d  wr i t ing  a b y t e  s t r e a m  
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When a user process wishes to write a stream, it begins by calling yopen. Internally, the 
service interface software establishes communications with its local hub (Figure 4). 
When writing begins, an agent is started on the hub and is connected to the interface 
software in the user process. Data then passes through the interface to the agent on the 
hub which caches the data on disk. As the cache fills, data may be moved by the service 
to storage systems within the hub for short-term retention. At this point a stream 
(potentially, but not necessarily, live) is being captured and stored. Note that storage is 
not a direct concern of the user process. 

Figure 4: Data Flow Examples 

When a user process wishes to read a stream, it begins by calling yopen, and, once again, 
the service interface software establishes communication with its local hub. When yread 
is called, the local hub determines if the desired data is present. If not, the hub finds a 
remote hub that has the desired data, and requests a transfer from the remote hub to the 
local hub. Now, with data present in the local hub, a connection is established from an 
agent in the hub to the interface software iil the user process, and data is forwarded. As 
the data arrives from a remote hub, it is cached in the local hub. As the cache fills, data 
moves to a storage system for retention. Note that the reading process may or may not be 
receiving live data, and is unaware and unconcerned as to whether the data originated at a 
local or a remote location. In fact, all storage details are hidden from the user. 



A near-real-time flow is established when a stream is being produced at the same time 
that it is being consumed. Should a communication outage occur between hubs, data will 
not be lost because the hub that is local to the stream producer will continue to cache and 
store data. Of course, a network outage between the producing system and its local hub 
will cause a data loss if the buffering capability of the producing system is exceeded. 
Consumers and producers can run on the storage platform. In this case, the network will 
be circumvented and we expect to observe reading and writing at very near disk speeds. 

One of the great advantages of the service described here is that accessing stored data is 
exactly the same as accessing live data. It is the responsibility of the local hub to 
discover where pieces of a stream are stored. If a stream has been moved from cache to 
storage, the hub will ensure that it is drawn into cache again with forwarding identical to 
the near-real-time case. 

It is common to associate related information with a byte stream. A follow-on 
development, the Annotated Stream Service, built on top of the Byte Stream Storage and 
Transfer Service, supports this notion. An annotated stream consists of several byte 
streams, one being a data stream and the remainder being annotation streams. The 
Annotated Stream Service provides a mechanism for a stream writer to associate 
annotations with specific points in a data stream. For a stream reader, the service 
synchronizes the reading of the annotations with the reading of the data. The internal 
form of an annotation is chosen by the application developer. The service merely 
provides a framework for the association, storage, and synchronized delivery of the data 
and the annotations. As with the byte stream service, all of this is done while still 
preserving a simple “open, close, read, write” interface. 

III. Storage Strategy 

Guiding Principles: NSA has adopted a COTS, to the maximum extent possible, 
approach to any Mass Storage requirement. As a direct result of this policy, we have 
carefully approached the global distributed storage architecture steered by previous work 
in developing a scalable set of disk and tape components, subsystems and systems 
matched to specific requirements. Significant consideration is given to performance, 
functionality, and cost, with a keen eye on system level reliability. To the maximum 
extent possible, we strive to achieve vendor independence and network connectivity; 
wherever possible, we desire data sharing and products which facilitate technology inser- 
tion. Finally, remote monitoring is key to overall system viability. 
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Product Considerations: 

Disk Storage: For both large and small nodes the disk subsystems are almost always 
specified to be RAID devices. While the majority of the current set of disk subsystems 
are SCSI-2 F/W, our high-end nodes will require fibrechannel speeds. The ability to 
remote the arrays beyond today’s cable limits greatly enhances our physical layout 
potential. In addition, the ability to connect large arrays to multiple servers enhances our 
reliability, shareability, and control. NSA has relied heavily on shared network disk 
arrays within our supercomputer complexes and has urged industry to develop products 
of this class. To achieve the desired performance and flexibility for the individual nodes 
of this architecture, extremely large network RAID arrays are a must. The disk arrays 
must be platform independent, reducing reliance on any single vendor. 

Robotic Tape Storage: Our larger nodes require robotic tape libraries which range from 
tens of terabytes up to multiple petabytes. They are sized to match specific user needs 
from a performance, capacity, and user access perspective. We envision each node to 
have multiple tape libraries, matched to the specific type of stream data. Our goal is to 
make our distributed library infrastructure transparent to the user. While certain data 
types lend themselves to very large capacity libraries, others do not. As such, our 
experience with the current set of storage management software offerings forces us to 
adopt a multiple library strategy. The majority of today’s products use commercial 
relational database management system (RDBMS) products to manage the files stored in 
the libraries and this artifact must be accommodated in the overall architecture. Most of 
the products evaluated to date are limited to the tens of millions of files. Large files (>150 
MB) are ideally suited to high performance helical drives which can deliver petabyte 
class individual libraries. However, small file (15 MB) mass storage libraries will 
outpace the RDBMS’ ability to scale to the 100 million file mark. Because the stream 
service controls file creation, large files should be the norm. While these numbers are not 
exact for today’s storage software offerings, they are representative of the challenge that 
system architects face in designing a multi-node hub. The vendor community can deliver 
hardware that easily scales into the multiple petabyte range today; however, the storage 
software lacks the maturity, performance, and ability to service this class of system. 
Although the smaller nodes are disk only, they will still require high-performance robotic 
tape backup systems. 

Storage Software: There are two common cross vendor categories of storage software in 
wide use today at NSA, Hierarchical Storage Management (HSM) and Virtual File 
System (VFS) software. Of the two, the latter is most widely used. HSMs classically are 
major computer systems (processors, disk, robotic tape) that are network connected to 
multiple client systems. Both VFS and HSM are primarily skewed towards the 
operational paradigm of store with infrequent retrieves. While performance is dependent 
on multiple factors and is highly dependent upon the network connectivity, VFS systems 
generally deliver higher performance than HSMs. VFSs today use large UNIX servers 
with RAID arrays and manage 7-40 TB robotic tape libraries. They too are network 
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connected to multiple client systems, but do not possess the full range of archive 
functionality of the HSM. However, they interact with almost any client and provide a 
file system view to that client; hence they are very easy to install and are widely used by a 
diverse population due to their simple interface. To support the distributed storage 
architecture, our large node will be based on multiple VFS storage systems. Emerging 
multimedia software products easily embrace this technology which further enhances its 
role in our infrastructure. Finally, the multiple library approach facilitates technology 
insertion for the physical components that make up the storage library allowing for the 
migration of data to be performed as a background job as older drive technology is 
retired. 

MetaData: The most difficult element of the storage system is the metadata system. 
With multiple, disparate libraries connected to the large node, and several nodes in a hub 
within the archive, transparent access by a diverse population is facilitated by this critical 
element. Its importance has been recognized by the Mass Storage Community as 
evidenced by the IEEE sponsoring a yearly MetaData Conference. The ability to manage 
hundreds of millions to billions of files can only be done by a carefully designed 
metadata system. NSA has taken the approach of a distributed metadata system for its 
scientific processing complex; however, to scale to the numbers of files needed for the 
future, significant breakthroughs are needed. Suffice it to say, that the integration and use 
of metadata and its storage will need to be accomplished. Scalability here is fundamental 
to the success of this endeavor. This paper will not address metadata. 

IV. Initial Development Plans 

The architecture discussed above will be implemented incrementally. The intent of the 
initial configuration is to present users with the first view of the stream service/ 
distributed archive and validate the concepts contained in the architecture. 

Near Term Plans: Initially, a single-system, mid-sized hub will be built. The hub will 
employ a medium performance UNIX server with tens to hundreds of gigabytes of disk 
cache and a single robotic tape library. The storage software will be Virtual File System 
based. The hub will run early increments of the stream service software and will be used 
to validate many of the concepts of the architecture. After the first hub has been built and 
tested, a second, large, two-system hub will be built. The hub will consist of two 
identical high-end UNLX servers, each with a large size RAID disk array and one or more 
robotic tape libraries. Both high-end and medium performancekapacity libraries may be 
employed and, again, the storage software will be Virtual File System based. The 
systems will have multiple network connections of differing performance levels (FDDI, 
ATM, and Ethernet). The two-system hub will run a follow-on increment of the stream 
service that manages the multiple storage platforms. Inter-hub data transfers will be 
based on a static policy. A mix of user workstations which mirror the current 

74 



infrastructure will complete the near term test configuration (Figure 5). Using this 
configuration, we intend to evaluate the user interface, desired functionality, initial 
scalability, overall reliability, as well as subsystem, software, and system reliability. We 
will focus on the adequacy of the specific technologies chosen, calibrate performance 
choke points and scalability considerations. As a result of our analyses, the overall 
architecture will be modified, if necessary, and the lessons learned will be incoporated 
into our long term plans. 

SGI w/Clarion 
RAID Disk Array 

Large 
Hub 

ETHERNET - FDDI - - - ATM - AGENCY LA1 

Figure 5 :  ComDlete Near Term Test 

Longer Term Plans: While this area is highly dependent upon the prior phase and its 
success, several features are already slated for implemention in the longer term. Among 
these are: 

- Inclusion of a wide area network (WAN) connected hub 
- Inclusion of bandwidth management and flow control between hubs across the 

- Increasing the numbers/scales of hubs and MSS libraries 
- Evaluation of metadata system approaches and their scalability 

WAN 
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Other areas under consideration, even though they are merely “on the drawing board”, 
include: 

- Expansion of the server area to include Massively Parallel Processors (MPPs) 
- Inclusion of Web-based user access 
- Inclusion of MultiMedia into the test set 

V. Conclusions 

In summary, this paper has been an attempt to present a brief overview of the architecture 
for a global distributed archive with near-real-time access characteristics and the strategy 
for use of mass storage systems within that architecture. The instantiation of the 
architecture is clearly a long term project that must be approached incrementally. As 
such, it is vital that the interface to the archive be implemented early on and that the 
archive be expanded and improved transparently to early users, behind this interface. 
Although we would not minimize the challenge of the long term development, we hope 
that the tremendous benefits to be gained by building such an archive are evident from 
this brief exposition. 
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Abstract 

By 1997, the Thomas Jefferson National Accelerator Facility will collect over one 
Terabyte of raw information per day of Accelerator operation from three concurrently 
operating Experimental Halls. When post-processing is included, roughly 250 TB of raw 
and formatted experimental data will be generated each year. By the year 2000, a total of 
one Petabyte will be stored on-line. 

Critical to the experimental program at Jefferson Lab (JLab) is the networking and 
computational capability to collect, store, retrieve, and reconstruct data on this scale. The 
design criteria include support of a raw data stream of 10-12 MBhecond from 
Experimental Hall B, which will operate the CEBAF Large Acceptance Spectrometer 
(CLAS). Keeping up with this data stream implies design strategies that provide storage 
guarantees during accelerator operation, minimize the number of times data is buffered, 
allow seamless access to specific data sets for the researcher, synchronize data retrievals 
with the scheduling of postprocessing calculations on the data reconstruction CPU farms, 
as well as support the site capability to perform data reconstruction and reduction at the 
same overall rate at which new data is being collected. 

The current implementation employs state-of-the-art StorageTek Redwood tape drives 
and robotics library integrated with the Open Storage Manager (OSM) Hierarchical 
Storage Management software (Computer Associates, International), the use of Fibre 
Channel RAID disks dual-ported between Sun Microsystems SMP servers, and a 
network-based interface to a 10,000 SPECint92 data processing CPU farm. Issues of 
efficiency, scalability, and manageability will become critical to meet the year 2000 
requirements for a Petabyte of near-line storage interfaced to over 30,000 SPECint92 of 
data processing power. 

Introduction 

The Thomas Jefferson National Accelerator Facility (formerly CEBAF, the Continuous 
Electron Beam Accelerator Facility, and now' known as Jefferson Lab), located in 
Newport News, Virginia, operates a 4 GeV continuous wave electron beam accelerator, 
with the capability to drive fixed target experiments in nuclear physics simultaneously in 
three Experimental Halls. By 1997, when all three halls are under production operation, 
the data generation capability of the experiments, including both raw and reconstructed 
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data, is expected to approach 250 TB per year. By the year 2000, a total of one Petabyte 
of data will be stored on-line for access to users on both Local and Wide Area Networks. 

In this paper, we outline some of the major design decisions and strategies employed in 
the development of an automated facility which can collect raw experimental results from 
three separate data acquisition operations, plus serve this information to a 10K+ 
SPECint92 batch data reconstruction farm. The central mass storage system must also 
store output from the data reconstruction and analysis process, provide intuitive access to 
files associated with specific data runs and phases of the analysis, plus provide a data 
export capability for transport of the summary information back to the researcher’s home 
institution where final analysis steps will be performed. 

Some of the most critical decision points in the process require coordination in the design 
of both the on-line and off-line phases of the operation. The size of the individual data 
run, which represents a specific running period for each spectrometer, naming 
conventions for raw data files and associated calibration, target mapping, and other 
auxiliary files, and the methods used by each experimental hall to funnel data to the 
central mass storage system must be anticipated in the design of the off-line data handling 
capability. In some cases, particularly in the size of the raw data file, limitations and 
optimizations in the off-line process will influence operations during the data acquisition 
stages. This paper will summarize the basic assumptions in the development of the data 
handling operation, including considerations in designing the data path for both on-line 
and off-line operations. We provide a description of the current evolution of the design, 
status of the current production operation serving one Experimental Hall, plus anticipate 
the challenges ahead as we scale the operation to support a Petabyte-class data storage 
requirement. 

Data Handling Requirements 

Inherent in the design of the data handling operation at Jefferson Lab is the requirement 
for an automated, “hands-off’ operation. Physicists historically have run experiments 
with their hands “on the wheel” -- actively managing and monitoring the experiment 
itself while manually loading multiple small tape units to store the generated raw data. In 
this mode, the volume of the output and the success of the operation are immediately 
apparent. The researcher is responsible both to develop effective tracking and logging 
systems as well as to determine and resolve problems encountered in the experimental 
and data storage facets of the operation. When designing for the collection of 1 TB per 
day of raw data, it is immediately apparent that this classic mode of operation will not 
scale: people time is expensive; the task of recording and tracking large numbers of 
potentially large files is daunting. A 2 GB raw data file, for instance, represents less than 
3 minutes of operation of the CEBAF Large Acceptance Spectrometer (CLAS) in 
Experimental Hall B. Manual logging methods developed when data rates were on the 
order of Kilobytes per second become unmanageable when data is being generated in 
Megabytes per second. Part of the design consequently is to meet the human 
requirements for visual verification of the success of the data storage operation, to 
develop intuitive methods to locate specific data runs and associated files, and to 
implement robust strategies to withstand interruptions in the central storage capability 
without affecting the on-line data acquisition (DAQ) process. 
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Due to the large scale of the operation, efficiency is tantamount. Critical to the design is 
the effort to minimize the number of times that raw data must be copied on its path to the 
central mass storage facility. The analysis of early designs, in fact, revealed up to four 
separate copies of the raw data file on its way to a robotics silo: DAQ to disk; disk to disk 
via network to the tape storage server; a re-copy to disk buffers required by some tape 
management applications; and a final copy to tape in the robotics library. Recopying 1 
TB of data incurs large costs in both time and hardware and could significantly increase 
the resources required. Furthermore, data reconstruction processes in nuclear physics on 
the average make two to three passes through the original raw data. While a true data 
reduction in this phase of the analysis is desirable, “reduced” data may, in fact, equal or 
even exceed the size of the raw input in some instances. There may be many reduction 
stages in the final creation of a Data Summary Tape (DST) sufficiently small to be 
transported to the home institution for final analysis. Consequently, efficient algorithms 
to coordinate the use of tape transports and disk pool areas, to optimize network and 
batch node performance with central and local disk buffers, to manage on-line storage of 
output information anticipated for near term re-access, and to vault experimental results 
to be maintained 10 years or more in off-line storage, are essential in maximizing the use 
of expensive resources (tape, disk, CPU, network). 

The overall design must also meet the requirements of three separate experimental 
operations, and, in fact, arbitrate resources between the halls, isolating them from each 
other. JLab’s three experimental halls each impose a different set of requirements and 
timelines for computational support, and in many cases make use of a variety of 
procedures and standards in the operation of their experiments. The data transport, 
storage, and post-processing requirements for Experimental Hall B , due to begin 
production during FY97 (10/1/96-9/30/97), significantly surpass the standard operational 
requirements for Halls A and C. While planning has focused on meeting the technical 
challenges posed by the collection and processing of approximately 1 Terabyte per day of 
raw data (after the compression phase in the data acquisition process) from the CEBAF 
Large Acceptance Spectrometer (CLAS) in Hall B, a data stream equivalent to 
approximately 10-12 Megabytes per second, the plans must also provide viable solutions 
for the lower data rates projected for Halls A and C .  The other two halls, which begin 
operation in an earlier time frame than Hall B, generally incur lower data rates (1-2 
MB/second) and while eventually requiring a separate data path from Hall B, can in fact 
be used to test, tune, and refine the solution for Hall B. 

A summary of the basic data storage requirements and timelines for the three halls 
illustrates that the data handling requirements for Hall B are an order of magnitude 
greater than for the other two halls: 

I I I I I I I I 
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* Approximately 1-25 GB/day under normal operation. Exceptions to this rate are the 
Hall A Helium parity experiment which will run at 10 KHz (10 MB/sec or about 1 
TB/day) for a few months, and Visual Compton Scattering and other experiments 
which are expected to collect data at 2 KHz (2 MB/sec) with peaks up to 10 KHz. 

The data reconstruction requirements for Halls A and C are estimated as 1/10 those of 
Hall B. Hall B estimates that each Byte of data will require on the order of 1000 
instructions to reconstruct. At 10 KB/event and 1000 events/second, this is roughly 
equivalent to 10K MIPS (or 10K SPECint92). Using this projection plus anticipated 
increases in data rates, CPU and data resources must be implemented in the following 
scale: 

Meeting the usability, efficiency, and flexibility requirements outlined above imposes a 
special set of challenges for the modest budget and staff dedicated to this operation. The 
design described below consequently makes heavy use of commercial software 
applications and standard off the shelf hardware. The selection of hardware and software 
components has stressed cross-platform capabilities so that components can be replaced 
and/or upgraded as needed without major redesign of the facility. Project management 
has stressed the close involvement of users from all three Experimental Halls in addition 
to Computer Center personnel, who will implement and manage the central mass store, in 
order to insure that the design meets both the technical and human aspects of the overall 
requirement. 

Factors in the Design of the Data Path 

Several factors were evaluated in the design of the data path for both the on-line and off- 
line operations. In almost all cases, the final decisions represent trade-offs in terms of 
cost, efficiency, and robustness. With a small staff, plus some input and assistance from 
physics users, and limited budgets, simplicity is key. 

Factors in Designing the On-Line Data Path 

All three Experimental Halls use some combination of VME and Fastbus technology to 
collect raw data from one, and in some cases, two spectrometers. Hall B has developed 
an event building capability which employs the Asynchronous Transfer Mode (ATM) 
network technology to collect, sort, format, and compress the data points from each 
physics event. Details of their algorithm are provided in reference [l]. VME single board 
computers serve as readout controllers (ROCs) to collect data from the electronic crates; 
control and data messages are passed in the 53-byte ATM cells over OC-3 connections 
(155 Mbps) between the ROCs and an on-line SMP (Symmetric Multiprocessing) farm 
processor (OLFP), a UNIX server. Formatted event data must then be transported to a 

80 



mass storage library for eventual replay to the off-line batch farms. Some local backup 
tape capability is desired both for convenience and redundancy. 

Design decisions specifically related to the data path of the on-line physics events include 
(a) the location and number of robotics libraries required to collect the raw data, (b) the 
network implementation over which to transmit the information, (c) the number, speed, 
and capacity of the tape transports to employ, and (d) the number of copies of the raw 
data to be stored. 

Robotics Libraries : Considerations such as redundancy and the need for visual feedback 
from storage operations led to the evaluation of implementing dual robotics libraries to 
support the on-line operation. In this model, a smaller robotics library would be located in 
the experimental area (the “Counting House” where the DAQ systems reside) so that tape 
storage of on-line information could continue even in the event that network connections 
to the central site were interrupted. With modern Hierarchical Storage Management 
(HSM) software, data loaded to the Counting House silo could be migrated in 
background to a higher capacity central silo used to feed the off-line batch farms. This 
arrangement, while providing good redundancy and failover capabilities, plus fulfilling 
the human need to keep the raw data of the running experiment “local”, in fact results in 
one extra copy step, greater complexity in managing the location of the data and in 
freeing sufficient storage space for real time operations, plus most importantly doubles 
the cost of the operation. Locating all tapes (including duplicate copies if required) within 
one central silo (or silo-complex) insures that the data is where it is needed when it is 
needed and provides a central single point to expand when capacity requires. After 
evaluation of the options, simpler, cheaper solutions for redundancy and feedback can be 
implemented with graphical monitoring utilities to provide visual feedback to the 
researcher, and local disks and lower cost tape drives on the DAQ systems for buffering 
and emergency archives. This solution does require that some mechanism provide for the 
uncontested use of central tape drives for on-line operations. This is particularly critical 
for the high data rates for Hall B, where local buffers could quickly overflow if the real 
time operation waited on lower priority off-line use of the central drives. The decision to 
employ an HSM file management approach posed a problem in that most HSM 
applications do not provide tape allocation capabilities. Consequently the design of a 
local customized tape staging application must incorporate the capability to insure that a 
tape transport is immediately available for selected real time processes. 

Network Medium: Viable network transports for the raw data include FDDI (Fiber 
Distributed Data Interface), ATM, HiPPI (High-Performance Parallel Interface), and Fast 
Ethernet (1OOBaseT). While the costs of ATM may prove to be lower than the more 
mature FDDI and HiPPI standards, many vendor offerings are unproven and still groping 
for a standard. Fast Ethernet (100BaseT) provides both higher capacity and cost 
effectiveness but may not meet the high speed throughput requirements of Hall B. 
Decisions regarding switching versus routing must insure that signals from the three halls 
do not interfere with each other, yet are not degraded by-latency overheads. 

Tape Transports: A major design decision was whether to use multiple lower 
speedkapacity tape transports (possibly DLT) or a fewer number of high end drives 
(Redwood--1 1.1 MB/sec., 50 GB cartridges; Ampex--15 MB/sec., 165 GB cassettes, 
etc.). The IBM Magstar Drive (9 MB/sec, 10 GB cartridges) offered a midrange choice 
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in terms of cost and capacity, with relatively high end throughput (at least approaching 
the 10-12 MB/second data stream expected from Hall B). Employing multiple, lower cost 
drives has the advantage that losing one or even several drives has minimal impact on the 
overall operation, plus increases the possibility that the researcher can in fact read raw 
data tapes at the home institution. The disadvantage to this model is the increase in 
complexity in terms of fanning the data stream out to multiple drives as well as the 
significant increase in sheer floor space required to store tapes (both in near-line and off- 
line locations). The use of a higher throughput, higher density tape solution reduces the 
complexity of the algorithm, reduces the cost of tapes as well as storage, plus provides 
the throughput capacity required to “catch up” after scheduled and unscheduled 
interruptions. 

Data Copies: It is interesting to note that the cost of generating the 300 TB possible to 
store in the laboratory’s STK 4410 robotics silo, given site estimates of running costs, is 
many tens of millions of dollars (more depending on the volume of data collected from 
the lower intensity halls, Halls A and C, as well as the amount of processing required to 
produce any reconstructed and/or analyzed results). Consequently, the issue of whether 
duplicate copies of the raw data should be kept for all experimental runs is truly both a 
cost and research critical decision. Assuming Hall B produces approximately 50 GB per 
hour of operation running 125-150 days per year, the annual cost to save one copy of the 
raw data stream is on the order of $300K in tape costs alone. The cost, per copy, then is 
less than 1% of the overall generation cost. On the other hand, $300K, let alone $600K 
(assuming two copies), plus of course the original investment in additional $100K+ tape 
units, is a significant impact on tight experimental budgets. A survey of other energy 
research laboratories indicates that keeping duplicate copies of raw data is by no means 
universal even in far lower data rate environments, that total loss of a raw data tape is 
rare, and that the loss of some small percentage of an experiment’s data would be 
unlikely to affect the overall results. This decision is still under consideration at Jefferson 
Lab and may be affected as much by budget restrictions as risk analysis. 

Factors in Designing the Off-Line Data Path 

Using the Hall B estimate of 10K SPECint92 to “reduce” (in many cases, just 
“reconstruct”) the data from the CLAS spectrometer, the laboratory will require an off- 
line batch-mode CPU farm consisting of on the order of 50 CPUs ready for production 
operation during 1497. The final configuration of the farm and the supporting software 
will depend on several factors, including relative costs and performance of a range of 
processors, size/speed/cost of local node disks and central RAID subsystems, size of 
input raw data files as well as output files, and the complexity of the software algorithm 
to coordinate pre- and post-staging of data files with the data reconstruction job. The 
basic assumption in the design is that the first pass reconstructed data is approximately 
the same size as the input data. An actual reduction of the output data, to 10% for 
example, would drastically reduce the overall cost of the implementation, plus have 
significant impact on the overall throughput of the facility. 

The data reconstruction operations on JLab’s data involve a model of “trivial 
parallelism.” One executable designed for an experiment can be used repeatedly against 
event after event either in sequence or in parallel to generate reconstructed events. 
Consequently the design decisions involve at what granularity to fan out events to a series 
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of CPUs, making the basic assumption that a “pizza-box” style of post-processing will 
most likely cost less than the use of one, very high end multi-processing system. A PVM- 
approach (Parallel Virtual Machine), for instance, would use a “master” server to fan out 
single events to a series of CPUs each running the same code, collecting output back on 
the master node. Alternatively, blocks of events can be handled in a series of 
automatically generated batch jobs, with the naming of the output files used as a method 
to “ c ~ l l e c t ~ ~  the results back into sequential order. 

During off-line post-processing, raw data files must be retrieved from the central mass 
store via an automated multi-job generation process that loads required files “just in 
time” for batch processing and returns output to required locations (tape silo and/or on- 
line storage). Design decisions specifically related to the data path of the off-line 
processing include (a) how the researcher will access required files; (b) the algorithm and 
path used to pre- and post-stage files for the running batch job; and (c) the algorithm and 
implementation to allocate resources according to laboratory planning. 

Datu Access: One primary goal in the design is that access to the files associated with 
specific data runs should be reasonably intuitive to the end user. One method to 
implement this is of course to use the concept of the UNIX file system itself as a way to 
catalog files. The use of meaningful directory and file naming conventions then allows 
reasonable access, even without metadata, to specific file sets. Commercial HSM and 
other volume management applications support this access mode by implementing virtual 
file systems where only a portion of the files actually reside on-line. The use of standard 
HSM-style “file migration”, where on-line water marks and recent use heuristics define 
which files are maintained on-line, provided one possibility to support the file system for 
JLab’s experimental data. A disadvantage of this approach, however, is that files to be 
retrieved must first be “migrated” from tape to the local file system before they can be 
used. In the case of feeding an off-line post-processing CPU farm, the required location, 
for performance reasons, may very well be on dedicated central staging areas and/or local 
batch node disks, as opposed to the “cataloging file system,” thus necessitating at least 
one extra file copy operation to locate the file where it is needed. A variant of file 
migration is the use of a file “stub”, or marker to the actual tape location of the file, 
provided by some file management utilities. In some implementations, restrictions in the 
relocatability of stubs can pose a problem for expanding, dynamic file systems. In 
addition to intuitive access to the raw data and related output files, researchers must have 
the capability to store additional metadata related to both runs and data reduction phases. 
This requirement, however, calls for a database-oriented capability above and beyond the 
management of the virtual file system alone. 

Staging Algorithms: Probably the most critical decisions for the overall design of the off- 
line batch farm revolve around how to make the input file, either a raw data file or the 
output from an earlier phase of data reduction, accessible to the batch job that eventually 
uses it. The question involves not only decisions regarding synchronization and job 
priorities, but from a design perspective even the anticipated input and output file sizes 
and how they may perform in either local or central staging models. Although data files 
could in theory be directly loaded from the tape silo to local disks on individual farm 
nodes, two limitations argue for an initial central staging area: (a) limitations in the UO 
performance of the individual farm nodes. Although CPU alternatives exist with the 
required UO performance, this will mandate higher performance and hence higher cost 
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systems for the farm; (b) processorkape utilization. Ideally, CPUs should not be idle 
while the next data file is loading, and the use of high cost, high performance tape drives 
should be optimized around efficient staging algorithms. De-coupling the two phases by 
means of central buffering best accomplishes each goal without compromising the other. 

A variety of staging models can be considered. A real argument for smaller input files 
exists in both the current limitations in many UNIX operating systems for files less than 2 
GB as well as the possibility to use inexpensive disks local to the batch node for actual 
input/output file storage. Considering that a 2 GB raw data file represents less than 3 
minutes of beam operation in Hall B, such a limitation involves some level of 
inefficiency in terms of opening and closing files during the data acquisition process plus 
dramatically increases the number of associated raw data files. Substituting either a 25 
GB (-30 minutes of operation) or 50 GB (- one hour of operation) size for the raw data 
file may be more efficient from a DAQ perspective but effectively rules out truly local 
disk storage from a cost consideration and incurs the performance penalties of NFS or 
other network file access. Just to complicate the formula are considerations such as the 
time to “cold start” the farm, the time to “warm start” the farm after a brief interruption 
(e.g. take advantage of the files already pre-staged), plus considerations of the 
researcher’s intent for longer term on-line storage of the associated output files. A PVM 
approach can solve a large file requirement by fanning out events from a large input file 
to the individual batch node, but network performance must be considered as well as the 
increased coding complexity for the researcher. Moreover, the entire model changes 
drastically if data reduction actually accomplishes a significant reduction in output file 
size during early processing cycles. 

Resource Allocution : All resources required during the experimental process are allocated 
to an experimental collaboration according to laboratory planning, from the hours of 
scheduled beam time to the staging of input files for allocated use of the off-line batch 
farm. The bottom line for researchers, however, is how much CPU time they are getting 
to post-process the data collected during their on-line operation. The design of the 
algorithms to “feed the farm” must provide the best overall site throughput as far as 
quantity of data processed, yet accomplish this within the guidelines of allocation 
strategies mandated by the laboratory. In this central silo model, the design of tape drive 
allocation and staging algorithms must first of all meet the requirements to insure the 
uncontested use of storage mechanisms by real time operations. Beyond this, the focus 
must be on a fair share allocation of the farm resources; tape staging serves only the 
purpose of fueling the correct mix of jobs. The challenge in a fully automated system is at 
what point in the process to implement a fair share algorithm to achieve the overall 
allocation strategies of the laboratory--if during the tape loading stage, how can we 
determine in advance which files should be loaded to achieve the desired mix in the set of 
running jobs; if during the job submission stage, how can we insure that the required files 
will be available at the time to run? And what percent utilization can we hope to achieve 
with high performance, high cost tape transports? The prototyping and testing of these 
various models will be essential in selecting the optimal design given the specific CPU, 
UO, and network parameters at hand. 
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Current Implementation and Status 

The On-Line Model 

The implementation in progress to handle the data flow from Jefferson Lab's 
experimental program includes the selection of the Open Storage Manager (OSM, 
Computer Associates, International) HSM software integrated with a StorageTek robotics 
library and Redwood helical scan tape drives. Fast Ethernet provides the base for the 
experimental network, carrying all data for the 1-2 MB/sec data streams of Halls A and C 
(See Figure 1, "High Speed LAN"). The use of a Fast Ethernet switched architecture 
provides enhanced performance by protecting raw data streams from outside interference. 
A developmental ATM switch will be used to prototype the potential use of ATM for the 
farm network fabric. The higher intensity data collection of Experimental Hall B (as well 
as potentially some experiments in Hall A) will use the network for control signals only, 
moving the raw data via dual-ported Fibre Channel RAID connected to both the 
Experimental Hall event-building CPU and the Computer Center data server. The 
S torageTek Redwood drives were selected for both their high performance (current 
benchmarks indicate an 1 1.1 MB/sec. throughput) and high density (50 GB cartridges are 
available). Due to the large volume of data anticipated, effectively ruling out the option 
of performing off-site data reduction, the advantages of these high performance/high 
density options for Jefferson Lab outweighed the disadvantage that the home institutions 
will most likely not be able to build similar environments. Furthermore, there was some 
advantage to the tape cartridge design of the StorageTek (STK) Redwood transports 
which contain no takeup reel, cutting the storage space required in half. One factor in the 
selection of the OSM software was the existence of a customized extension called 
OSMcp , developed at the Deutsches Elektronen-Synchrotron (DESY) which solved the 
relocation issue with stubs as well as provided exactly the data flow model required: the 
direct copy to a designated location (either disk-to-tape or tape-to-disk) using a stub file 
as a reference only. Furthermore, by use of UNIX protections on the stub files alone, the 
integrity of master copies of the raw data files, which should never be modified and 
rarely deleted, can be protected. 

Figure 2, "High End Data Flow", illustrates the path to be taken by Hall B experimental 
data. Raw data collected during the FastbusNME-based data acquisition process will be 
channeled through an ATM switch to the Hall B SMP system (Data Acquisition 
Symmetric Multi-Processing, DA-SMP). This system will use the multiple input data 
streams to build events, locating the raw data files created on the dual-ported Fibre 
Channel RAID subsystem. The DA-SMP system will toggle between two separate RAID 
partitions and as it fills one, will signal the Computer Center data server (CC-SMP, a Sun 
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Enterprise 4000, 1 km away) via a network call, to begin moving the files on that 
partition to the STK silo. The DA-SMP will then resume data collection on the alternate 
RAID partition. This alternate writing then reading of the RAID subsystem, isolates the 
data transport from the network, and effectively enhances the throughput of the two data 
storage servers in that data does not have to pass twice through each system as required 
for a network-based transfer. Current testing of this model using a lower performance 
Sun 1000, including the use of the OSMcp utility, has resulted in transfers in the range of 
9 MBhecond, closing in on the performance goal of the maximum rating for the 
Redwood drives, 1 1.1 MB/sec. Configuring high performance components of the 
architecture (Redwood drives, RAID, network interface) with a separate SBus is expected 
to yield the remaining required throughput. While initial testing has involved only one 
RAID subsystem divided into two partitions and one Computer Center storage CPU, the 
solution can scale with the addition of multiple separate RAID units and storage servers. 
The CC-SMP will use the OSMcp utility to move the raw data directly to tape, leaving 
“stubs” in predefined directories corresponding to the specific Hall/Spectrometer. and 
experiment. The stubs, which appear to the user as regular UNIX files, are essentially 
pointers to the actual file locations on tape, as stored in the OSM database. The OSM 
software currently interfaces to two Redwood tape drives retrieving tapes from an STK 
4410 robotics library (6000 tape maximum capacity, 140 robotic exchanges per hour). 
With the 50 GB cartridges available for these drives, the current maximum capacity of 
the silo is 300 TB. An aggregate of 30 MB/second of data throughput must be supported 
for post-processing to keep pace with the rate of new data collection (e.g. 10 MB/sec 
each for: new data in; raw data out; processed data in). Depending on the final efficiency 
factors realized, 6-8 Redwood tape transports will be required to support this level of 
throughput. 
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Halls C and A will most likely use a network-based data path, also making use of the 
OSMcp capability. A simple, automated process, parallel to the existing local Exabyte 
tape copy procedure, has been implemented for current Hall C production. The procedure 
transfers the data (via remote copies as opposed to NFS) from the Hall C Data cluster to a 
staging area directly on the Computer Center storage server, and then subsequently 
OSMcp's the files, leaving stubs in a separate file system. A user utility provides the 
reverse capability to retrieve data files for post-processing on the existing Data Reduction 
cluster (3 HP 9000/735s) located in the Counting House. Exabyte and 4mm DAT 
autoloaders available on this cluster currently provide an export capability for the 
experimental user. 

The Off-Line Model 

The Load Shari Facility (LSF, Platform Computing) has been selected to provide the 
batch management software base for the off-line CPU farms. The initial design work has 
begun with the concept of a simple round-robin approach, using LSF to channel jobs to 

' CPUs (low end, low cost, headless UNIX systems), each with a 
st likely reading input files from a 

d out entirely, a coarse grained 
r, in batches) processing one 

complete run is attractive due to the simplified coding and testing required on the part of 
the experimental user. A locally developed customized application to track runs and 
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associated files, to pre- and post-stage files in coordination with 
data reduction batch jobs via LSF is under design and will most likely make use of the 
OpenIngres (Computer Associates) relational database software. 

, and to generate 

Dirnctoris of 
f i le  Stubs 

Local 13lSks or RAID I 

Figure 3: Batch Farm Data Flow 

Figure 3, "Batch Farm Data Flow", illustrates the general path of data to and from the 
data reconstruction CPU farm. Batch jobs, managed by LSF, must coordinate both the 
retrieval (reverse OSMcp) of raw data and other auxiliary files (calibration files, trigger 
maps, executables, etc.) as well as the storage of generated output files. OSM is currently 
limited to a maximum file size of 2 GB. This, plus the economics of local disk storage 
mandates a maximum raw data file size of 2 GB at the current time. Work is in progress 

local file staging to determine the 
well as cost. Critical calculations 

equired to provide both the 
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Challenges Ahead 

Several major challenges face the development team in the near future; the first is to 
develop the customized software extensions to the file and batch management layers 
provided by the commercial applications, OSM and LSF. A 
Computer Center staff, Hall, and User representatives is 
requirements phase for such a suite of applications. The functionality envisioned will 
replace manual and even electronic methods to manage the progress of an experiment 
through the pipeline required from raw data file, through reconstruction phases, to a final 
Data Summary Tape or even Micro-DST, and provide Jefferson Lab's collaborations with 
web-accessible, graphical tools to manage and track the entire reconstruction process. 
Results of prototyping the various data staging models will be critical to the final design 
of both the disk pool areas and staging algorithms. The developmental milestones include 
completion of both requirements and design reviews by October, 1996, and the release of 
a Beta version in early 1997. The procurement of required farm hardware will be 
concurrent to the coding and implementation phases of the software development. 
Production experimentation for Halls C and A, and early calibration runs for 
Experimental Hall B are expected to remain within the data handling capabilities of the 
existing script-based methods to store and retrieve sets of files from the central mass 
storage library. 

Efficiency and scalability are challenges for every massive data handling operation. 
Experiences from other similar data collection and replay environments suggests that 
planning should anticipate overall efficiency rates of no more than 50%, building in 
sufficient tape, disk, and CPU resources to avoid bottlenecks at any point in the 
operation. The hard reality in today's research environment is that this approach costs real 
money--money that from the experimentalist's perspective reduces the amount of research 
that can be done. In JLab's setting, the hundreds of thousands of dollars that can be saved 
by tight management of high end disk and tape devices translates into new spectrometer 
equipment and additional beam time -- more "physics" ! The goal, consequently, must be 
to develop finely tuned, smart systems that can anticipate scheduled requirements, 
manage resources closely, recover quickly from interruptions, and scale by modular 
upgrades. Right now, Hall B anticipates a data rate of 10-12 MBIsecond. Given history, 
that no doubt will ramp up not down. With the potential of two or three Experimental 
Halls running simultaneous, high intensity experiments, the initial infrastructure must 
anticipate an eventual doubling or tripling of the original design goaIs. Modularization of 
both hardware and software implementations must allow the upgrade and/or replacement 
of any one component, from the addition of multiple storage servers and farm nodes, or 
expansion of on-line storage pools, to the possibility of replacing magnetic-based near- 
line solutions with other future technologies. The useful lifetime of Jefferson Lab's raw 
data sets may be 10 years or more. In today's technology, that can represent two or even 
three implementation life cycles. Today's solutions must prepare not only for tomorrow's 
requirements but also lay the framework to build with future tools. 

Conclusions 

Designing for large data handling projects in today's computational environments 
involves the coordination of network design, tape and disk pool modeling, simulation of 
processing flows, as well as the detailed consideration of end user requirements and 
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interfaces. The goal of Jefferson Lab’s design to support the experimental data handling 
requirements of the laboratory is to employ modular hardware and software solutions that 
will scale to meet anticipated future requirements. We have chosen to employ 
commercial software foundations extended by locally developed applications to 
coordinate different components of the system. While the current design will provide the 
immediate capability to handle all facets of collecting and post-processing a new data 
stream of 10-12 MBlsecond, our objective must include the scalability to survive not only 
considerable expansion of the anticipated load, but significant changes in the 
technological alternatives available. 
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Introduction 
DKRZ is a primarily federally funded institution to provide the German climate research 
community with the necessary computing resources to perform numerically highly 
complex climate simulations. This task implies a virtually unlimited requirement for 
installed compute power at the outset; moreover, directly correlated with available 
compute power are the corresponding data services requirements, both in terms of static 
capacity and dynamic data access. 
The following diagram shows the development of installed compute power at DKRZ 
from 1985 to 1996. 

CPU performance available at DKRZ 
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This local development seems to be well synchronized with the overall technological 
development of supercomputer technology showing an average increase of almost a 
factor of two every 2 years. 
Tightly coupled to the compute power dedicated to climate simulations is the data rate in 
terms of long term storage. As a general rule, it turns out that 1 Flops compute power 
(sustained) generates 1 KByte of data per year which is of sufficient interest to justify 
long term storage. So, the above diagram can also be interpreted as the development of 
actual annual long term storage rates if the y-axis is replaced by VByte]. 
There are two more interesting rules of thumb defining the overall correlation between 
available compute cycles and the resulting requirements for the data management system 
which have been remarkably constant in the past. The second rule refers to data 
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generation rates as opposed to long term storage: roughly 25 % of the total data generated 
will be stored for less than a year and thus does not contribute to long term storage 
requirements. These rates refer to climate model output only which is the dominating sort 
of data at DKRZ. Other types (e.g. observational data for model validation, general 
system backups etc.) display different charac tics. The third rule defines the resulting 
overall data access requirements: for every byte generated there will be 3 bytes accessed, 
so model data turns out to be relatively active. 
With these three rules not changing and the expectation that continuous funding will be 
available, it is rather easy to estimate the future requirements for the data management 
system which is summarized in the following table. Actually, the data intensity will 
partially change: the major existing applications double their storage intensity by 
decreasing the archival interval from 12 to 6 hours simulation time. Other uncertainties 
result from new applications, e.g., atmospheric chemistry. 

The immediate conclusions are that current technology supports both the required robotic 
capacities and transfer rates for disk and tape devices. On the other hand, it has to be 
noted that current technology fails for required network performance and in particular for 
the aggregate performance of the existing migration software. 

Detailed Statistics 
Reasonable estimates for future data management system requirements can be made from 
some global parameters and the rules described if the applications are well known and do 
not change considerably over time. These facts are insufficient, though, both to define the 
detailed structure needed for future systems and to identify possible bottlenecks in 
existing ones. More details are needed for these purposes. 
Central file service at DKRZ is based on the well known UniTree product running on a 
Convex C3800 hardware platform. The built-in statistics and logging features of standard 
UniTree are relatively poorly developed, so some additional instrumenting code has been 
added to generate timestamped event-driven messages to analyze the dynamic behavior of 
the system. About 8 MByte of raw data thus generated per day is preprocessed to 
combine the various event-driven messages into gle transaction record resulting in 2 
additional MByte per day of compressed 
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The logging and analysis concentrates on these three key areas of the system: 

disk ca 
* 

client interface via the network 

tape devices and robotic systems 

Client interface 
The client interface for normal data access is restricted to ftp since both rcp and nfs 
(besides the well known performance and security deficiencies of nfs) lack the ability to 
adequately control the access to the Unitree families which is required to choose the 
proper tape technology typically as a function of file size and possibly other file 
attributes. So it was decided to modify uftpd to log the major transaction events along 
with the relevant parameters: 

0 

0 end of transfer 

start of transfer and possibly cache hit 
stage to disk if necessary 

The relevant parameters additional to the time stamp are 

0 ftp operation code 
0 

0 

path name, capability, user and group id 
family, number of copies, host and network 
file size and transfer times (disk and possibly tape) 

This collected information allows a variety of different parametric statistics like number 
of requests and data transferred per given time interval with associated variances. An 
example is the following diagram which shows the ftp access pattern with the number of 
parallel transfers and the effective transfer rate averaged over one-hour intervals. 

Aggregate ftp transfer rate [MBls] 
(May 1996) 
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The 2 straight lines are the averages per month with 6.8 parallel accesses and a total of 
5.7 TB transferred by 116K requests. If the time interval is shortened to ever smaller 
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values it can be expected that due to the bursty nature of the traffic particularly in prime 
times the observed peak rates will reach a maximum either defined by the maximum load 
or the performance limit of the system. The current hardware platform consists of a 
Convex C3840 with 1 GByte central memory, 12 disk channels ( P I  and SCSI), 14 tape 
channels (BMX and SCSI) on the server side. HiPPI-switch connections to the major 
clients, and typically no disk bottlenecks on the client side. In this hardware environment 
the highest burst rate ever noted was around 16 MB/s which gives rise to the suspicion 
that the current overall bottleneck in terms of performance is induced by software 
overhead. This approach can generally be nicely used for benchmarks during the running 
system without shutting out user operations totally, e.g., to validate hardware or software 
upgrades and reconfigurations. 
It should be noted though that averages over larger time intervals are only of limited 
value since the frequency distributions are far from normal. It is typical for mass storage 
systems that the number of transactions is dominated by small files, but the bulk of the 
data flowing is caused by a relatively small number of large transfers. The specific 
distribution of course is application dependent. Additional to plotting system parameters 
by file size it is worthwhile to also study other distributions, e.g. by host and network. 

Disk cache 
Probably the most important factor to performance is the disk cache since the cache hit 
pattern dominates the turnaround time as seen by client access requests. The overall disk 
cache hit rate development over time for the last 2 years is plotted in the following 
diagram. Due to the increasing load on the system this global cache hit rate has been 
decreasing almost monotonically from 85% down to 50% over the course of a year which 
tendency could be reversed by a major disk cache upgrade in mid 1995. In two steps 48 
Elite-9 SCSI disk drives with 8 SCSI channels have been added to the existing IPI 
devices resulting in a total disk capacity of 550 GByte. It is interesting to note that this 
hardware upgrade did not take immediate effect but took several months instead. The 
reason is that it is easy to fill up the cache immediately, but it takes very long to put the 
files on disk which have the most positive influence on the overall hit rate, i.e. as many 
small active files as possible. This is also the explanation for the backward developments 
e.g. in February 1996: due to drive failures the contents of complete partitions have been 
lost with a resulting loss of a large number of small file copies. 

94 



Disk cache hit rate [%I 
(monthly average) 

80 

70 

60 

50 J J A S O N D J  F M A M J  J A S O N D J F M A M  
1994 -1 996 

Disk cache hit rate [%I 
( May 1996) 

100 

80 

60 

40 

20 

0 

Although the global hit rate has decreased to 65% the situation is still much better for 
small files as the hit rate versus file size distribution shows. The next 2 diagrams show a 
snapshot of the cache file distribution (both number of files and aggregate size as function 
of age). Although the Unitree disk cache purging algorithm is not very versatile it turns 
out that the old files do not add considerably to the total size since they tend to be small. 
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Another valuable information to derive from the transactions logged with the capability 
identifying single files is the working set which denotes the locality of the user load. 

Archival storage 
The core of the mass storage system is the archival storage typically consisting of tape 
devices integrated into large robotic capacities. Tape technologies differ considerably in 
their technological parameters and cost, and furthermore the tape handling software in 
question may or may not take advantage of the various features they provide. It is thus 
not sufficient to compare different tape technologies just by their published features or 
even by comparative tests under the native operating system, since mass storage systems 
often handle tape devices independently and in different fashion. In particular it is not 
sufficient to compare streaming transfer rates because for realistic file distributions 
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transfer is not the only fraction of the operation contributing to elapsed time, and it may 
not even be the dominating one. 
Currently there are 2 robotic systems and 3 tape technologies in production use at the 
DKRZ: STK 4400 libraries with both 3490 and D3Redwood drives as well as Metrum 
RSS-600 with VHS drives. In order to evaluate this technology logging information from 
tapesrvr and pdmsrvr define the various events constituting a complete tape transaction: 

0 

0 

0 

0 tape dismounted 

receipt of request from disksrvr, possibly wait time in queue 
mount request issued to pdmsrvr 
tape positioned to requested block offset 
transfer complete, possibly ,,lazy wait" on drive 
dismount request issued to pdmsrvr 

The parameters additional to the timing information of the various events listed above 
include: 

0 

0 

0 

0 

0 

0 

0 

stage or mig request 
client or repacker request 
capability 
family, location, copy, and possibly fragment 
VSN, tapetype, physical unit 
block offset 
file size 

The analysis of this device oriented information enables a wide range of useful statistics, 
like the impact of internal reorganization (repacking) on overall system performance for 
client initiated requests, device specific performance for mount/dismount, positioning and 
transfer operations, queuing states for available devices, effects of system parameters like 
the ,,lazy wait" feature on mount/dismount overhead, and many more. 
An example is the following diagram which shows tape transfer performance as measured 
in the running Unitree system for 3490, VHS, and Redwood/D3 tape technologies as a 
function of request size. It turns out that VHS is relatively performing best by reaching 
80% of the streaming rate already for moderately sized files of 30-40 MByte, whereas 
3490 does not exceed about 50% of the peak rate. Relatively disappointing is D3 
performance which saturates at about 40% of the streaming rate needing even larger files 
in the GByte range. It is assumed that the reason for this poor performance again is 
caused by the inefficient server-server communication scheme since similar tests under 
the native operating system show that the D3 streaming rate of almost 11 MByte/s can 
indeed be reached for files of 1 GByte and more. 
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The different readwrite behavior is caused by the overhead of tapemark processing 
which is higher for writing files. The measured write results follow the theoretical curve 
very closely, the read results for small files are perturbed by the read-ahead capability of 
the D3 device, a feature which cannot be typically made use in a mass storage system. 

Conclusions 
The UniTree product as it is released emits a rather large amount of logging information 
into various log files, but this data typically is meant for operator information in difficult 
operational situations or directly for debugging purposes. It is strongly advised that the 
existing logging functionality in the standard release is advanced by adding messages 
with relevant parameters for every major event in the course of executing file or device 
oriented requests as described. 
This upgrade would be relatively easy in terms of implementation effort. The benefit is a 
complete sequence of transaction descriptions generated by external user requests or by 
internal administration commands. This collection of transaction records can be used for 
intensive statistics and performance evaluations. It is furthermore a perfect source to drive 
realistic system simulations to study the effects of possible hardware or software changes. 
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Abstract 

There has been no fundamental change in the dynamic indexing methods supporting 
database systems since the invention of the B-tree twenty-five years ago. And yet the 
whole classical approach to dynamic database indexing has long since become 
inappropriate and increasingly inadequate. We are moving rapidly from the conventional 
one-dimensional world of fixed-structure text and numbers to a multi-dimensional world 
of variable structures, objects and images, in space and time. 

But, even before leaving the confines of conventional database indexing, the situation is 
highly unsatisfactory. In fact, our research has led us to question the basic assumptions of 
conventional database indexing. We have spent the past ten years studying the properties 
of multi-dimensional indexing methods, and in this paper we draw the strands of a number 
of developments together - some quite old, some very new, to show how we now have the 
basis for a new generic indexing technology for the next generation of database systems. 

Multi-dimensional indexing 

There has been no fundamental change in the dynamic indexing methods supporting 
database systems since the invention of the B-tree twenty-five years ago. And yet the 
whole classical approach to dynamic database indexing has long since become 
inappropriate and increasingly inadequate. We are moving rapidly from the conventional 
one-dimensional world of fixed-structure text and numbers to a multi-dimensional world 
of variable structures, objects and images, in space and time. 

But, even before leaving the confines of conventional (i.e. relational) database indexing, the 
situation is highly unsatisfactory. In fact, our research has lead us to question the basic 
assumptions of conventional database indexing. The concept of a set of one-dimensional 
primary and secondary indexes, tuned to a particular query pattern, emerged in the days of 
menu-driven applications. This concept has not evolved in any way to match the flexibility 
of 4GL query languages. And today two new factors make such tuning increasingly 
impractical: internal system inferencing - where even the system itself cannot predict the 



progression of queries - and an increasing number of very large scale applications where 
the overhead of periodic re-indexing is unacceptable . 

Of course, menu-driven applications remain, but there are many conventional database 
applications today where much more flexibility is needed. Users who browse through a 
database in an unpredictable way find system performance equally unpredictable. We 
believe that: 

1.  index design should be guided by a natural principle which is intuitively understood by 
users: the more information which is given to the system to guide a query, the faster 
should be the response. 

2. the average response time to the set of all possible instantiations of a query is a much 
better guide to user acceptability than the fastest time obtainable with one particular 
instantiation pattern. 

To achieve this kind of performance flexibility without incurring massive additional update 
overheads and increased software complexity requires some form of multi-dimensional 
indexing. Most recent research on multi-dimensional indexing has been motivated by the 
need for better spatial access methods. This has tended to obscure the much more general 
attraction of multi-dimensional indexing, which was clearly appreciated by earlier 
researchers in the field [l] [2]. 

The original inventors of the B-tree [3] already had the next step in mind: an index which 
would generalize the properties of the B-tree to n dimensions i.e. an index on n attributes of 
a record instead of one. Ideally, such an index should have the property that, if values are 
specified for rn out of n key attributes (a partial match query), then the time taken to find 
all the records matching this combination should be the same, whichever combination of rn 
from n is chosen. The attraction of such an index is that it narrows the search space evenly 
over all the indexed attributes, and so behaves as if there were an index on each attribute - 
while avoiding all the update complication of secondary indexes. It also greatly reduces the 
need to re-index - or multiply-index - large data sets on different attribute combinations. 

To achieve this, the index must be symmetrical in n dimensions. There is no longer a 
directly defined ordering between the individual records according to their (single key) 
attribute values. Each record must be viewed as a point in an n-dimensional data space, 
which is the Cartesian product of the domains of the n index attributes. An n-dimensional 
generalization of the B-tree must recursively partition this data space into sub-spaces or 
regions in such a way that the properties of the B-tree are preserved, as far as is 
topologically possible. Specifically, the number of nodes encountered in an exact-match 
search of the tree (assuming no duplicates), or a single update, should be logarithmic in the 

ata occupancy of the tree; and the occupancy of each data or index region should not 
fall below a fixed minimum. 
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The challenge has therefore been to generalize the B-tree to n dimensions while preserving 
all of its worst-case characteristics. But a solution has proved very elusive. Alternative 
approaches of every kind have been proposed (see, for example, [4] [5] ), but all have been 
vulnerable to pathological cases. 

In the past this was largely an academic issue. But now it is becoming a matter of life and 
death. Large databases control mission-critical and non-stop applications of every kind - 
from fly-by-wire aircraft control systems to electricity supply load balancing. There is no 
room any more for systems which work very well most of the time. They must be 
completely predictable all the time. 

This consideration provides justification enough for commercial database companies to 
cling to the B-tree. It may be inflexible, but it has the essential qualities of being totally 
predictable and fully dynamic. Whatever advantages an alternative may have, it must 
demonstrate these same qualities before it has any hope of replacing the B-tree. For these 
reasons, and anumber of others - even more compelling - which we give below, we 
believe that our recent discovery of a general solution of the n-dimensional B-tree problem 
[6] is a major breakthrough in dynamic indexing techniques. 

Principles of a new generic indexing technology 

As a result of ten years research in this area, we have come to appreciate the fundamental 
importance of a solution of the n-dimensional B-tree problem. This is essentially because 
any data structure which can be expressed as a tree can be represented as a point in an n- 
dimensional data space at the deepest level of a set of recursively nested data spaces i.e. 
data spaces containing points which represent data spaces at the next deeper level of 
recursion. 

For example, conventional relational n-tuples can be represented as points in a single, n- 
dimensional data space. But if the relation contains a nested attribute, then the discriminator 
which distinguishes between instances of the nested attribute is the index key to the data 
space of nested attribute instances. This observation has been the basis of our long-standing 
hypothesis that an indexing system could be developed of sufficiently wide applicability to 
deserve being called generic. It has been the prime motivation for our attempts to develop a 
multi-dimensional index technique based on the following principles: 

1.  the index should be fully dynamic i.e. performance should not degrade with time; 
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performance should be fully independent of the data distribution; 

the exact-match access path length, and times for single insertion, update and deletion 
should be at worst logarithmic in the size of the data set; 

there should be a guaranteed fixed minimum in the ratio of the size of the data set to the 
size of the memory needed to store it; 

there should be a fixed ratio between the maximum size of the index and the size of the 
data set (and this ratio should be e< 1); 

the index should represent a recursive partitioning of the data space (and not a recursive 
partitioning of the points in the space); 

the partitions should be regular binary partitions of the domains of the data space; 

the partitioning scheme should allow one partition region of the data space to enclose 
another; 

the representation of the partitioning scheme should allow variable-length, binary keys; 

10. the index keys should be generated dynamically. 

The first five of these principles are satisfied by a B*-tree. Although it has never been 
proved that these principles cannot be satisfied by some data structure other than a tree, no 
such structure has yet been devised (with the possible exception of the hB-tree [7] which, 
strictly speaking, is not a tree, but a directed acyclic graph). So, in practice, we assume that 
these principles dictate that the basic indexing structure should be a ‘grow and post tree’ 
181. 

Principle six is not satisfied by a B-tree, which recursively partitions the points in the data 
space, not the data space itself. This choice may not be immediately obvious, since there 
are simple and effective techniques for mapping an n-dimensional point on to a linear order 
- using, for example, 2 (Morton, or Peano) order [9] . Then an ordinary B-tree can be 
used, and the worst-case characteristics of the B-tree are automatically inherited. There is 
the additional practical advantage that it can be immediately applied in any system which 
supports B-trees. 
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But this approach is too restricted for a generic technology, which must be able to 
efficiently access extended spatial objects as well as points. The rectangular cover of an n- 
dimensional spatial object can always be mapped to a 2n-dimensional point, but 
neighborhood relationships are lost in such a transformation. An alternative approach [9] 
resolves the object cover into a set of subspaces, each represented by a unique (e.g. Peano) 
code. This allows a recursive linear partitioning of these subspaces, in the same way as 
for points in a conventional B-tree. But the method violates principle three because, in 
general, the update of a single object cover requires the update of all its constituent parts. 
This introduces the uncontrollable access and update characteristics we want to avoid. 
(Other well-known methods such as the R-tree and the R+-tree suffer from similar 
problems). 

There are two other major reasons for the decision to partition the data space itself, rather 
than the objects within it. The first is that it is otherwise not possible to contract the 
representation of a sparsely occupied dataspace to a set of occupied subspaces. 
Comparative studies by [5] have clearly shown this to be a very significant factor in the 
efficiency of spatial range queries. 

The second is that, in a data space representation, each of the subspaces in the recursive 
sequence enclosing a point or spatial object can be defined by a key which is a prefix of that 
of the next subspace in the sequence. This is the motivation for principle seven: by 
adopting regular (or strict) binary partitioning of the data space, each subspace can be 
assigned an extremely compact binary key with this prefix property. In fact, a much more 
compact representation than this is possible, since each subspace can be uniquely 
represented by a key which defines it relative to the subspace which encloses it at the next 
higher recursion level. 

It is therefore possible to map the recursive partitioning of the data space to a tree- 
structured index in which: 

(a) index tree level l corresponds to recursion level 1. 

(b) each branch node represents a subspace s, and the set of keys in the node represents 
the set of subspaces into which it is partitioned, relative to s. 

(c) the leaf nodes of the tree represent the subspaces into which the data space is directly 
partitioned. The full key corresponding to any one of these subspaces is formed by 
concatenating the keys of all the subspaces which enclose it along the path from root to 
leaf of the tree. 

If this tree can be made to have the properties of a ‘grow and post’ tree, then it will have 
further valuable properties: 
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(d) the full key defining a leaf node (subspace) does not need to be any longer than is 
necessary .. to differentiate it from the keys of all other leaf nodes. 

(e) when a leaf node overflows and splits, as the tree grows, then the full key of at least 
one of the resulting nodes will grow in length. 

(f) as the tree grows, common key prefixes will be promoted upwards through all levels 
of the tree. 

The choice of regular binary partitions of the domains of the data space results in a 
partitioning scheme very closely related to that of quad-trees [4] . A criticism which has 
often been leveled at quad-trees is that they are not ‘grow and post’ trees, and therefore do 
not have guaranteed logarithmic worst-case access characteristics when mapped to 
secondary storage. But a quad-tree can always be mapped to a binary tree, and a ‘grow and 
post’ tree is a binary tree mapped to an n-ary tree. So it is natural to ask why it is not 
possible to map a quad-tree to a ‘grow and post’ tree? 

In fact, a mapping between a quad-tree and a B-tree has been proposed [lo] . But the 
spatial proximity relationships of the components of the quad-tree are lost in the mapping 
from two dimensions to one. To preserve these relationships, a mapping is needed from a 
quad-tree to a two-dimensional structure with the properties of a ‘grow and post’ tree. The 
problem lies not with the mapping, but in devising the two-dimensional ‘grow and post’ 
tree. Once this problem is solved, it becomes possible to support large-scale, persistent 
quad-trees, and the very large body of computational techniques now associated with them, 
within a generic, multi-dimensional indexing framework. 

The adoption of regular binary partitioning of the data space also brings a particularly 
attractive feature of the quad-tree to the whole supporting framework: the precise 
registration (coincidence) of data space partition boundaries in overlay and spatial join 
operations - notably in GIs (Geographic Information System) applications. This is 
extremely important for the efficient and accurate execution of such operations. And since 
this property is a feature of the whole framework, it applies equally to raster and vector 
representations of spatial data, and conversions between the two. 

It has sometimes been claimed that regular binary partitioning leads to the inclusion of too 
much empty space in the representation of skewed data distributions, particularly in the 
direct representation of extended spatial objects. We have found this not to be the case [ 1 11 

The basic reason for this is that, using a recursive partitioning scheme in a dynamic 
environment, the positions of the partitions at any level are moved very rarely compared to 
those at the level below. They are therefore effectively fixed, and in a dynamic 
environment their position becomes almost arbitrary. What is much more important is 
that, as already emphasized, it is possible to contract the representation to a set of occupied 
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subspaces. It is also important that regular binary partitioning does not necessarily imply a 
strict cyclic order in the choice of dimensioddomain for the partitions. 

A consequence of properties (d) and (e) is that, in contrast to conventional indexing 
methods, the binary key for an indexed object can be generated dynamically during the 
descent of the tree. Its value and length will no longer depend solely on the indexed value 
of the object - it will also depends on its degree of similarity to other objects. When a leaf 
node overflows and splits, the keys of the two resulting nodes will be extended just as far 
as is necessary to differentiate them. 

This incremental approach to index key generation opens the way to the indexing of data 
entities with different structures in the same index. In conventional indexing, it is assumed 
that all the elements in an indexed data set have the same structure. In a relational database, 
this structure is stored in the schema, and is used to interpret the contents of the data 
elements in the corresponding relation. 

New data models, however - specifically nested relational, object-oriented and logic - all 
allow structural variation within the elements of a relation, class or predicate respectively. 
In order to apply conventional indexing techniques to nested relations or objects, their 
structures must be resolved into simpler, fixed structures connected by physical or logical 
links. There is as yet no mechanism for a single index on the whole nested tuple or 
complex object instance. 

However, it is always possible to generate a unique key from a (unique) instance of any 
complex structure, by including the structural information as well as the value information 
in the key. Then property (d) makes it possible to index very complex structures efficiently 
without in general using correspondingly long keys. 

Further, a consequence of property (f) is that, if a set of points or objects in the data space 
generates a set of keys which are all different within the first few bits, then only these very 
short keys need be stored in the index. If, on the other hand, all the keys share a long, 
identical prefix, then this prefix will migrate to a single instance in the root of the index tree. 
Either way, the index representation becomes extremely compact. 

All these properties, however, rest on the assumption that a data structure can be devised 
which complies with the ten principles listed above - which themselves require a solution 
of the n-dimensional B-tree problem. This is why a solution of this problem is such a key 
result. 
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BANG indexing 

The original motivation for this research was to provide symmetric indexing support for 
rules and facts in a deductive database system based on logic [ 121 [ 131 [ 141 } . This proved 
to be a very difficult problem so, following the classical precept, we began by trying to 
solve a simpler problem: the multi-dimensional indexing of fixed-structure tuples. The 
result was the BANG file [ 151 [16] - a Balanced And Nested Grid file. With hindsight, this 
was a misnomer: a BANG index is in fact a balanced tree structure like a B-tree. What 
makes it different from a B-tree, and what it shares with the Grid file [ 171 [ 181 , is that it 
partitions the data space itself, rather than the values within the space i.e. BANG index 
entries are not data values, but encoded representations of subspaces of the data space. 

Apart from the B-tree, the other main source of inspiration for the BANG index design 
was linear hashing [19] . This led to the incorporation of two essential elements: variable 
length and bit-wise extensible index keys, and the dynamic generation of search keys. 

The BANG file represents a set of n-tuples as points in an n-dimensional space. The index 
key associated with each point is a Peano code, generated by interleaving the bits of its n 
attribute values, from most to least significant, cycling through the n dimensions. 
However, the full key is not stored with the tuple. In fact it is not stored at alk it is 
generated dynamically during a tuple search, and during data space partitioning. Further, it 
is rare that the full key is generated: usually only a short prefix is necessary. 

The data pages containing the n-tuples correspond to subspaces of the data space. These 
subspaces are also uniquely identified by Peano codes, generated by a sequence of regular 
binary partitions of the domains of the data space, cycling through the dimensions in the 
same sequence as for the index keys. The Peano code of any subspace is a prefix of the 
index key of every data point which it encloses. 

The index itself is a balanced, multiply-branched tree structure in which every level 
corresponds to a recursive partitioning of the space represented at the level below. Each 
branch node represents a subspace which is defined by a Peano code in the index entry 
which points to it from the index level above (with the exception of the root node, which by 
definition represents the whole data space). Conversely, each index entry within a branch 
node represents a subspace which is enclosed by the subspace represented by the branch 
node itself. 
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Figure 1: BANG indexing 

Because of the regular binary partitioning sequence, the boundaries of partitions never 
intersect-ither within the same index level, or between levels (although they may 
partially or fully coincide). However, there is nothing to prevent the creation of a subspace 
which fully encloses another at the same index level. 

An example of a simple two-level partitioning of a data space, and the BANG index 
structure corresponding to it, is given in figure 1. Note that each index entry consists of 
three components: a pointer to the level below, an integer giving the length of the Peano 
code in bits, and the Peano code itself. Note also that the Peano codes defining subspaces at 
the lower index level are relative to the codes at the level above. In general, the full Peano 
code defining a subspace at index level l is the concatenation of all the Peano codes 
encountered in the direct traversal from the root to level 1. This leads to an extremely 
compact index. (In practice, trailing code bits beyond the penultimate byte boundary are 
repeated at the next lower level, since it is much more efficient to perform code comparison 
and update operations if the alignment of bits in the byte is maintained). 

Exact-match tuple search proceeds downwards from the root in the familiar B-tree manner. 
But within an index node, a bit-wise binary search is made for a Peano code which 
matches the corresponding bits of the search key. The key is dynamically extended during 
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this search: only as many key bits are generated as the length of the longest Peano code 
encountered. Note in the example in figure 1 how only very short keys need to be 
generated to locate the target data node, however long the actual tuple attributes may be. 

Within a data node, tuples are stored in Peano code order. The target tuple can then be 
located by bit-wise binary search, dynamically generating both search and target keys. 
(Alternatively, each tuple can be stored with its full Peano code as an additional attribute). 

It will be seen from figure 1 that there is a potential location ambiguity which arises when 
one subspace encloses another. This ambiguity is, however, simply resolved by always 
choosing the index entry with the longest Peano code which matches the search key: this 
must represent the innermost of any nested subspaces. Figure 1 also demonstrates a 
critically important feature of domain indexing: it is not in general necessary to represent 
the whole data space in the index, if large tracts of the space are empty. In the example of 
figure 1 , some exact-match queries will fail at the root index level. In general, therefore, the 
average path length traversed to answer an exact-match query will be less than the height 
of the index tree. The more highly correlated the data, the greater the advantage of this 
feature compared to the conventional range-based indexing of the B-tree. 

This advantage is reinforced by the extremely compact index - typically 1 %-2% of the size 
of the data set for 1K index and data pages - due to the (on average) very short index 
entries. This leads to high fan-out ratios and hence a shorter index tree height and 
consequent faster access for a given data set. 

But the greatest advantage of all is the multi-dimensional flexibility of this design. It can be 
used in conventional ways as a one-dimensional primary or secondary index, providing a 
smooth upgrade path from B-tree indexing, or it can be used multi-dimensionally when the 
query pattern is unpredictable. Figure 2 shows the results of two sets of two small 
experiments with A BANG index. The middle table shows the number of data pages 
accessed in response to all possible combinations of an exact-matcMpartial-match query 
on an employee relation of three attributes. Identity no distinguishes a tuple uniquely, the 
other two attributes do not. 
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Employee relation: 

1-d: identity no, surname, forename 70,000 tuples 20,000 tuples 
3-d: identity no, surname, forename 675 data pages 7246 data pages 

- - - - -  
- - - - -  
- - - - -  
- - - - -  
- - - - -  
- - - - -  
- - - - -  
- - - - -  - - - - -  
- - - - -  
- - - - -  

I Ratio 5.9 : 1 Ratio 7.3 : 1 

Figure 2: 1-d versus 3-d indexing 

The 1-d column shows the number of accesses when the relation is indexed one- 
dimensionally on the identity no. attribute (which is a unique key). The 3-d column show 
the number of accesses when the relation is indexed multi-dimensionally on all three 
attributes. (the surname and forename attribute values are not unique). Assuming that each 
query is equally probable, the average number of data page accesses per query is shown at 
the bottom of the table. It will be seen that, on average, the single 3-d index is almost six 
times faster than a single 1-d index. The right-hand table shows the experiment repeated 
with a relation of twice the size. The 3-d index is now over seven times faster than the 1-d 
index. This is very good news: the larger the relation, the greater the relative performance 
improvement. In this example, the improvement is approaching an order of magnitude. 

It must be said at once that this is a very crude test, and a number of factors - notably in the 
data distribution - could substantially change the outcome. Nevertheless, the performance 
advantage of the multi-dimensional approach in this example is so great that it is surely 
hard to dismiss. A better testimony is that BANG indexing has been used for several years 
now as the only index method supporting persistent data in the ECLiPSe Common Logic 
Programming System [20], which is now in use by over 300 sites around the world. So 
far, no request has ever been received for an alternative indexing method. 
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At this point the reader may justifiably ask: if multi-dimensional indexing is really so much 
better, why does the B-tree still exist? One answer is that, in order to take full advantage of 
multi-dimensional indexing, practically everything else in the database system must also be 
changed, from the setting up of indexes in the schema definition to the query optimizer 
and the fundamental relational operators - notably joins. There is therefore an enormous 
legacy problem. But the failure of all multi-dimensional indexing methods to date 
(including BANG indexing) to guarantee acceptable worst-case performance characteristics 
must also have been a major contributing factor. This weakness manifests itself in every 
multi-dimensional design in one of two ways: either there is no guaranteed minimum 
occupancy of data and index pages, or there is no guaranteed maximum path length for 
(single) search and update operations. Although this risk may be acceptable in many 
conventional business applications, it is certainly not so in the increasing number of real- 
time, mission-critical applications. 

The BV-tree 

In [6] we showed that this universal problem is a consequence of the basic topological 
properties of a data space, or rather of previous erroneous assumptions about the mapping 
of a recursively partitioned data space to a tree structure. The solution to the problem, 
surprisingly, is an unbalanced rather than a balanced tree. 

Briefly, the problem arises when an index node overflows and splits along a boundary 
which does not coincide with any node boundary at the next lower index (or data) level. 
The choice is then either to choose a different splitting boundary - thereby losing any 
minimum occupancy guarantee for the two resulting nodes; or to force a split along the 
upper level boundary in one or more lower level nodes - which may propagate recursively 
to the bottom of the tree, so that no certain upper limit can be placed on the number of node 
splits resulting from a single update. 

The nature of the problem is illustrated in figure 1. The root node of the two level index in 
figure 1 is created when the original single index node overflows into two nodes X and Y.  
The boundary between the subspaces represented by X and Y is chosen so that the 
occupancy of both nodes is as equal as possible. But it will be seen that this boundary cuts 
through region d at the index level below. In the figure, region d has been assigned to node 
X, with the result that a key search for a point P will fail, since there is no entry 
corresponding to this point in node Y. 

In the original BANG index design [ 151, the problem was side-stepped by backtracking 
up the tree to the next longest entry key (i.e. the next smallest subspace - if such exists) 
matching the search key. However, in the worst case this could involve searching the entire 
index tree. In [16] forced recursive splitting was suggested as a better performance 
compromise, together with algorithms designed to minimize its worst effects. The 
maximum number of resulting split nodes in the worst case could then be exactly 
predicted, but the price for this was the loss of the minimum node occupancy guarantee. A 
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careful examination will reveal the same trade-off in every other multi-dimensional index 
design. 

The solution offered in [6] to this impasse is not in itself an index method, but a general 
result concerning the representation of a recursively partitioned data space by a tree 
structure. The basic idea is very simple: instead of forcing a node to split, promote it to the 
index level above. At first sight this may seem illogical, since it destroys the one-to-one 
correspondence between the levels of recursive data space partitioning and the levels of the 
index tree which represents this partitioning. However, all that it really destroys is the 
prejudice that such a static correspondence is necessary. 

Instead, the correspondence is reconstructed dynamically, while traversing the tree 
structure. By promoting a node instead of splitting it, its index entry is moved to the root of 
the subtree which contains the pointers to the two nodes which would otherwise contain the 
split node entries. Thus any index tree search which visits this subtree root can then pick up 
the promoted entry - if the search key matches - and follow one of these pointers back 
down to the next lower index level. The entry is then included in the set of index entries to 
be searched at this level, exactly as if it had been split rather than promoted. 

The result, as illustrated in figure 3, may seem paradoxical: an unbalanced tree (a BV-tree) 
with the operational properties of a balanced tree. But this is simply because all search and 
update operations are effectively carried out on a balanced tree reconstituted from the 
unbalanced tree. In figure 3 the subspace boundaries are deliberately chosen to be randomly 
shaped, to emphasize that this is a general technique, not a specific index method. A more 
detailed account is given in [6] , but the main point is that the structure makes it possible to 
combine a minimum node occupancy guarantee with guaranteed maximum search and 
update path lengths. 
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Figure 3: The BV-tree 

The worst-case node occupancy is 33% for the BV-tree, compared to 50% for the B-tree, 
but this is the maximum which is topologically possible in more than one dimension. In 
practice, as with the B-tree, the worst case can always be improved upon by redistributing 
the contents of nodes whose occupancy levels fall below some arbitrary value. The average 
occupancy is the same as that of the B-tree i.e. around 69%. 

The number of nodes visited in an exact-match search, and the maximum number of nodes 
split as the result of a single update, is logarithmic in the size of the data set, as in a B-tree. 
The number of nodes visited during a single update can however be greater than 
logarithmic: in the worst case it is h(h+l)/2, where h is the maximum height of the tree. 

[N.B. This case was overlooked in [6],  where it was claimed that updates can always be 
performed in logarithmic time. This is indeed true except in one case, which arises when a 
promoted node overflows, and when one of the resulting split nodes can be demoted. The 
demotion must be carried out immediately, in order to maintain the dynamic behavior of 
the tree. We believe - although have not proved - that this, like the 33% minimum page 
occupancy, is a topological inevitability. In practice, this will be such a rare occurrence that 
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the average update time will hardly deviate from logarithmic. More important, the worst- 
case update time remains entirely predictable]. 

It is also possible that, if a fixed page size is used, the height of the index tree may be 
greater than that of the equivalent balanced tree (see [6] for an analysis). This tendency 
may however be more than compensated by the fact that the average path length for an 
exact-match search in domain-based indexing is less than the height of the tree. 

So if we are to judge the acceptability of multi-dimensional indexing by comparison with 
the worst-case characteristics of one-dimensional B-tree indexing, there is clearly now very 
little difference between them. The important point is that multi-dimensional indexing can 
now safely support mission-critical applications with absolutely predictable worst-case 
performance. Best of all, there is no price to pay for the extra flexibility and average 
performance which multi-dimensional indexing gives. 

A BANG representation of a BV-tree 

We have so far made the implicit assumption that the general properties of the BV-tree can 
be implemented in a specific index representation. And if we are to achieve our ultimate 
goal of an indexing technology which satisfies all the principles and properties listed above, 
we also have to combine this implementation with all the principles applied in BANG 
indexing. So the question remains: can such a design be implemented efficiently? 

There is not space here to set out the full details, but we hope to show enough to 
demonstrate that it is possible to build an implementation which is both efficient and 
elegant, with relatively low software complexity. The appendix contains the pseudo-pascal 
code for a procedure to perform a key-search within an index node of a BANG index 
representation of a BV-tree. Figure 4 illustrates both the modified form of a BANG index 
node, and the key-search operation on it. The contents of the ten index entries are set out 
vertically rather than horizontally as in figure 1, but otherwise the only difference in their 
structure is the addition of the partition level of the entry. This is the index level at which 
the entry was originally created, counting the index leaf node level as level 0. The index 
node shown is located at level 2, since the highest partition level shown is 2, but the node 
also contains two entries promoted from level 1, and one entry promoted from level 0. (In 
figure 2, the equivalent would be the promotion of the entry for subspace d from node X at 
level 0 to the root node at level 1). We frequently refer to promoted entries as guards. 

Before the tree search begins, an array is initialized, which we call the guard set, having 
one element for each partition level of the tree, such that array element I corresponds to 
partition level 1. Each element consists of a record of two fields: the relative length of an 
index entry key (i.e. the length relative to the page in which it lies); and the pointer 
associated with that index entry. The array is used to hold this information on the longest 
entry key of each partition level so far encountered in the traversal of the tree. 
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Partition level: 
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Pointer: 

r Key: 

Searchkey: ~ 
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Iteration 
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4 

Vertical boxes show page entries. 

represents a zero-length entry key. 

Horizontal boxes (shaded) show search range for current iteration. 

Heavy vertical boxes show set of entry keys matching search key. 

Figure 4: Key search in a BANG implementation of a BV-tree 

Regardless of their promotion level, index entries are stored in lexical order of their entry 
keys, so that the longest key matching the search key can be found by bit-wise binary 
search of the index node (entry 7 in figure 4). The range of each iteration of this binary 
search is shown by the shaded horizontal bars in figure 4, and it will be seen that the next 
matching prefix of the search key is always the first entry in the range. At each iteration, the 
relative key length of this entry is compared with the length stored in the array element 
corresponding to the same partition level. If the new entry is the longer, its length and 
associated pointer are stored in this array element, overwriting its previous contents. 

When the binary search within a node at index level 1 is complete, the next node to be 
searched is that pointed to by array element 1. Note that array element I may at this stage 
simply hold the key length and pointer of the longest matching entry in the node just 
searched at level 1, or it may hold values carried down from a promoted entry at level ( I+ ] )  
- if this entry has a longer key. And such an entry may also have been carried down from 
higher levels in the course of the tree search. 
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An example 

The effect of this simple algorithm is to reconstitute a balanced tree by moving the relevant 
promoted entries back to the index level at which they were created. As an example, 
consider a search for the point marked + in figure 3. At the root index level (level 2) entries 
a*, b' and a' represent the smallest subspaces enclosing the target point at each partition 
level, so the lengths of these entries and their associated pointers are stored in the guard set. 
We then follow the pointer in element 2 of the guard set down to the next index level. Here 
the only matching entry is a'. But there already exists in array element 1 of the guard set 
another entry - b' - carried down from the level above, and which plainly encloses the 
target point more closely than a' i.e. in a BANG representation, it has a longer key. 

So we now follow the pointer associated with b'. Note that this causes the tree traversal to 
effectively backtrack up the tree and down another branch, although no previously visited 
nodes are revisited. Finally, we see that there are no matching entries at level 0 in the node 
pointed to by b', so we pick up the existing pointer in array element 0, which is the pointer 
from entry a' carried down from the root. Thus a second 'virtual backtrack' occurs. Note 
however that the total number of nodes actually visited is equal to the maximum direct path 
length from root to leaf of the tree. This is true for all exact-match search paths in a BV- 
tree, thus guaranteeing its logarithmic search behavior. 

Of course, the complete search and update code is considerably longer and more complex 
than that shown in the appendix, but the tree traversal and dynamic tree reconstruction 
techniques shown recur throughout. 

Conclusion 

We can now reasonably claim to have fulfilled all the principles and properties laid down in 
our initial list of design requirements. Multi-dimensional indexing really is now a more 
flexible alternative to B-tree indexing. But this is not the end of the matter - it is only the 
beginning. As we began by pointing out, our true objective has not been to find a 
replacement for the B-tree: that is just a spin-off. The main aim has been to develop a basis 
for a new generic indexing technology which is capable of supporting much more 
generalized data types than those of conventional business applications, and in a scalable 
way for large applications. We are confident that, with the technology which we have 
assembled above, we can now develop this generalized support. But it is clear that there is a 
lot of research still to be done, and whole new areas to be investigated. 
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Appendix 

procedure search-index-page(page, bottom, top, search-key, guard-set, insertion-point) 

{ Initialize the byte offset from the start of the (absolute) search key to the start byte of the 
relative search key i.e. to the byte corresponding to the first key byte of the p age entries 
1 

relative-search-key := search-key + page-level div BYTESIZE 

{ Initialize the bit offset of the start of each entry key in the page, relative to the start of the 
first key byte} 
start-bit-offset := page-level mod BYTESIZE; 

{ Initialize comparison bit number relative to the start of the first byte of each entry key. 
The most significant bit in a byte is numbered as bit 0. 
Initially, the comparison-bit-number is set to one less than that of the actual start 
position, so that any initial entries of zero length will be correctly treated } 
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comparison-bit-number := start-bit-offset - 1 ; 

while bottom c= top do begin 

if length(key(page-entry(page, bottom)))=comparison-bit-number-start-bit-offset + 
1 
then begin 

{ 7his is a matching entry i.e. the complete key of the entry matches a pre@ of the 
insertion key. Note that there may be several matching entries with identical keys, 
provided that they difier in their index node level. 

Note also that the presence of a guard of node level I-x in a page of node level 1 
does not imply that the page must also contain guards of all higher levels I-x+n, 
where 0 < n c x 1 

{ Record the matching entry in the guard set } 
level := index-node-level(page-entry(page, bottom)); 
guard-set.entry [level] := bottom; 
bottom := bottom + 1 

end 
else 

if length(re1ative-search-key) = comparison-bit-number - start-bit-offset + 1 
then { No further matching entries possible: the search key (region) encloses all 
remaining entries in the current search set. 
Note that there must be at least one entry in this set, since this point in the code is 
only reached if there exists at least one entry in the current search set whose key is at 
least one bit longer than the current position of the comparison bit ] 
begin 

insertion-point := bottom; 

page entry table ] 
return 

end 
else begin 

bit} 

{ The insertion point lies immediately before the entry numbered bottom in the 

{ Establish range of entries matching search key as far as the next comparison 

{ Advance comparison bit } 
comparison-bit-number := comparison-bit-number + 1; 

if value(comparison-bit(key(page-entry(page, top)))) = 0 
then begin 
if value(comparison-bit(re1ative-search-key )) = 1 
then bottom := top + 1 { Nofirther matching entries possible } 

comparison bit: the range thus remains unchanged } 
{ else all entries in the current search range must match as far as the current 

end 
else if value(comparison-bit(key(page-entry(page, bottom)))) = 1 
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then begin 
if value(comparison-bit(re1ative-search-key)) = 0 
then top := bottom - 1 { NoJtcrther matching entries possible } 

comparison bit: the range thus remains unchanged } 
{ else all entries in the current search range must match as far as the current 

end 
else begin 

{ Binary search for first entry with current bit set to I .  If this section of code is 
entered, there must be at least two entries in the current search range. This 
follows from the fact that the program execution must drop through the 
preceding code to arrive at this point. This can only occur if the value of the 
comparison bit for the top entry is I ,  and that for the bottom entry is 0. Hence 
these two entries cannot be the same. It also follows that there must be at 
least one entry in the new search range } 
top-limit := top; 
bottom-limit := bottom; 
repeat 

middle := (top-limit + bottom-limit) div 2; 
if comparison-bit(key(page-entry(page, middle))) = 1 
then top-limit := middle - 1 
else bottom-limit := middle + 1 

until top-limit c bottom-limit; { end of binary search } 

{ Reset lower or upper limit of search range: bottom-limit is first entry with 
comparison bit value I ;  top-limit is last entry with comparison bit value 0 )  

if value(comparison-bit(re1ative-search-key)) = 1 
then bottom := bottom-limit 
else top := top-limit 

end { Binary search ...} 
end { Establish range of entries matching search key ... ) 

end { while bottom c= top } 

insertion-point := bottom 

entry table } 
{ The insertion point lies immediately before the entry numbered bottom in the page 

end {procedure search-index-page } 
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Abstract 
There is a growing need within the Air Force for more and better data storage solutions. 
Rome Laboratory, the Air Force’s Center of Excellence for C31 technology, has sponsored 
the development of a number of operational prototypes to deal with this growing problem. 
This paper will briefly summarize the various prototype developments with examples of 
full mil-spec and best commercial practice. These prototypes have successfully operated 
under severe space, airborne and tactical field environments. From a technical perspective 
these prototypes have included rewritable optical media ranging from a 5.25-inch diameter 
format up to the 14-inch diameter disk format. Implementations include an airborne 
sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. 
They include stand-alone peripheral devices to centralized, hierarchical storage management 
systems for distributed data processing applications. 

Introduction 
Command, Control, Communications, Computing, and Intelligence (C4I) is essential to 
the Air Force and, for that matter, to industry as well. C41 systems must effectively store, 
retrieve, and manage massive amounts of digital data. Current Air Force systems range 
from centralized Terabyte and Petabyte storage comprised of large objects (images) to 
distributed heterogeneous databases that contain many small and large objects (open source 
databases). Although technologies for storage, processing, and transmission are rapidly 
advancing to support centralized and distributed database applications, more research is 
needed to handle massive databases efficiently. Over the years, Rome Laboratory has 
nurtured a comprehensive program, developing new storage techniques that meet the 
various demands for data storage and retrieval. This article traces the history of and 
presents an overview of Rome Laboratory’s research in optical disk storage technology. 

The Evolution of Optical Disk Technology 
In the mid-1970s and early 1980s optical storage reached the consumer market. Industry 
giants like RCA and Philips developed and marketed playback devices and large format 
“laser disks” for home movie viewing. While laser disks never generated a large, broad- 
stream consumer market (VCR is still the dominant technology for home movie viewing), 
compact disks (CDs) are now the primary means of distributing and listening to high- 
fidelity music. The introduction of laser diode devices made compact disk systems a viable 
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consumer product. Laser diodes operating within the near-IR. (infrared) spectrum allowed 
1 mm embossed pits to be easily detected. The new laser technology, in combination with 
powerful error detecting and correcting codes, enabled SONY and Philips to introduce the 
first CD audio product a decade ago. 

Better optical media, more powerful laser diodes, and very precise, low-mass optics have 
propelled optical disk technology to a practical, powerful system. The next-generation 
device introduced in the mid- 1980s provided a flexible write-once, read-many (WORM) 
capability. This enabled end-users to record and playback computer data from the same 
drive. 

The third generation optical disk, today’s rewritable systems, offer record, playback, and 
erase capability. These magneto-optical (MO) disks are composed of a rare-earth alloy 
and transition materials, which often include terbium, iron, and cobalt elements. Rome 
Lab’s current development activities are concentrating in using this technology in various 
disk format sizes. 

Optical disk storage is playing a larger role in mass data storage for many military 
applications; particularly, those applications that require reliable operation under harsh 
operational environments. 

Rome Laboratory’s Technology Development Program 

Rome Laboratory has sponsored work since the early 1970s to exploit the benefits of 
optical disk technology. An early prototype used an argon laser to record and playback 
digital data from a 12.5-inch plastic-based optical disk. Further investment led to the 
delivery in 1982 of a large-capacity optical jukebox for satellite imagery storage and 
retrieval applications. The jukebox held 100 write-once, read-many (WORM) disks that 
provided a [ 11 one Terabyte storage capacity. 

In the late 1980s, we transitioned our rewritable optical storage techniques from our 
laboratory environment to the “real world.” This involved building and testing a family of 
high-performance prototypes for operation in working Air Force environments. Three 
advanced development models (ADMs) were built: 1) a 5.25-inch diameter, rewritable 
optical disk system; 2) a 14-inch rewritable optical disk system and 3) deployable optical 
jukebox. 

5.25-inch Optical Disk System Advanced Development Model 
The first Advanced Development Model [2] was designed to operate on board tactical 
fighter aircraft. 
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Some of the key environmental performance parameters included: high and low 
temperature, vibration, mechanical shock, acceleration, altitude, and humidity. The 
recording head, which moves across the disk surface to read and write, is susceptible to 
shock and vibration. It usually consists of a laser diode and various optics. By moving the 
laser diode and the majority of the optical components off the recording head assembly, we 
were able to reduce this mass. By reducing the recording head mass, we enabled faster 
access times and exceptional vibration and shock performance, ensuring reliable in-flight 
operation. 

5.25-inch Optical Disk System Advanced Development Model: 

Storage capacity: 300 megabytes, single-side 
Data transfer rates: 

Max access time: 
Sue: 
Weight: 

5 megabits per second sustained 
10 megabits per second burst 
100 milliseconds (inner to outer radius) 
5.0 inches x 6.5 inches x 10.5 inches 
16 pounds with disk cartridge 

To fully evaluate the design robustness under realistic environmental conditions, we 
conducted an operational flight test on board an F-16 tactical fighter aircraft at Eglin AFB, 
Florida, from June - July 1989. An important Air Force milestone, it represents the first 
rewritable optical disk system to successfully fly on a high-performance aircraft using 
unconstrained flight maneuvers. A second device, provided to NAS A-Goddard Space 
Flight Center and launched on the Space Shuttle Discovery, demonstrated advanced 
robotic concepts. Information describing the robot’s operational environment was stored 
on the optical disk. The rewritable optical disk contributed greatly to the success of the 
NASA experiment. 
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14-inch Optical Disk System Advanced Development Model 
The second ADM was [3] designed to provide larger data storage capacity and faster data 
transfer rates. The equipment operated in tactical environments found in larger aircraft and 
deployable, data processing facilities. 

Digital data was recorded on a 14-inch, rewritable, optical disk. The larger media is a 
double-sided disk that uses a preformatted spiral pilot track to allow continuous tracking 
during write, read, and erase operations. As a result of evaluating several candidate 
approaches, this is the preferred disk construction for operation under severe environmental 
conditions. 
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airborne conditions. The equipment operated through tactical descents, mid-air refuelings, 
60-degree bank turns and touch-and-go landings. No data were corrupted or lost during 
the test, and there were no hardware failures. 

The 14-inch ADM possessed the following features: 
6 gigabytes per side (GB) 
25 megabitdsecond sustained 
50 megabitdsecond burst 

17.5 inches x 23 inches x 24 inches 

Storage capacity: 
Data transfer rates: 

Max access time: 400 milliseconds 
Size: 
Weight: 150 pounds 

Deployable Optical Jukebox 
Based on past successes with optical disk systems for space and airborne applications, we 
have developed a follow-on Advanced Development Model [4]. 
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The Advanced Development Model optical jukebox provides mass data storage and retrieval 
capabilities for ground-based, large data base requirements. This electremechanical jukebox 
stores 10 doublesided rewritable optical disks of 12 gigabytes e&. Under computer control, 
individual optical disks can be located, transported, and inserted into the optical disk drive 
within 10 seconds. A dual picker robotics mechanism enables fast disk access by reducing 
the time required to extract and insert a new disk within the drive. 

The optical jukebox is designed to be modular for quick setup and tear-down times. 
Within 30 minutes, the equipment can be disassembled and packed into five deployment 
cases. Each case is two-man portable. Equipment assembly is completed without special 
tools, personnel, or training. The equipment was shipped on Jan 1996 to Air Force Special 
Operations Command for operational evaluation. 

With the end of the Cold War and the shrinking DoD budget, there is a growing trend to 
rely more heavily on commercial-off-the-shelf (COTS) products to satisfy many of the Air 
Force’s mass storage requirements. 

Dual-Use Optical Disk Technology 
The reliance on dual-use technology has motivated Rome Laboratory’s initiative called 
“High Capacity Optical Jukebox.” Many of the media and drive technologies 
demonstrated under the earlier militarized optical disk program will be transferred to 
commercial implementation. Under this effort, 50 rewritable optical disks and a rewritable 
optical drive will be developed and delivered to Rome Laboratory. Each optical disk can be 
rewritten almost endlessly, thus saving life-cycle media costs. The 14-inch diameter, 
double-sided optical disk can store 10 GB. 

Because the optical disk drive is a modification of a commercial WORM product, we’re 
able to leverage current WORM production lines. The design effort will concentrate on 
developing a multifunction optical drive that can access both WORM and rewritable media. 
The disk access times and data transfer rates will be comparable to the current commercial 
product. One of our objectives is to deliver an optical disk library system that is highly 
leveraged from an existing write-once product. This offers a path toward 
commercialization and lower acquisition and maintenance costs. 

With today’s emphasis on COTS solutions, this approach develops a media and drive 
design that merges well with commercial product plans. This enables both commercial 
and military interests to benefit while sharing costs and risks, shortening the development 
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cycle and saving research and development funds by leveraging an existing commercial 
product. An important goal is to enable the developer to incorporate the technology into a 
next-generation commercial product, thus enabling Air Force access to improved mass 
storage technology. 
When the equipment is delivered in 1997, the rewritable library will be mated with a 
commercial WORM library to provide a 1-Terabyte storage capability. The hybrid (0.5- 
TB WORM and 0.5-TB erasable) optical disk library will become an integral part of the 
Hierarchical Storage Management (HSM) environment aimed at satisfying high- 
performance automated-intelligence data handling and image-exploitation requirements. 

Parallel Optical Disk Operations 
Another Advanced Development Model is our Optical disk-based Redundant Array of 
Inexpensive Disks (0-RAID). 
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The purpose is to determine the feasibility of developing a single, integrated, high- 
performance device capable of combining the benefits of optical disk technology within a 
RAID system. The design is partitioned into three basic elements: the optical disk drives, 
the rewritable media and the electronics controller. The basic 0-RAID design consists of 
multiple optical disk drives operating as a single large optical disk to a host computer 
requesting the data. Optical disk drives are used because of their high reliability, data 
retention capabilities and the ability to remove media for storage. The RAID architecture 
supports increased reliability and accuracy of the data stored. Our initial prototype 
demonstrated a data transfer speed of 8.8 megabytes per second combined with a base 
storage capacity of 6.5 gigabytes provided by 5 parallel optical disk drives. The system 
design is modular and scalable to take advantage of improved optical disk technologies that 
may be available in the future. 

Next-Generation Optical Disk Technology 
While today’s optical disk systems rely on laser diodes operating at 780 nm to record lpm 
spots, using shorter wavelength lasers may increase disk storage. Throughout the world, 
researchers are investigating blue-green laser diodes operating at 460 nm. However, to 
fully exploit the new laser device advantages, new media and recording techniques must be 
developed. ARPA selected Rome Laboratory as Executive Agent for the “Short- 
Wavelength Optical Storage” Technology Reinvestment Project (TRP). The project’s 
primary goal is to develop a 20 GB 5.25-inch optical disk by the year 2000, with access 
times and transfer rates that are at least equivalent to magnetic disk technology. To do this, 
we must resolve several key issues relating to substrate materials, servo, format, mastering 
and substrate processes, recording layers and processes, and read-channel electronics. As 
the Air Force makes greater use of digital images, video, and multimedia products for their 
military applications, we must develop cost-effective, high-density data storage. This 
effort’s goal is to develop and demonstrate prototype high-density, rewritable optical disk 
technology (including media, heads, and drive) and viable manufacturing technology. The 
project has the potential to radically alter the way information is stored and retrieved in 
future military data storage systems. 

Summary 
Optical disk storage technology is playing an increasingly more important role in the Air 
Force’s data storage and management requirements. Rome Laboratory’s role has been to 
advance the state-of-the-art to satisfy the Air Force’s unique operational needs through 
prototype development and operational testing. Our needs cover environments from space 
to airborne to tactical field conditions. Additionally, optical disk technology provides 
inherent advantages in distributed computing environments that require Terabyte and 
Petabyte storage capacities, medium access times and archivability. 
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However, optical disk, along with most secondary storage devices, suffers from storage 
capacity limits imposed by its 2-D planar format. Rome Laboratory is addressing these 
deficiencies by investigating alternative 3-D and 4-D optical memory technologies. These 
new approaches are being presented in a complementary paper. 
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Abstract 

Expecting a high data delivery rate as well as data protection, the Lister Hill National 
Center for Biomedical Communications procured a RAID system to house image files for 
image delivery applications. A study was undertaken to determine the configuration of the 
RAID system that would provide for the fastest retrieval of image files. Average retrieval 
times with single and with concurrent users were measured for several stripe widths and 
several numbers of disks for RAID levels 0,0+1 and 5. These are compared to each other 
and to average retrieval times for non-RAID configurations of the same hardware. 
Although the study in ongoing, a few conclusions have emerged regarding the tradeoffs 
among the different configurations with respect to file retrieval speed and cost. 

Rationale and goals 

The Lister Hill National Center for Biomedical Communications, a research and 
development division of the National Library of Medicine, procured a Sun 
SPARCstorage Array (SSA), model 101, to house image files for prototype image 
delivery applications. The SSA model 101 is configured with eighteen Seagate 
ST31200W 1.05 GB disks connected to six internal fast wide SCSI busses. The SSA is 
connected to a Sun SPARCstation 20 via a Fiber Channel port. SPARCstorage Volume 
Manager software supports use of the SSA as independent volumes or as: 

RAID 0: Data is split into equal sized blocks, or stripes, and distributed among the 

RAID 1: All data in a volume are duplicated on the mirror volume. 
RAID 0+1: Both the original volume and the mirror volume are striped. 
RAID 5: In addition to data blocks, RAID Level 5 includes parity blocks, which 

are distributed among the disks in the RAID volume [ 1,2]. 

disks in the RAID volume. 

The specifications of the Seagate disks [3] in the SSA cite a data transfer rate of 3.3 to 5.9 
MB/sec. The fast wide SCSI interface has a data transfer rate of 20 MB/sec, and the Fiber 
Channel connector has a data transfer rate of 25 to 50 MB/sec. Those specifications the 
following statements from a technical white paper led us to expect very high data retrieval 
rates in addition to the data security available from RAID. 
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“Each of the disks in a stripe are generally assumed to be on their own 
independent data channel, allowing the transfer r a 0 implementation 
to approach the sum of the transfer rates of each of the drives.” [4] 

“ Both SPARCstorage Array models ... are capable of over 2000 two-KB input- 
output operations per second, and sustained transfer rates exceeding 15 
MB/second.” [4] 

One goal of the study was to determine the optimum configuration and stripe width for 
fast retrieval of a variety of file sizes. Documentation from Sun [5] and other sources [ 11 
mention the importance of “tuning” the RAID to the data and application through choices 
in FUID level and stripe width. Yet the guidelines for selecting these, especially for 
selecting stripe width, are general. One suggestion is to set the stripe width to be the 
length of a disk track. However, although the specifications of the Seagate drives in the 
SSA state that the average is 84 sectors per track, one can deduce from those 
specifications that the track length varies from about 72 sectors per track to about 127 
sectors per track. Another suggestion is to select the stripe width such that the stripe 
width times the number of disks exactly matches the size of the UO requests at the 
application layer. However, the SSA is intended for use with applications that read entire 
files of a variety of sizes into memory at once. 

Another goal of the study was to determine the optimum configuration of the SSA for 
rapid retrieval of files by the Medical Information Retrieval System (MIRS) server 

Figure 1. MIRS File Size Distribution 

Study conditions 

program. MIRS is a clientlserver 
application that provides Internet access 
to biomedical databases, including X-ray 
medical images [6]. The SSA stores 
lower resolution gif format versions of 
high resolution digitized X-ray images. 
One goal is to quickly display several of 
the lower resolution images that match a 
patron’s search criteria. The application 
reads appropriate images into server 
memory where they are concatenated 
and transmitted to the client as one file. 
The distribution of MIRS image file 
sizes is shown in Figure 1. 

Six of the eighteen disks in the SSA, each attached to a separate SCSI bus, were used for 
the study. We measured performance of the RAID subsystem alone by removing such 

g from cache or swap space, and heavy system loads. The study measured 
the average time to read files from the SSA into system memory. The study concentrated 
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on measuring retrieval times for a single process reading files sequentially, and retrieval 
times for multiple processes reading files concurrently, v 
configurations and stripe widths. 

Preliminary study 

In the first study we assumed that retrieval time for sequential reads was based on two 
performance components, Average Positioning Time and Data Transfer Rate [7], and 
attempted to determine these two performance indicators for the various configurations. 
This was done by measuring the average retrieval time for various file sizes and 
performing linear regression of average retrieval time as a function of file size. Two 
results of the linear regression are intercept, which translates to Average Positioning 
Time, and slope. The units of slope are seconds per byte, so the inverse of slope is the 
Data Transfer Rate in bytes per second. 

To measure retrieval time for concurrent reads, the average retrieval time for a mix of file 
sizes was measured while none to several other processes were also retrieving files of the 
same mix of file sizes. In this case, linear regression was performed on average retrieval 
time as a function of the number of concurrent processes. The calculated slope of the 
linear relationship is the Average Additional retrieval Time per File per additional 
concurrent Process. Average Additional Time per File per Process is our performance 
indicator for concurrent processes. 

The three performance indicators were measured for several configurations of the six 
disks in the SSA for two ranges of files sizes. The smaller range, from 50 KB to 275 KB 
was similar to the range of files used by M I R S .  The larger range, from 1 MB to 12.5 MB, 
was used to determine if the optimum configuration depended on file size. 

For most RAID configurations that were measured, narrower stripes yielded larger data 
transfer rates for sequential reads for both small and large files. Wider stripes resulted in 
lower data transfer rates for sequential reads, but also less additional retrieval time per file 
per concurrent process. The generalization holds for the case where the six drives are 
configured as independent non-RAID, or “simple”, volumes. A simple volume can be 
considered as a volume with one very wide stripe. As simple volumes, the six drives had 
the lowest data transfer rate and the lowest additional time per file per concurrent process. 
The results suggest there is a tradeoff between optimizing for sequential reads and 
optimizing for concurrent reads. 

We also found that stripe widths less than 16 KB gave results similar to 16 KB, and stripe 
widths greater than 160 KB gave results similar to 160 KB. Between these two widths the 
changes in data transfer rate and average additional time per file per process appeared to 
be a monotone decreasing function of stripe width. 

The maximum system throughput measured was 8.2 MB per second, which occurred with 
8 processes concurrently retrieving unique files with an average size of 6.42 MB. When 6 
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processes retrieved files with an average size of 123 KB, the system throughput was 3.9 
MB per second, the maximum measured for the smaller file sizes. These were both 
achieved by distributing files between two 3-disk RAID 0 volumes with a 160 KB stripe. 

There were large differences in Average Positioning Time and Data Transfer Rate 
between the data from the small and large files sizes for a given RAID configuration. For 
a 6-disk RAID 0 volume and the larger files, the calculated Data Transfer Rate ranged 
from 5.6 MB per second to 8.3 MB per second. For the smaller files, the calculated Data 
Transfer Rate ranged from 3.1 MB per second to 4.8 MB per second. For both sizes, Data 
Transfer Rate decreased with increasing stripe width. Average Positioning Time also 
varied by several hundred percent, but did not appear to be a function of configuration or 
stripe width. We concluded that the combined effect of.zone bit recording [8,9] and data 
striping disallowed a simple linear relationship between file size and retrieval time. 

Procedures for successive studies 

With knowledge gained from the initial study, we modified our performance indicators 
and proceeded to study the SSA performance for file sizes in the range of the MIRS data, 
knowing that conclusions would include a caveat about file size. The performance 
indicators became the Average Retrieval Time and, again, the Average Additional Time 
per File per Process. Average Retrieval Time is the average time to read a file into 
memory as measured from a single process sequentially reading files of all sizes. Average 
Additional Time per File per Process is the same as for the preliminary study. 

A typical test set consisted of the following steps: 

1. Create a volume or volumes in the configuration to be measured. 

2. Fill the volume(s) with files in ten sizes from 50 KB to 275 KB. Use an equal 
number of files of each size, for an average file size of 162.5 KB. To minimize the 
effect of zone bit recording, distribute files of each size over all portions of the 
volume. 

3. Create one randomized list of all files on the volume(s). Create twelve 
randomized lists, each containing approximately one twelfth of the files on the 
volume(s) and an equal number of each file size. 

4. To determine Average Retrieval Time, a program sequentially reads every file 
in the one large randomized list into memory, measuring the time required to open 
the file and read in into memory. When all of the files are read, the program 
calculates the mean retrieval time, standard deviation, maximum and minimum. 
The sample size, calculated statistics and time of day are recorded in an output 
file. The program is run several times for a total sample size of several thousand. 
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5. To determine Average Additional Time per File per Process, a program reads 
all of the files from the first small randomized list onto memory, measuring the 
time to read each file. Then two programs run concurrently, each reading files 
from a different small randomized list. Then three programs run concurrently, 
each reading a different list of files, and so forth up to twelve programs. The same 
statistics described above are recorded by each program in an output file. The 
series is run several times for a total sample size of several hundred for each case. 

Average Retrieval Time is the grand average of all the runs using the one large list of 
files. Average Additional Time per File per Process is determined by first calculating the 
grand average retrieval time for each case of concurrence, then performing a linear 
regression of average retrieval time as a function of the number of concurrent processes. 
The slope of the line returned by the regression is the Average Additional Time per File 
per Process. 

Results 

Using the procedures outlined above, we obtained the two performance indicators for the 
following configurations: 

Three simple volumes 
Six simple volumes 
RAID 0 volumes with 4,5 and 6 disks 
Two 3-disk RAID 0 volumes 
RAID 5 volume with 6 drives 
RAID 0+1 volume with 6 drives (3 drives, mirrored) 

Because of the information obtained in the preliminary study, we used only two stripe 
widths for the RAID configurations tested: 16 KB and 160 KB. 

Figures 2 and 3 compare the results from RAID 0 volumes with 4, 5 or 6 disks. Average 
Retrieval Time is smaller for the narrow stripe width and also for fewer disks in the 
volume. Conversely, Average Additional Time per File per Process is smaller for the 
wider stripe width and for more disks in the volume. Again we see a potential tradeoff 
between optimizing for a single process and optimizing for concurrent processes. 

Figures 4 and 5 compare the results from three configurations using six disks. Although 
two of these are RAID, none offer fault tolerance. The tradeoff between narrow and wide 
stripe width is still evident. Although either of the RAID configurations is faster for 
single processes, configuring the six disks as simple volumes is better for concurrent 
processes. 

Figures 6 and 7 compare the results for the two configurations of six disks that offer fault 
tolerance to the results for six disks as simple volumes. The mirrored, striped volume 
(RAID 0+1) offers speed comparable to simple volumes plus the security of data 
redundancy, at the cost of requiring twice as much media. 
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The maximum system throughput achieved during these tests was 4.3 MB per second, 
which is less than the specified maximum transfer rate of a single drive. That occurred for 
the RAID 0+1 configuration with 160 KB stripes, with 12 concurrent processes retrieving 
files with an average file size of 162.5 KB. Evidently, for files of this size the combined 
latencies of disk drive, SCSI and Fiber Channel interfaces and operating system overhead 
are great enough to counterbalance increased data transmission rates. 

Configuration selection 

Even if it is anticipated that access to the dataset will always be sequential reads by a 
single process, the choice of configuration may not be trivial. If fast retrieval is needed at 
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any cost, RAID 0+1 provides the fastest sequential retrieval times, excellent concurrent 
performance and the security of mirrored data. If cost is a consideration and some fault 
tolerance is required, RAID 5 is the only choice, even though it is not among the best 
performers for either sequential or concurrent retrieval. If cost is a consideration and fault 
tolerance is not, distributing the dataset across 4-disk RAID 0 volumes is a good choice. 
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configuration of the 
array yields about the same retrieval time. For applications that retrieve several files at a 
time, concurrent access improves total retrieval time more than any RAID configuration. 
This is illustrated by comparing the slowest concurrent access case, RAID 5, to the fastest 
sequential access case, RAID 0+1. However, the difference between the best and worst 
configuration for either kind of access is less than 1.2 seconds for up to ten files, which 
may be inconsequential for many applications. 

Figure 8. Total Retrieval Time of Average Size Files 

What about “Bang” and “Bucks”? 

We define: 
Bang = Average file size / 

(Average Retrieval Time + Average Additional Time per File per Process) 

Bang increases with improvement in either of the performance indicators, and gives equal 
weight to each. The average file size in the numerator balances the larger performance 
indicators that would result from larger files. This definition of Bang is only useful for 
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quantifying file retrieval speed. It provides no information regarding write speed, or 
security or system reliability, which are less easily quantified. Table I shows Bang 
calculated for the configurations in this study, in order of decreasing value of Bang. The 
average file size for the study was 162.5 KB. 

Table I: Bang for several configurations 

Configuration 

6-disk RAID 0 

two 3-disk RAID Os 

6 simple volumes 

f 6-disk RAID 0 16KB .113 .048 1.009 
u - 
i 4-disk RAID 0 1 160KB .114 I .048 1.003 

The price for the SSA model 101 with 18 1.05 Gbyte disks, and SBUS to Fiber Channel 
host adapter was $26,733. The same hardware capabilities without the RAID 
management features would have been approximately $20,000. Each disk provides 
approximately 863 MB of space for user data, whether formatted as a simple volume or 
as part of a RAID volume. Thus 18 disks offer a total of 15.534 GBytes of data storage 
when configured as simple volumes or as RAID 0, 12.945 GBytes when configured in 6- 
disk RAID 5 volumes, or 7.767 GBytes when configured in 3-disk RAID 0+1 volumes. 
Table IT shows the calculated Bang per Buck per Gbyte of data storage, for four 
configurations of the SSA or of the equivalent hardware. 
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Table II: Bang per Buck per Gigabyte 

3-disk RAID 0+1 

6-disk RAID 5 

6-disk RAID 0 

simple volumes 

Bang Thousands of $ per Gbyte 
of data storage 

Bang / K$ / GB 

1.152 3.442 0.335 

0.967 2.065 0.468 

1.098 1.721 0.638 

1.055 1.545 0.683 

Summary and conclusions 

For retrieval of files of a few hundred KB or less, Bang alone is not worth the Bucks. 
RAID offers many other attractive features, such as fault tolerance, ease of storage 
management, and, in many cases, a compact, well designed peripheral. If the subsystem is 
just one component of a large system, the extra cost of RAID may be worth these 
conveniences alone. 

For the MIRS application, where a set of files between 50 KB to 275 KB must reside in 
fault tolerant storage that maintains the retrieval speeds that are available from hardware 
alone, there is no choice but RAID 0+1, even though it is expensive. RAID 0+1 is also 
the choice if fast retrieval is of primary importance and cost is not. Although narrow 
stripes produce slightly faster sequential retrieval times and wide stripes produce slightly 
faster concurrent retrieval times, the performance difference between wide and narrow 
stripes for this range of file sizes is so small that any choice would be acceptable. We 
recommend that the database of lower resolution MIRS images reside on a RAID 0+1 
volume with a 16 KB stripe width. Because the MIRS application software reads images 
sequentially, the narrow stripe should give slightly faster retrieval times. 

For applications where fault tolerance is required, and retrieval speeds can be slower than 
those available from hardware alone, RAID 5 is the best choice. For RAID 5, wider 
stripes appear to improve both sequential access speed and concurrent access speed for 
files in this range. 

If either RAID 0+1 or R A D  5 is selected, retrieval times may be faster for more or fewer 
than six disks per volume. We plan to measure the performance several configurations in 
the next phase of the study. 

For applications where fault tolerance is not important and funds are limited, balancing 
the load across several volumes without the benefit of RAID management can yield fast 
retrieval speeds at significant cost savings. 
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We find no reasons for choosing RAID 0 for applications involving small ffies. The slight 
performance advantage for sequential file retrieval is offset by the cost of the RAID 
management capabilities and the reliability risk incurred by distributing each file across 
several disks. 
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Abstract 

Approximately 3 years ago we implemented an archive file storage system which 
embodies experiences gained over more than 25 years of using and writing file storage 
systems. It is the third in-house system that we have written, and all three systems have 
been adopted by other institutions. 

This paper discusses the requirements for long-term data storage in a university 
environment, and describes how our present system is designed to meet these 
requirements indefinitely. Particular emphasis is laid on experiences from past systems, 
and their influence on current system design. We also look at the influence of the IEEE- 
MSS standard. 

We currently have the system operating in 5 UK universities. The system operates in a 
multi-server environment, and is currently operational with UNIX (SunOS4, Solaris2, 
SGI-IRIX, HP-UX), NetWare3 and NetWare4. PCs logged on to NetWare can also 
archive and recover files that live on their hard disks. 

Background 

The earlier part of our experiences has a rather UK-specific flavor. Our 1968-1972 
system had a large in-house element and ran on an English Electric KDF9 system[l]. 
From 1972-1980 we used ICL’s George3 system[2], where the two-level filestorage was 
part of the system. In addition to on-line files, off-line files on half-inch tape were still 
part of the file system. 

Our procurement of a system for the 80s brought us into contact with some of the harsh 
realities of the file systems of the time - particularly so as the decision was to go for the 
then rather new VMKMS. This led to a second in-house system - known rather 
unimaginatively as the Leeds Filestore, and used at the universities of Reading and 
Warwick in the UK, and also University College, Dublin, and the Technical University in 
Braunschweig in West Germany. 

Other UK universities had similar experiences, and so in 1990 a self-appointed working 
group formulated a set of requirements, but failed to find a product that met them. 
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The major points were: 
Files can be sent to the archive from any of the participating file systems on the 
campus. 

* Recoverjr of a file can be onto any system, not necessarily the originating system. 
9 The retention of indexing information is done by the system. 
0 It should be easy for an end-user to rename files. 
0 The overheads per file must be very small, as many of the files are themselves small. 

The system should be able to exploit new storage technology seamlessly. 
* The system should cope with data for a shifting population of many thousands of 

users. 
Data should be safe. 

0 There should be no reliance on operating system modifications. 

We at Leeds implemented a system to meet the most important of the requirements, one 
of which was that we wished never again to need a new system. The resulting system and 
the experience that led to it form the subject of this paper. Like its predecessor this 
system has never really been given a name, so for now we shall merely call it the LEEDS 
system, claiming the acronym Leeds Ever-lasting Extensible Data S tore. 

The requirement is for something rather less than direct access to MSS volumes from 
applications programs. We need an MSS-type system into which users can consign their 
files for safe keeping. The actual processing of data by end-users will be in the form of 
files in “standard” manufacturers’ operating systems. Most of the helpful concepts from 
IEEE-MSS are actually from version 4. The drift in version 5 seems to be more towards 
end-user or applications programs being aware of the existence of MSS media. 

Lessons from the past 

Identification of users 
Organisations change on timescales which are short compared to the lifetime of data. 
Departments get restructured, and user-names sometimes change, either as a result or 
because of name changes. In the past we have had a hierarchy of user naming based on 
departments (Geroge3), and we have also labelled data on off-line media (tape) with user- 
names. We do neither of these things now, although Novell’s NDS is pushing things in 
the direction of user hierarchy, and eroding the importance of the internal object ID. The 
LEEDS system uses an internal ID for each individual, and there is evidence from 
BrainShareC31 that Novel1 are also moving back in that direction. 

Staging offiles 
With George3 we had a system in which the user need not be aware whether a file was 
on-line; a request to open a file that was not on-line brought it on-line transparently. This 
transparency is actually very visible in the time domain. Users need to be able to stage 
requests for their files ahead of needing them. Armstead and Prahst[4] report the same 
lesson. In our systems since 1980 we have gone to the point of treating staging as the 
norm. Files are not automatically migrated just by referring to them. Where users have 
interactive access to the file system this has proven not to be a problem. 
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Naming Systems 
Not only do organisations change, but the IT equipment changes. Our previous file 
archives were primed with the data from their predecessors. They were of course 
associated with the main frame systems on which they ran. We have now got a system in 
which the archive is a separately identified name-space, and it records from which system 
each file came. Any file can be recovered onto any currently existing system. This neatly 
deals with access to data from systems which no longer exist. 

Keeping Data Forever 
When we abandonned the KDF9 for George3, we transferred only material which seemed 
to be useful - mainly source text of programs and cosmic ray data belonging to our 
physics department. Material such as assembly code (including the system itself) was 
discarded as useless. Some years later, the Science Museum in London looked at the 
possibility of recreating computing of the 60s by emulation. We were asked if we had the 
capability to provide the system software in machine readable form. 
The total disk storage on the KDF9 was 48 Mbytes, and the total file store was about 10 
times that size. The cost of keeping it for ever would now be all but zero. Of course, its 
value would also be zero if it were not indexed in some way. Such is the advance of 
storage technology that it is not cost effective to discard old data if it is held on modern 
media. One copy of all the data from our now discarded VM/CMS system occupies 14 
volumes in our EXB-120, compared to the 1102 half-inch tapes that previously held the 
same data. 

Our philosophy has always been to preserve the data and not the medium onto which it is 
written. Our ambition is for an environment where users need not feel the need to delete 
data just to recover disk space. 

Our present system is already designed to drive multiple robots of potentially different 
technologies, in such a way that data migrates automatically and routinely onto new 
media (see Robotics below). 

Integration with back-up 
We have learnt that there are advantages in system integrity when the archive is 
integrated with the back-up system. This has been the case with all systems up to (but not 
including) the present one. We have also learnt that there is wide-spread and vehement 
disagreement on this issue. 

Size of index information 
We had experience (with George3) of a system in which the amount of index information 
associated with data increased as the data became older. This only became a problem 
after the system had been running for about 6 years. We have thus always been careful to 
avoid indexing by use of structures which have the capability to grow faster than linearly 
with the amount of data in the system. 

F o m t  of off-line media 
Our transfer of data from the VlWCMS archive relied heavily on our knowledge of the 
data format on the tapes. (We wrote and owned the software.) Some UK universities 
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used a bought-in system for which they were unable to obtain specifications of tape 
format, leading to a hiatus at the end of the lives of the CMS systems. The moral is that 
when buying in archive systems, the knowledge of the format of the data on the media 
should be part of the contract. 

Overview of the current LEEDS system 

End-users choose to move their files into the archive, or to recover them from it. The 
archive needs to be made aware (by the system management) of the existence of the 
domain in which the user has an authorised user-ID. It is this authorisation which controls 
access to the system. There is no need for a separate end-user registration for the archive 
(although it could be managed in this way by an installation that had that policy). 

We thus think in terms of an archive server which is aware of a number of client file 
domains. Each of the client file domains is itself a name-space with a number of servers. 
UNM file systems are accessed using NFS, and NetWare clients are accessed using FTP. 
There are no modifications to the operating systems of the client file systems. 

Notification of a request is by placing a small file in a key directory. There is one such 
directory for each client domain. The archiver machine (a SPARC-20) polls these 
directories at regular intervals. Although this mechanism was initially thought to be an 
interim, awaiting a more elegant solution, it has stood the test of time, and we now have 
no plans to change it. Figure 1 gives a simplified schematic diagram of the archiver’s 
position in the k e d s  University installation. There are actually many more servers and 
domains. The section on System Integration below gives more detail. 

Naming and indexing 

The bitfile concept of Mass Storage System Reference Model Version 4 (MSSv4)[5] 
introduces an abstraction which, for us, neatly highlights the media independence of data 
objects (such as users’ files). It is at the heart of our current approach that an ordered 
sequence of contiguous bytes is the basic object of data retention. The bitfile-ID 
associated with it provides the handle by which it can be located on an appropriate 
storage volume, whereas other indexing activity maps a user’s view of the object’s name 
to its bitfile-ID. 
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Logical Network connection 
labelled with protocol 

[bold indicates a path at archive data) 

Hardware connection LUCS-H23 disk volumes 
e.g. SCSI 

Figure I: Schematic diagram of the archiver's position in the Leeds University installation 

The naming convention of Mass Storage System Reference Model Version 5 (MSSv5)[6] 
is based around the all-embracing Storage Object ID (SOID). The SOID concept covers 
the naming of all storage objects, both physical and abstract. The SOIDS are typed, and 
thus the bitfile-ID concept has evolved into one particular type of SOID. The design of 
the LEEDS system is centred on the retention of virtual storage objects, and so continues 
to use the term bitfile-ID for the SOID of a Virtual Storage Object. Figure 2 shows the 
mapping process from end-user's name to data on a storage volume. 

It seems that our preference for centrality of the bitfile concept is shared at CERN[7]. 

User name space 
We next look at the user name space, and the mapping of file names as understood by 
end-users into bitifle-IDS. 

The end-user sees the world in terms of user-names, each of which exists in a particular 
domain. Each user-name on a particular system is seen as having a filestore tree. We find 
that this abstraction fits well with UNIX and with NetWare, and it is clear that some other 
systems can also fit this model. The indexing in the LEEDS archive operates in two 

is a mapping between bitfile-IDs and their corresponding file names as 
the end-user, i.e. a system-name, path-name pair. This mapping can be 

d-user as a browsable file. 
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User’s name I System 1 Path/Name I 

Figure 2: Name mappings 

When a file has been migrated to the archive, it is replaced by a stub (of 120 bytes) which 
contains the bitfile-ID. This stub provides an alternative mapping between the user’s 
view of the filename, and the real file. The stub can be copied or moved around - even 
between systems. It is a normal text file. It can be recreated from the indexing data held 
in the archive. This stub is then used as the argument to the recovery operation in order to 
reverse the migration process (see End-User Operation below). 

System name space 
There are 6 vital flat name-spaces. In terms of the MSSv5 model, each would appear to 
correspond to a particular type of SOH). 

The bitJile-IDS are never re-used. The format is 14 letters - although the magic number 14 
is in a single #define. This gives 26 14 19 (= 6.45~10 ) names with the current format. 

A volume-ID of 8 characters is assigned to each near-line or off-line volume (currently 
8mm helical scan tape). Again the length is in a single #define. 

A media access point (8mm tape drive in the present implementations) is named by a 
single letter of the alphabet. At present the limit to 26 such devices does not seem to 
constrain our ambitions. It is also the same as the “mount point” of MSSv5, as we have 
not covered the distinction between a cartridge and a volume. 

A near-line volume location is an integer, and corresponds somewhat with the notion of 
slot in MSSv5. Each of these integers addresses a slingle “virtual slot” in the Physical 
Volume Library (PVL). Although we currently have only a single media domain, the 
design of the API for driving the robotics (= PVL) provides an abstraction which allows 
for addition of extra domains, of possibly different media types (see Robotics below). A 
volume will have no near-line volume location when it has been removed, but the system 
retains knowledge of its existence, and its contents. 
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Znternal user-ZDs are integers. In practice large institutions like universities already 
assign unique numbers to the individuals with whom they are involved. Each of the five 
user sites has been able to integrate this aspect into its existing system for registration of 
end-users. These integer user-IDs provide the basis for management of ownership and 
access permissions. 

Each client system has a name which is a character string -- often its Up host name, or yp- 
domain name. For each client system we maintain a simple file which maps the end- 
users of that system to the unique user number. Thus an individual may have identities 
on several systems, but have them map to one common archive owner. 

Robotics (Physical Volume RepositoryLibrary) 

The robot driving component of the system is driven through an abstract API in which 
the key system call is for the mounting of the contents of a volume location (i.e. slot) into 
a particular drive (mount poinvmedia access point). The reply to a call of this API routine 
has four possible outcomes. 

1. OK - volume is mounted. 
2. Cannot do it now - should be possible later 
3. This operation is not possible 
4. Hardware malfunction 
A vital part of this API is the possibility of the reply that the requested mount can 

never succeed. This allows our simple naming scheme to work with multiple robots of 
mixed technologies, by building an implementation of the API in which each separate 
robot has associated with it a subset of the drive letters, and a subset of the (PVL) slots. It 
also caters for a robot such as the multiple Panasonic MARC machine in which full 
traverse capability is not available to each robot arm. 

The actual robotic hardware in use in the 5 currently operational installations is from 
Exabyte: 

2 systems with EXB-120 and 4 x EXB8500c drives, 
2 systems with EXB-480 and 3 x EXB8500c drives. 
1 system with EXB-480 and 4 x EXB8500c drives. 

For test purposes, we also have an implementation of the PVR for use with a human 
robot who just loads tapes from a shelf of numbered slots into tape drives following 
instructions displayed on a screen.. 

System Integration 

Each client file domain contains software (the rkv  command) which writes queue entries 
into a directory reserved for the purpose, and each UNIX file system needs to contain a 
special directory which then links to files which are awaiting access by the archiver. 
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The main archive system runs on a dedicated SPARC-20 machine, with 8 Gbyte of disk 
space. The bulk of the disk space is used for cacheing of files in transit. Files newly 
migrated to the archive reside in the cache, and a periodic dump operation writes such 
files to tape. A periodic cache purging operation removes files on an LRU basis. 

A request to recover a file leads to its being recovered from tape into the cache, and it is 
transferred from there to the end-user system. In the event that the bitfile is already in the 
cache, the first stage is omitted. 

The UNIX client file domains export their file systems to the archive machine, and so the 
data is manipulated directly using NFS. The NetWare clients permit read and write to 
their volumes. The FTP access is via a small gateway server which has a dedicated UTP 
ether connection to the archiver. This is the only subnet on which the archive NetWare 
password appears in clear. 

End-User Operation 

A file (or more usually several/many files) is (are) tranferred to the archive by an explicit 
user command (called rkv - chosen so as not to clash with any system’s built-in 
commands, and yet still sounding a bit like the word “archive”). There are three possible 
operations on a file: 

migrate - transfer the file to the archive 
recover - get the file back from the archive 
back-up - copy the file to the archive 

an add-on to the Windows file manager. 
The r kv command is available for both DOS and UNIX environments. There is also 

In addition to the three major operations, there are facilities for recreating stub files, and 
for obtaining directory information. 

System Management 

The system is designed to run with minimal attention. This is normally the case. If the 
network is behaving well, the main operational task is the feeding of blank tapes, and the 
removal of tapes to secure remote storage as a disaster precaution 

There needs to be a regime for updating the maps between user identities on client 
domains and the internal user-ID. The detail of this depends on the site policies. 

Data Integrity 

The tape handling regime ensures at least 2 copies of each bitfile, with the added 
requirement that there must be at least 3 copies if there are no disk copies. 

The bitfiles held on a tape are in order of bitfile-ID, and contain all the bitfiles in the 
range. This means that in order to index the total contents of the volume all we need is to 
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know the starting and ending bitfile-IDS. A separate index for each volume gives the 
block position of each bitfile. The complete set of bitfiles then resides on a set of tapes, 
forming a stream of bitfiles. The 3 copies of each bitfile are obtained by having three 
streams. We replicate the bitfiles themselves, not the volumes on which they reside. 

When a file is migrated into the archive, it is written in duplicate onto different disk 
volumes. The periodic dump to tape extends the shortest of the 3 streams by writing onto 
a fresh tape, or by a complete overwrite of an obsolete tape. When this is complete one 
of the disk copies is deleted. Each bitfile is thus copied to tape 3 times, and only after the 
third time is the remaining disk copy a candidate for cache clearance. The time interval 
between periodic dumps is chosen so as to match the likely usage level. In the event of 
the caches becoming unusually full, an extra dump is run. The data is safe against filling 
of cache residences. 

Obviously the dumping process generates a number of part full volumes. There is a copy 
process (for the most part initiated automatically) which copies multiple input tapes from 
the same stream onto a single output tape. When the output tape is full, it leaves an 
overlap in the stream between the output tape and the incompletely read input tape. A 
subsequent copy operation will then carry on from this point. The live listing of volumes 
in the Leeds University system can be inspected on the Web site. 

An important property of the copying operation is the ability to substitute data from 
another stream in the event that the tape volume that would naturally be used is not 
available in near-line storage. One of the streams is routinely held remotely from the 
main machine room, but its contents can still be copied. Also, when a tape volume fails 
the procedure is merely to remove the offending volume and then instruct the system to 
copy it. 

Operational Experience 

There are currently 26939 user-IDS registered on 18 client domains in the system at 
Leeds University, which is the most mature of the 5 sites. It holds about 2.7 million files, 
with a total size of about 0.5 Tbyte. The system is coded to allow access to files which 
are not held in the robot, and offers a recovery time of about 2 minutes when the queue is 
empty. There is of course automatic batching of multiple requests from the same volume. 

How safe is the data, given that computing hardware malfunctions from time to time? So 
far we have successfully recovered from all mishaps of this nature. This includes: 

accidental loss of the index partition, 
removal of a cache area, 
accidental corruption of the master table of tape locations, 
a very few tape failures - including two which actually snapped. 
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Assessment against design goals 

Files can be sent to the archive from any of the participating file systems on the campus. 
YES and it is open to add a separately managed departmental system, with its namespace 
distinct from the main campus facility. This is to ensure that management errors on the 
client system cannot compromise other people’s data. 

Recovery of a file can be onto any system, not necessarily the originating system. 
YES but not between departmentally managed systems and centrally managed systems, 
for the above reasons of data security. 

The retention of indexing information is done by the system. 
YES 

It should be easy for an end-user to rename files. 
YES but this is true only for stub files. The name recorded in the archive is always the 
name that the file had when it was archived. 

The overheads per file must be very small, as many of the files are themselves small. 
YES - approx. 60 bytes + pathname of the file 

The system should be able to exploit new storage technology seamlessly. 
YES but not well tested. The implementation of human robot and of EXB-480 went 
smoothly. There is a present assumption of reading and writing of blocks on the storage 
medium via the UNIX driver, and also of FSR (forward skip). 

The system should cope with data for a shifting population of many thousands of users. 
YES - there are currently 26939 user-IDS registered on 18 client systems. 

Data should be safe. 
YES - replication and recovery techniques have been used in live situations 

There should be no reliance on operating system modifications. 
YES - The archiver machine in vanilla Solaris2, and all the client systems are also 
unmodified. 

Assessment against IEEE-MSS standard 

Our two major omissions are in relation to virtual storage objects, and PVR cartridges. 

Firstly, our bitfiles are constrained to be a contiguous sequence of bytes, not the multi- 
segmented virtual storage objects of MSSv5. However, in defence we would argue that 
any structure can be mapped onto a contiguous sequence of bytes, and so why stop there. 
One could offer the whole panoply of indexed sequential access - but it would be a 
mistake. 
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Secondly, our volumes are not housed in cartridges. Each volume is only one mountable 
object. This will make the driving of some types of device rather contorted, but not 
impossible. 

Because the design of the API for access to near-line volumes was designed before the 
release of MSSv5, the correspondence to the PVLPVR structure is not quite total. There 
is an identifiable part of our system which is the locator and identifies the volume-ID and 
its slot number. This slot number is then presented to a mount request which is best 
thought of as a request to the PVL. If the drive and slot number in this request are in the 
same PVR, this request will succeed (hardware malfunction permitting). If the drive and 
slot number are not in the same PVR the reply is such as to cause the system to try other 
drives until the operation succeeds. 

Conclusion 

We do not have peta-bytes of data, but we have quite a lot, and it goes back in time. We 
do have a large floating population of users, and the lapse of time means that systems 
come and go. Our techniques enable meaningful long-term data storage, and we have a 
thoroughly operational system running on 5 sites. 

Web Site 

The WWW site gives a potted system description, more historical information, and some 
access to live information on the Leeds University installation. The URL is: 

http://www.leeds.ac.uk/ucs/systems/archive 
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Abstract 

The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) 
has been operational for more than two years. Its mission is to support existing and pre- 
Earth Observing System (EOS) Earth science datasets, facilitate the scientific research, 
and test Earth Observing System Data and Information System (EOSDIS) concepts. 
Over 550,000 files and documents have been archived, and more than six Terabytes have 
been distributed to the scientific community. 

Information about user request and file access patterns, and their impact on system 
loading, is needed to optimize current operations and to plan for hture archives (i.e., 
EOS-AM1). To facilitate the management of daily activities, the GSFC DAAC has 
developed a data base system to track correspondence, requests, ingestion and 
distribution. In addition, several log files which record transactions on Unitree are 
maintained and periodically examined. 

This study identifies some of the users' requests and file access patterns at the GSFC 
DAAC during 1995. The analysis is limited to the subset of orders for which the data 
files are under the control of the Hierarchical Storage Management Unitree. For 
example, orders on pre-mastered CD-ROMs, which account for a substantial proportion 
of the total volume of data distributed, were excluded because they are not managed by 
Unitree. The results show that most of the data volume ordered was for two data 
products. The volume was also mostly made up of level 3 and 4 data and most of the 
volume was distributed on 8mm and 4 mm tapes. In addition, most of the volume 
ordered was for deliveries in North America although there was a significant world-wide 
use. There was a wide range of request sizes in terms of volume and number of files 
ordered. On an average 78.6 files were ordered per request. Using the data managed by 
Unitree, several caching algorithms have been evaluated for both hit rate and the 
overhead ("cost") associated with the movement of data fkom near-line devices to disks. 
The algorithm called LRU/2 bin was found to be the best for this workload, but the STbin 
algorithm also worked well. 

Theodore Johnson is supported by a grant fiom NASA, #lo-77556. 1 

153 



Introduction 

On-line scientific archives are playing an increasingly important role in data-intensive 
research. organization of the data and 
automatically migrate files between near-line and on-line (disk) devices, making data 
more easily accessible. However, building such a large-scale archive can be an expensive 
proposition and system resources need to be carefully managed. To date, there has been 
little published research that studies the performance of on-line scientific archives. 

The EOSDIS archive is expected to have an ingest rate of Terabytes per day when fully 
operational. This data will be available on-line for browse, order, and distribution. 
Careful planning is needed to handle the very large volume of data, the very large number 
of files, and the expected high user demands. Many studies have been made to predict 
archive use, based on surveys of the expected users (for example, see the studies at 
[ESDIS]). However, little empirical evidence has been collected. 

In this paper, we first study some of the user-request patterns and their impact on the on 
the overall system loading. Rather than examining all orders submitted at GSFC DAAC 
in 1995, a subset has been selected that has direct impact on the archive controlled by 
Unitree and the robotic devices. Not all data are stored under Unitree. For example, some 
data was received on 8-mm tape and never ingested into Unitree because of the 
substantial effort required. Orders for these tapes are usually simple tape copies and are 
conducted "off-line" and do not affect Unitree. To satisfy some of the GSFC DAAC 
users, a large farm of disks has been installed where data can be retrieved via anonymous 
ftp. These anonymous ftp orders, off-line orders, as well as CD-ROM requests are not 
used in the analysis. 

There will also be presented an analysis of the GSFC DAAC Oracle data base that 
contains information on the orders and the files requested, as well as the Unitree log files 
that provides some insight on the mounts and stages operations. Based on the statistics 
gathered in the analyses, we discuss issues related to the user request and file access 
patterns, caching, clustering, migration, and system loading. Because the user access 
pattern is related in part to the data set accessed and because of rapidly changing 
technology, we do not claim that all future archives will have experiences similar to that 
of the GSFC DAAC. However, we feel that this study will provide insight into the nature 
of user access to on-line archives. We make comparisons to a previous study of the 
NSSDC NDADS archive (see [Jo95]) to point out similarities and differences. 

Previous Work 

These archives hide the internal physical 

Several studies on the reference patterns to mass storage systems have been published. 
Smith [Sm8 1 d] analyzes file migration patterns in hierarchical storage management 
system. This analysis was used to design several HSM caching algorithms [Sm8lc]. 
Lawrie, Randal, and Burton pRB82) compare the performance of several file caching 
algorithms. Miller and Katz have made two studies on the I/O pattern of supercomputer 
applications. In [MK91], they find that much of the 110 activity in a supercomputer 
system is due to checkpointing, and thus is very bursty. They make the observation that 
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much of the data that is written is never subsequently read, or is only read once. In 
[MK93], they analyze file migration activity. They find a bursty reference pattern, both in 
system load and in references to a file. Additional studies have been made by Jensen and 
Reed [JR91], Strange [Str92], Arnold and Nelson [AN88], Ewing and Peskin [EP82], 
Henderson and Poston [Hp89], Tarshish and Salmon [TS93], and by Thanhardt and 
Harano [TH88]. However, all of these studies apply to supercomputer environments, 
which can be expected to have access patterns different from those of a scientific archive. 

The access patterns to the NASA National Space Science Data Center's on-line archive, 
NDADS, is studied in [Jo95]. However, there are many qualitative and quantitative 
differences between the NDADS archive and the GSFC Version 0 DAAC. We make 
comparisons whenever possible between results in this report and the results of [Jo95]. 

Access and Distribution Methods 

The GSFC DAAC receives data from science projects such as Sea-viewing Wide Field- 
of-view Sensor (SeawiFS), Coastal Zone Color Scanner (CZCS), Total Ozone Mapping 
Spectrometer (TOMS), Pathfinder AVHRR (Advanced Very High Resolution 
Radiometer) Land (PAL), Tiros Operational Spectrometer (TOVS), DAO (Data 
Assimilation Office), and Upper Atmospheric Research Satellite (UARS). These data are 
stored in a Mountain Gate Automated tape library system (RSS-600) using VHS tapes 
and an 1803 Cygnet jukebox using 12" WORM optical media. By submitting requests to 
the HSM (Unitree), the data can be retrieved to disks and made available to users. 

In 1995, there were several ways by which a user could order data. A Graphic User 
Interface (GUI) based on X-windows, allowed a user to browse, select and order 
products. A Character User Interface (ChUI) was also available for users with VTlOO 
terminals, but this interface has more limited capabilities. Orders could also be submitted 
by calling the GSFC DAAC, or by sending a fax, letter or email. 

Orders can be filled by sending the data copied to tape (8-mm7 4-mm, 9 track) to the users 
or by transferring the requested data to a distribution staging area where the user has 
several days to ftp the files to her own machine. A size limit has been placed on the 
volume of data that can be transferred via ftp requests because of limited resources (disk 
space and network). Because of the high overhead associated with the retrieval of small 
files from the tertiary storage system, some specific datasets are also kept on a large f m  
of disks (200 GB) and are accessible via anonymous ftp. Some data sets of high demand 
have also been pre-mastered on CD-ROM for easy and quick distribution. As this study 
is intended to illuminate the nature of on-line access to tertiary-storage based archives, we 
limit the set of requests that we analyze to only those that access Unitree. In particular, 
we exclude requests for pre-mastered CD-ROMs, and accesses to anonymous ftp data, 
and internally generated requests. Internally generated requests includes testing, and do 
not reflect the nature of on-line user access. 

The GSFC Version 0 DAAC uses several avenues to distribute data. There are two types 
of distribution orders: random orders and standing orders. The standing orders are 
requests by users for some or all of the data as it is being received at the DAAC. The 

155 



random orders are interactive requests for data that has been previously archived and is 
available for order. 

Log Files and Databases 

To identifjr some of the characteristics of the requests, we examine the GSFC DAAC 
Oracle data base, which contains information on the files and orders. The requests 
studied are only for external users of the GSFC DAAC and therefore do not include the 
test requests processed in 1995. The time of the requests used in this study corresponds 
to the time when the orders were submitted to the GSFC DAAC and may not be 
correlated with the time for processing and shipping. To analyze some of the system 
load, we examine the Unitree log files. 

Aggregated User Analysis 

In this section, we analyze user requests by aggregating requests according to an 
interesting classification. In particular we are trying to identify some patterns in the 
orders in terms of volume, number of files per request, products, data level, interfaces 
selected, and geographical locations of users. 

In Figure 1,  we aggregate user requests by month and data product. A data product is one 
of the 7 categories: ACFUM, DAO, PAL, CZCS, TOMS, TOVS, and UARS. A given 
data product can have multiple data sets (e.g. one per data level). The analysis shows 
that most data volume is for one or two data products (DAO and Pathfinder AVHRR 
Land (PAL) data). Figure 1 also shows that the volume ordered varies greatly between 
months. The result is consistent with observations of NDADS. Different data products 
have different average file sizes, so reporting volume alone tends to bias our results 
towards favoring data products with large files. For a comparison, we plot the number of 
files ordered each month by data product, in Figure 2. 
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Volume ordered per month, 1995 
volume (Mbytes) 
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Figure 1. User volume ordered aggregated by data product. 

Files ordered per month, 1995 
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Figure 2. Files ordered aggregated by data product. 

Next, we analyze requests according to data level (e.g. Level 1-4). The data that is 
ingested into the archive is in a variety of higher level data sets. Level 1 data is satellite 
data with corrections, while higher level data is binned and aggregated. Because of the 
processing, there is more volume in the lower level products (Ll-2) than in the higher 
level products (L3-4). Figure 3 aggregates user volume by month and data level. As 
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expected most of the volume of requested data is for Level 3 data, and there is a 
substantial interest in Level 4 data. 

Figure 4 aggregates volume ordered by month and by interfxe method. A substantial 
percentage of the total volume requested was from the Character User Interface (ChUI). 
The volume of standing orders is also important. Files that belong to standing orders are 
transferred to a distribution staging area soon after being ingested. This method of 
distribution reduces the load imposed on Unitree because the standing orders files are 
processed before the data is migrated to the near-line devices. 
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Figure 3. User volume ordered aggregated by data level. 
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Volume ordered per month, 1995 (by interface) 
volume (Mbytes) 
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Figure 4. User volume ordered aggregated by interface and month. 

In Figure 5 and Figure 6 ,  we aggregate the volume ordered by interface and by hour of 
the day and day of the week, respectively. The volume ordered shows the typical pattern 
-- most requests are made during normal working hours. These results are consistent with 
observations of N D A D S ,  although more requests are made to N D A D S  during weekends, 
and few requests are made to N D A D S  during early morning hours. 
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Figure 5. User volume ordered aggregated by interface and hour. 
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Volume ordered by day, 1995 (by interface) 
volume (Mbytes) 
700,000 , i 

600,000 

500,000 

400,000 

300,000 

200,000 

100,000 

0 
Sun. Mon. Tues. Wed. Thurs. Fri. Sat. 

day of week 

ChUl 

Other 

GUI 

Email 

Figure 6. User volume ordered aggregated by interface and hour of the day. 

The requested data can be distributed either electronically (via ftp) or on one of several 
different tape media. Figure 7 aggregates user requests by distribution media and by week 
of the year. Most data is distributed by creating 4-MM or 8-MM tapes. There is almost 
no request for 9-track tapes. The volume of ftp requests accounts for only a small portion 
of the data distribution. We should point out that, due to resource constraints (network 
and disk space), a limit has been placed on the volume of data that can be distributed via 
ftp for a given request. 
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Figure 7. User volume ordered aggregated by media of distribution. 
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Finally, we plot the volume of data requested by different regions of the world in Figure 8. 
While most of the request volume came from North America, there is significant world- 
wide use of the DAAC. 

Volume ordered per month, 1995 
volume 
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Figure 8. User volume ordered aggregated by region. 

User Analysis 

In this section, we analyze request size and user activity. The database records for every 
file accessed; the file size, the data set that the file is a member of (a refinement of data 
product), and a unique request ID. From this information, we can reconstruct the size of 
a request. In Figure 9, we plot the volume per request, in Figure 10, we plot the files per 
request. Figure 9 and Figure 10 are plotted on a log scale because of the very large range 
of request sizes. The wide range of request sizes suggests that request servicing should be 
aware of the size of the request and handle it accordingly. 

Data in a data product can be divided into data sets, based on the type of the data (i.e., 
different levels, different sensors, etc.). In Figure 11, we plot the number of data sets 
requested per order. The number of files per request and the number of data sets per 
request are not correlated, as is shown in Figure 12. The average request in 1995 accessed 
78.6 files and 1.6 data sets. These results show that most requests are clustered by the 
data set, with the implication that archive media should store files of a single data set. 
These results are consistent with our study of the NDADS archive. 
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Volume per unique request id, 1995 (sorted) 
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Figure 9. Volume per unique request id. 

Figure 10. Files per unique request id. 
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Data sets per unique request id, 1995 (sorted) 
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Figure 11. Data sets ordered per unique request id. 
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Figure 12. Files vs. data sets in a request. 

We can also aggregate requested files based on the user ID. In Figure 13, we plot the 
number of files requested per unique user, in sorted order, and in Figure 14, we plot the 
volume requested per unique user in 1995. The curve is non-linear even when plotted on 
a logarithmic chart. We found that the top 20 users (of 442) requested 47% of all files 
and 70% of the data volume. We note that top 20 users, rated by files requested, is not the 
same as the top 20 users rated by volume requested. However, the correlation between 
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files requested and volume requested is strong (the intersection between the two top-20 
sets contains 12 members). A scatter plot of volume requested vs. files requested is 
shown in Figure 15. These results are consistent with our study of the NDADS archive. 
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Figure 13. Files per unique user. 

Volume per user in 1995 (sorted) 
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Figure 14. Volume per unique user. 
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Figure 15. Scatter plot of volume ordered and files ordered per user. 

Caching 

When a user requests a file, the file is first searched in the on-line disk space. If the file 
is not located on the cache it is then fetched-from tertiary storage into secondary storage 
and made available to the requester. The file typically has a minimum residency 
requirement to give the requester time to access the file. While the file is disk-resident, 
a second request for the file can be satisfied without fetching the file from tertiary 
storage. These cache hits can reduce the load on the tertiary storage system, and also 
improve response times. Fetching a file from the tertiary storage requires a tape to be 
picked by a robotic device, mounted, the file searched on the tape and then read. All this 
can take minutes before the file is ready to be read. 

The archive systems should have enough disk storage to satisfy the minimum residency 
requirement. However, files referenced within the minimum residency may be deleted if 
the cache runs out of space. In this case, using a FIFO algorithm the oldest files are 
deleted first. The buffer might run out of disk space necessary to satis@ minimum 
residency due to a high request load, or due to a high ingest load (i.e., the ingested files 
must be stored on-line until they can be migrated to tertiary storage). Although the ingest 
load can inte~ere with the cache, we do not consider it in this study. However, the 
relative performance of the algorithms will be the same with or without the ingest load. 

If the cached files are large (an average size of 12.8 Mbytes in this study), then the time 
to transfer referenced files not in the cache can be very long. We compute the cost of 
servicing a reference string to be the weighted sum of the number of cache misses and the 
number of bytes transferred. In these studies, we assumed that transferring 10 Mbytes is 
equal to the cost of a cache miss (The time to load a media is much larger than the 
transfer time, but this cost is amortized over all files loaded from the media). Let cost, be 
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the cost of transferring fileffrom the archive to on-line storage, and let S’ be the size of 
file$ Then, the (normalized) value of cost, is: 

cost, = 1 +Sf / 10 Mbytes 

We can evaluate the benefit of using a cache by looking at the hit rate of the cache, or by 
looking at the cost reduction of the cache. The cost reduction is the reduction of load on 
tertiary storage caused by the cache. More formally, let the reference string (i.e., the 
sequence of requests that pass though the cache) be r=vl,f2, ..., f,J. Let MissfJ have the 
value 1 ifJ; was not in the cache when it was referenced, and 0 if it was in the cache. 
Then, the cost of processing the reference string when using a cache, cost(cache) is: 

cost(cache) = Zfi cost, * MissfJ 

Let cost(tot) be the cost of servicing r when no cache is used (i.e., MissfJ=I for everyfl. 
Then thefiaction of cost saved by using the cache is: 

fraction of cost saved = 1 -cost(cache)/cost(tot) 

A large body of caching literature exists when all cached objects are of the same size. The 
Least Recently Used (LRU) replacement algorithm is widely recognized as having good 
performance in practice. Caching objects of widely varying sizes is somewhat more 
complicated. If one wants to minimize the number of cache misses, then it is much better 
to choose large files than small files for replacement, because removing large files frees 
up more space. Let the set of files in the cache be F. The general scheme is to assign to 
each file f in F a weight, weigh$ and chose for replacement the file with the largest 
weight. Note that many files might need to be replaced on a cache miss. 

The optimal replacement algorithm for variable size objects, with respect to cache misses, 
is the GOPT algorithm [DS78]: For filefEF, let N’be the time until the next reference to 
fand let Sf be the size of$ Set weight, = Nf * Sf, and choose for replacement the file4 in 
F such that weigh+ is the largest. 

The GOPT algorithm cannot be implemented (because it requires knowledge of future 
events), but it can be approximated. The Space-Time Working Set (STWS) algorithm 
[SmSlc] approximates GOPT by substituting Pf the time since the last reference to J ;  for 

While STWS can be implemented, it also requires a great deal of computation. For this 
reason, STWS is often approximated by what we call the STbin algorithm [Mi94]: A file 
is put into a bin based on its size. The files in a bin are sorted in a list using LRU. To 
choose a file for replacement, look at the file at the tail of each bin and compute its 
weight to be Pf * S’ Choose for replacement the file with the largest weight. 

The STbin algorithm does not account for the cost of transferring files, and may 
discriminate too strongly against large files. We examined two algorithms that modify 
the weight function to account for transfer costs. Let cost, be cost incurred if filefmust be 
loaded. The Costbin algorithm computes the weight of file f to be Pf * S’ / cost, , where 
cost, is defined above. Alternatively, we can use a non-linear function. The Alphabin 

Nf: 
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products. 

Recent work in caching algorithms has produced statistical caching algorithms 
[OOW93]. The LRUI2 algorithm chooses for replacement the object whose penultimate 
reference (instead of most recent reference) is the furthest in the past. We adapt LRUI2 to 
file caching by maintaining the bins in the ST-bin algorithm by LRUI2 instead of LRU. 
We call the new algorithm LRW2-bin. 

HSM systems typically use a "watermark" technique to manage their staging disk. When 
the staging disk space utilization exceeds a high watermark, files in the staging area are 
migrated into tertiary storage until the staging disk utilization reaches a low watermark. 
The motivation for the watermark technique is to write back dirty files in a single burst, 
thus improving efficiency by exploiting write locality. The archive that we study contains 
read-only files, so the watermarks should be set has high as possible for maximum 
efficiency. 

The minimum residence period is implemented by partitioning the cache into the regular 
cache and the minimum residence cache. When a file is referenced, it is placed in the 
minimum residency cache, where it remains until the minimum residence period has 
passed. After the minimum residence period, the file is placed in the regular cache, 
Normally, files in the minimum residence cache are not selected for replacement. 
However, if the minimum residence cache size exceeds the total cache size, the oldest 
files in the minimum period cache are chosen for replacement. 

In our caching analysis, we assume a disk block size of 1024 bytes, and set a limit on the 
number of disk blocks that are available for caching. We trigger replacement when 
fetching a new file will cause the space limit to be exceeded, and we remove files until 
the space limit will not be exceeded. For the STbin and LRUI2-bin algorithms, bin i 
holds files that use between 2' and 2"l-l blocks. We set the minimum residency period 
to 1 day. We retrieved from the database a listing of all files requested in 1995*, and 
sorted the list of time of reference to create the reference string for our cache simulators. 
We report both the hit rate and the reduction in cost due to running a aching algorithm 
with a particular cache size. 

We first test the STbin variants. In Figure 16, we plot the cost reduction as we vary a for 
The best setting of a is approximately 112. However, the 

, we compare Costbin against STbin in Figure 
e than STbin, fference is not large. 

Subject to the restrictions listed in Section 1.2 
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Cost reduction vs. alpha (STbin variant) 
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Figure 16. Finding the best value of a for alphabin. 
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Figure 17. Comparison of Costbin to STbin. 

In Figure 18 we plot the fraction of cost saved for the LRU, LRU/2, SUM, and STbin 
algorithms algorithms as we increase the cache size from 5 Gbytes to 60 Gbytes, and in 
Figure 19 we plot the hit rate. The results show that the STbin and the LRU/2-bin 
algorithms are significantly better than LRU, and somewhat better than the SUM 
algorithm. The LRU/2-bin algorithm had somewhat better performance than the STbin 
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algorithm. We note that STbin requires less CPU time for execution than either the 
LRU/2 or the SUM algorithm, and the SUM algorithm requires careful tuning. 

The results show that caching can be effective in reducing the load on the tertiary storage 
device, in spite of the highly random nature of requests to an on-line archive. The GSFC 
Version 0 DAAC currently uses a 60 Gbyte distribution cache. Simulation results 
indicate that this size cache can provide a hit rate and cost savings of about 25%. The 
Unitree logs indicate that the internal Unitree cache (32 Gbyte) had an additional hit rate 
of 15.6%. 
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Figure 18. Cache algorithm comparison (cost reduction). 
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Figure 19. Cache algorithm comparison (hit rate). 
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We ran another experiment to determine the effect of changing the minimum residence 
period. Figure 20 shows the cost reduction of the STbin algorithm as the minimum 
residence period is varied from 10 minutes to 2 days. We varied the cache size between 
10 and 60 Gbytes. Increasing the minimum residence time decreases the cost reduction, 
but the effect is small. 

Hit rate vs. minimum residency (Stbin) 
hit rate 
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Figure 20. Effect of changing the minimum residence time. 

File Access Pattern Analysis 

The success of caching depends upon the file access patterns. In this section we examine 
some aspects of the access patterns. These results also have implications for archive 
design. 

Most files are accessed only a few times, limiting the maximum cache hit rate. Figure 21 
plots distribution of the number of times a file was referenced in 1995. The fact that so 
most files are referenced once limits the performance of statistical caching algorithms, 
such as LRU/2-bin. We note further that only 12% of the 550,000 files in the archive 
were requested during 1995. This result is consistent with observations of the NDADS 
archive. 
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Figure 21. Distribution of the number of references to a file in 1995. 

The effectiveness of caching also depends upon the average time between references to a 
file (the inter-reference time). In Figure 22 we plot the distribution of inter-reference 
times during 1995. To generate this plot, we scanned through all file accesses and 
searched for repeat accesses. Whenever a repeated reference was found, we incremented 
a histogram based on the number of days since the last reference. The plot shows that 
most repeat references occur shortly after an initial access, but that the inter-reference 
time distribution has a long tail. The rise at the end of the tail represents all repeat 
references with an inter-reference time of 186 days or larger. The average number of days 
between an access to a file, given that the file is accessed at least twice in 1995 is 46.1 
days. This result is essentially consistent with observations of the NDADS archive, which 
has an average interreference time of 27.6 days. Both archives show a peak in the inter- 
reference time near 0 days, and at 1 and 2 months after the previous reference. However, 
these characteristics are stronger in the NDADS references. For both archives, the inter- 
reference time distribution has a long tail (i.e., represented by the point at "185+"). 

We found that many of the repeat references are due to the same user requesting a file for 
a second t h e .  This is shown in Figure 23, which plots the fraction of repeat requests that 
are due to the same user, by time since last request. In total, 15.4% of the repeat 
references in 1995 are due to the same user as had submitted the previous reference. By 
contrast, 57% of the repeat references to NDADS are due to the same user. One 
explanation for this difference is that most requests to the GSFC Version 0 DAAC are 
submitted interactively, while most requests to NDADS are submitted by email. Network 
and mailer delays compound archive delays to cause the user to suspect that the request 
has been lost. 
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Figure 22. Distribution of file inter-reference times. The point at "185+" represents the tail of the 
distribution. 
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Figure 23. Fraction of repeat references in which both the current and the previous reference are 
submitted by the same user (binned on inter-reference time). 

The performance of the STbin algorithm and its variants (Alphabin and Costbin) depends 
on the distribution of file sizes. In Figure 24, we plot the file references binned on the 
file sizes. Large files account for a large fiaction of the accesses (the average size of a 
requested file is 12.8 Mbytes). Caching large files can be effective if caching large files is 
likely to result in a cache hit. In Figure 25, we plot the proportion of file references that 
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interaccess time. 

Figure 24. Ordered files binned on file size. 
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Figure 25. Repeat requests and interaccess times binned on file size. 
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products, both of which are stored in large files (an average of 16.5 Mbytes and 55.0 
Mbytes, respectively). 

In Figure 26, we plot the “age” of the files that are referenced (requested). We compute 
this distribution as follows. For every file referenced in the observation period, we 
compute thefile age to be the difference between the reference time and the time that the 
file was archived. We bin the referenced files based on file age in weeks. Because there 
is a dependence between the time of reference and the file age, we plot the file age 
distribution for each quarter of 1995. The peak in the age of the referenced files in all 
four charts corresponds to roughly the same archiving dates (we note that many files were 
rearchived in early 1995). Recently ingested data does not show an unusually high user 
interest. One explanation for this result is that new data is not immediately known to 
most users, and it is only after some advertisement (newsletter, conference, word of 
mouth) that the data may be more frequently requested. This result is consistent with 
observations of the NDADS archive. 
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Figure 26. Distribution of time between file archive and file reference. 

Internal Activity 

We conclude with some observations of the work performed by the archive. In Figure 
27, we plot the number of Unitree media mounts per week, and the average number of 
files transferred per mount (we obtained this data from the Unitree logs). The average 

174 



number of files transferred per mount for all of 1995 is 8.6. Unitree does not distinguish 
between mounts to read or write data. Consequently, the average number of files 
transferred includes both read and write operations. Migrations are executed periodically 
(e.g., one hour) to increase the chance of writing multiple files to the same media. Stage 
operations are performed as soon as the resources are available (e.g., tape drives). It 
would have been interesting to derive the average number of files retrieved for stage 
operations only, and to correlate the stages with the requests. This could have provided 
some insight on how well the stage operations are scheduled and how clustered the files 
requested are on tapes. 

The reader might note that this chart does not correlate well with the results presented in 
Figure 1 through Figure 8. There are two reasons for this discrepancy. First, the data in 
Figure 1 through Figure 8 is based on time an order was requested, not time the order was 
processed or distributed. Request processing might be delayed due to heavy loads, or to 
handle very large requests (e.g., see Figure 9). 

As described in the introduction, we have limited this study to only those orders that are 
filled by "pulling" data from the mass storage system Unitree. However, the entire 
activity for the DAAC is significantly higher (see Figure 28) because of the other 
distribution methods used at GSFC DAAC that are not included in this study (e.g. CD- 
ROM, anonymous Etp, off-line requests). It is interesting to note that the distribution 
volume is much greater than the ingest volume. 

Mounts per week 
files transferred / mount mounts 

60 , 14,000 

3,000 
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Figure 27. Unitree mounts per week and files per mount. 
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Figure 28. Total archive activity, per month. 

Conclusions 

We have presented a study of the external requests made to the GSFC Version 0 
Distributed Active Archive Center. The analysis examined only a subset of all requests 
submitted. In particular orders for CD-ROMs, off-line requests and anonymous ftp are 
excluded because they did not affect the performance of Unitree and the near-line 
devices. A s u m m q  of the results are: 

Most of the volume of the data ordered is concentrated on two of the seven data 
products, and on higher level data. 

Most of user requests (by volume) were submitted via the Character-based User 
Interface (ChUI). 

Most of the volume of data is distributed via tape. 

The requested volume varies greatly between months. 
submitted during normal working hours. 

There is a wide range of request sizes, and some requests are very large (loo+ 
Gbytes). 

Most requests require service from a small number of data sets. 

A small set of hot users account for most of files and volume requested. 

LRU/2-bin is the best file caching algorithm on this workload, STbin also works well. 

The file interreference distribution has a peak at 

Most’ of that volume is 

1 day, and a long tail. 
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Background 

The electronic imaging world has been changing. For over a dozen years, users and 
customers have been the target of presentations providing the incentive to get them to 
buy into the concept of electronic document handling. Initially, these systems 
incorporated the revolutionary 12-inch WORM (write once, read many) optical disks 
that were supposed to replace file cabinets and microfilm repositories. In 1984, it was 
new, it was scary and it was threatening to data processing managers who had long 
been the keepers of the corporate data. Once the technology behind the optical disk 
industry became more familiar, systems hit the marketplace with a variety of shapes, 
sizes, capacities, and characteristics. Choices became confusing and the presentation 
to management changed from “should we buy” to ‘‘m should we buy?” 

Just when laws began to back optical for it’s non-erasability, that very feature was 
seen as an impediment to progress. Buyers were looking for the erasable features to 
allow them to get more long-term usage out of their investment in the systems. 
Instead of replacing file cabinets, they wanted to replace expensive hard drives - and 
WORM media was not a suitable candidate. To meet a growing market demand, 
erasable disks were introduced in 1988-89. 

Early systems, dating back to 1983-84, cost over $1,000,000. Potential users were 
faced with a sticker shock that was tough to argue. There were no components of an 
imaging systems that did not shock a procurement official. The drives, media, 
autoloaders, scanners, monitors, printers - everything! Monitors to display images 
were different from those to display normal data, so high resolution image viewers had 
to be purchased. Expensive scanners were used to digitize the documents because all 
previous image capture functions had been performed with cameras in film-based 
systems. Printers that had been turning out 2-Kilobyte (KB) ASCII reports or word 
processing files, were now being asked to generate high resolution 50-KB document 
ima and user contention were serious matters for these departmental 
workhorses. The first media cost close to $1,000 for 1,000 megabytes (MB) of 
capacity. This industry was a tough one to launch! 
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Meanwhile, the scientific community was developing tapes for customers such as 
NASA, NOAA, and CIA to record digital data. Some of the first high capacity media 
to offer a reasonable price to the digital storage industry was the digital VHS tape 
made by Honeywell. In 1986, when the 12 inch optical boasted a capacity of 2 
gigabytes (GBs), the VHS tape could hold 5.2 GBs. The $35 price for tape compared 
to the disk’s price of $1000 gave Honeywell an impetus to enter the document imaging 
market. They had to create a buffer strategy to change from capturing streaming 
instrumentation data to handling packets of data called images, but once that was 
established, their breakthrough had an extensive impact on other vendors offering tape 
solutions. These vendors included Exabyte, Ampex, Sony, Storage Technology (STK) 
and IBM. The movement of the tape industry to support the document image industry, 
began in late 1989 when groups such as the Tape Head Interface Committee (THIC) 
were exposed to new business opportunities. These groups became instrumental in 
providing a pathway for vendors with systems that offered a higher transfer rate, lower 
per megabyte cost and higher per unit density, to address those areas of the electronic 
document industry where they were best suited. To complete the offering from the 
tape industry, Creo manufactured a drive to record data on a non-erasable reel of 
optical tape from IC1 ImageData. A single 12.5 inch reel holds 1,000 GBs or 1 
terabyte (TB). 

The compact disc (CD), was beginning to enter the market place carrying not only 
published music, but published data. As early as 1986, vendors could demonstrate 
interactive Compact Disc-Read Only Memory discs (CD-ROMs) on $10,000 systems. 
These systems were not ready for the massive consumer market, but they certainly 
could point toward the future. Published reference materials or marketable 
information databases became some of the first to be available on this new media. 
Entire industry consortiums sprung up in support of the 650 MB disc that could be 
duplicated from a master tape for under $5 and sold at a tremendous profit. The next 
logical step in the evolution of the CD was to sell recorders to the public so end users 
could create their own masters. These recording systems were introduced at $15,000 
and are predicted to soon fall under $700. 

The first 12 inch optical platter in 1984, held 1 GB of data. A dozen years later, the 
commercial capacity is 12 GB. Tape formats have also increased. VHS started out at 
5.2 GB and now can store up to 50 GB. The recordable 650 MB CD will not improve 
in data storage capacity until 1998-99 when it is projected to reach 2.6 GB. 

Introduction 

This paper addresses at a high level, the many individual technologies available today 
in the removable storage arena including removable magnetic tapes, magnetic 
floppies, optical disks and optical tape. Tape recorders represented below discuss 
longitudinal, serpentine, longitudinal serpentine, and helical scan technologies. The 
magnetic floppies discussed will be used for personal electronic in-box applications. 
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Optical disks still fill the role for dense lon 
quoted are for native data. In some cases, 2 
images will be referenced. 

Longitudinal Recorders 

The first “industrial strength” tape recorders used longitudinal recorders that moved 
tape in a single pass across stationary heads to read or write the length of the tape. The 
closer the heads are to each other, the denser the recording, Futurists predict reaching 
a 1,000-head recorder. Early longitudinal recorders stored 180 MB on open reel 9- 
track tapes. These were replaced in 1986-87 by 200 IvlB cartridges which could be 
managed in automated libraries. Over 90% of the world’s data centers use the half- 
inch 3480-type tape cartridges. STK has developed and sold over 7,500 circular 
library units, commonly called silos, which can house up to 6,000 cartridges. Using 
the newest 800 ME3 cartridges provides 4.8 TB of robotically-addressable storage. The 
silos have a footprint of 121 square feet and are large enough to allow a technician to 
walk inside to provide necessary service. The drives can transfer data at 52 Megabits 
per second (Mbps). Up to 16 libraries can be linked to offer 76.8 TB of data storage. 
The current generation of the silo, PowderHorn, provides two robotic arms to retrieve 
and load cartridges up to 350 times per hour. 

Serpentine Recorders 

Serpentine recorders write a single track from end to end on the tape and then reverses 
directions to write the second track in the opposite direction. The back and forth 
recording continues until all data is recorded. The quarter inch cartridge (QIC) tape 
format cartridge is 4 inches by 6 inches and stores 13 GB as a result of a cooperative 
effort between Tandberg, IBM and 3M. The data rate has reached 12 Mbps. Vendors 
expect the storage capacity to go to 25 GB by 1997 with the adoption of thin film 
media, 50 GB in 1998-99 using barium ferrite technology and 180-200 GB per tape by 
2000 using multi-channel drives on thin film media. By then, the data rates should be 
close to 56 Mbps. There are currently 8 million QIC drives in use today. In the spring 
of 1996, Tandberg introduced three autoloaders to accommodate 10, 20 or 30 tape 
cartridges. 

The QIC mini-cartridge offers 4 GB in a cartridge which is 2.5 by 3.5 inches. 
Following the same improvement path as the full sized QIC and using multi-channel 
tape and thin film technology, the capacity for this unit should reach 30 GB by 2000 
and the data transfer rate is expected to reach 56 Mbps. There are no autoloaders for 
this media. 
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The newest small tape format to enter the market is 3M’s Travan. It was introduced in 
April of 1995 with a capacity of 400 MB, and by June the capacity had reached 800 
MB. By December 1995, Travan could store 1.3 GB and the current capacity is 4 GB. 
Vendors predict that by 1997, the capacity should be 15 GB. Drives are made by HP, 
Conner, Iomega and AIWA. The tape is manufaetured by Sony or 3M and the 
autoloaders are scheduled to come out from Exabyte or Conner. The Travan drive will 
accept the mini-cartridge as well as all previous generations of Travan tapes. 

Quantum bought the storage products division of Digital Equipment Corp. and now 
offers their internal data cartridge as a removable storage media. In early 1996, the 
native capacity was increased from 20 GB to 35 GB on the half inch tape. With a data 
transfer rate of 24 Mbps and Bit Error Rate (BER) of E-17, this tape format should 
provide an interesting addition to the storage hierarchy. EMC is currently offering this 
media as the disaster recovery solution to support their warehousing projects. The 
future introduction of thin film media should provide storage of 100 GB before 2000. 
The data transfer rates are due to increase to 80 Mbps. The available multiple- 
cartridge units include a stackloader of 7 cartridges on the low end, and a broad 
selection of autoloaders supporting 28,48, 60,264,360, or 900 tapes on the high end. 
The 900 tape unit comes from MountainGate and offers 31.5 TB in 18 square feet 
(1,750 GB per square foot). The maximum of 20 drives provides access to 700 GB of 
mounted data. The AML/2 from EMASS supports 32,720 DLT tapes for a potential 
capacity of 1,145.2 TI3 in 1300 square feet (881 GB per square foot). 

Longitudinal Serpentine Recorders 

These recorders combine the two previous technologies to record one set of multiple 
tracks down the length of the tape, then reverse direction to record another set of tracks 
back toward the beginning of the tape. The new longitudinal serpentine head 
assembly designed by IBM can read or write 16 tracks at a time. The media is 
formatted to hold eight sets of the 16 tracks resulting in data on a total of 128 tracks. 
IBM’s 10 GB subsystem is called Magstar and it can support a 72 Mbps data transfer 
rate. The largest IBM library (model 3495) is 92 feet long and uses a robot on a rail to 
move tapes from the slots to the drives. The library can store up to 18,920 cartridges 
for a potential storage of 189.2 TB. The smaller model 3494 library can store between 
210 and 3,040 cartridges and support a maximum of 30.4 TB using the Magstar, or 2.4 
TB using the 800 MB cartridges. 

Helical Scan Recorders 

Helical scan technology uses multiple readwrite heads to record data on tracks at a 
slant across the tape. This track, known as a swipe, is slanted such that the angle 
between the track and bottom of the tape is between 4 and 7 degrees. Some helical 
drives yield 15 MB per square inch or 16 KB per swipe. Major helical scan drive 
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components were brought back after WWII by Sing Cro 
company to demonstrate this technology in 1955. 

and Ampex was the first 

Four-mm formats 

Several companies offer the Digital Audio Tape @AT) tape format that holds 4 GB of 
uncompressed data on 120 meters of 4-mm tape housed in a standard cassette 
measuring 2.9 inches by 2.1 inches. In the fall of 1995, HP announced the D 
standard format which can store 12 GB by recording on longer tape with smaller 
tracks. The data transfer rate is 6.2 Mbps and the seek time is 40 seconds. In 1997, 
the DDS4 standard should be introduced and provide a native capacity of 24 GB using 
metal evaporated tape and a data transfer rate of 8 Mbps. Due in part to the Forward 
Error Correction (FEC) technology which promises a BER of E-15, this tape format 
has being used for CD-ROM mastering, COM (computer output to microfilm) 
replacement, and image storage. For automated applications, autoloaders are available 
to manage a variety of cassettes in several formats including carousel, vertical and 
horizontal configurations. The largest automated handler for this size media is 
available from Exabyte and holds 218 units for a potential capacity of 2.6 TB. 

Eight-mm formats 

The 8-mm format is primarily available from Exabyte. March 1996 brought the long 
awaited release of the Mammoth drive. Data can be recorded at a transfer rate of 24 
Mbps. The 8-mm cassette of advanced metal evaporated tape holds 20 GB of 
uncompressed data. To put this capacity into perspective, the first 12-inch optical 
disks held a ground-breaking 1 GB. Numerous vendors are supporting this 
technology. Mass storage libraries have come from the back-up storage and video 
broadcast industry and hold 10, 40, or 80 cassettes. The EMASS model AMLI2 
library sets the record for highest number of tapes in a single autoloader. The 
maximum load would be 58,880 tapes providing 1,177.6 TB. The BER has improved 
from E-15 to E-17. In 1997-98, the capacity should double to 40 GB and the rate 
should reach 32 Mbps. By 2000, the capacity will double again to 80 GB and the 
transfer rate should reach 48 Mbps. 

entrant to the 8 mm market is coming out from Sony. This product was 
originally promised in June 1996 to come out in late summer at 25 GB. The drive fits 
into a 3.5-inch slot, smaller than the 5.25-inch Exabyte slot. A design advantage that 
contributes to performance, is the location of the index on a chip on the cartridge. 
This intelligence will allow the drive to reject the cassette without having to spend 
precious moments rewinding the tape. When the dust settles, the tape could be 

ased with a native capacity of 35 GB. Time and market will tell. 
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Half inch formats 

The most recent tape format to enter this market is the digital tape format (DTF) 
manufactured by Sony. The two sizes available are the 12 GB and the 42 GB 
capacities. Several libraries are available from Sony to support this media. The 
smaller one holds 35 large tapes (1.5 TB) or 70 small tapes (840 GB) with one drive. 
The BER is E-17 and the transfer rate is 96 Mbps. As demand grows for capacity, 
other autoloaders may become available and the capacity could extend into the 
Petabyte range. 

A long-awaited helical scan recorder was shipped by STK in 1995. The new Redwood 
drives store 50 GB on a single 4 inch square cartridge and raise the capacity of their 
silo from 4.8 TB using 800 MB cartridges, to 300 TB and 4.8 Petabytes per 16-unit 
cluster. The transfer rate is 96 Mbps. 

MountainGate offers the VHS drive that was originally modified from broadcast 
industry-developed technologies by Honeywell, then Metnun Information Storage. 
The RSP-215Oi drive can record 21 GB using T-180 tape format in a VHS cassette. 
For data processing purposes, 21 GB could replace 1 17 reels of 6250 tape. An 
autochanger with a footprint of 18 square feet, can accommodate 600 cassettes and 
provide an automated storage capacity of 12.6 TB. Legacy Storage Systems used the 
PRML (partial response, maximum likelihood) recording technology to store 50 GB 
on a T-180 VHS cassette. The origin of this system is the radio astrology industry. 
Currently, the company supports ganging drives together to meet customer needs 
rather than putting tapes into robotic handlers. With the right software, the system 
appears to the host as a mounted disk drive. The current transfer rate is 16 Mbps, but 
they have a short term goal of reaching 32 Mbps by the end of 1996. By then, they 
plan for the capacity to be 100 GB per cassette, 

Nineteen-mm formats 

The DD (Digital Data)-1 or DD-2 tape formats are available in the small, medium or 
large 19 mm cassettes. These cassettes are used by the broadcast industry to store TV 
data, by the scientific community to store instrumentation data, and by the computing 
community to store computer data. The drives used to record data from scientific 
instruments are called ID-1 (Instrumentation Data 1) and the tapes can be recorded at 
rates up to 400 Mbps per drive. Four drives can operate simultaneously to provide a 
data capture rate of 1600 Mbps. Loral, Lockheed Martin, DATATAPE, Penny & 
Giles, and Sony, are building these drives. The standard for the ID-1 tape was 
established by the ANSI X3B.6 committee and other committees are currently meeting 
to develop standards for the DD-1 and DD-2 formats as well. The suppliers of 19 mm 
tapes include Hitachi, BASF, Sony, Fuji, 3M, TDK, DATATAPE, Penny & Giles, 
Maxell, and Quantegy. The DD-1 tape format offers a BER of E-13 while the DD-2 
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format has recently been improved to E-17. The 
formats are shown below. 

ities of the six tape 

eDD-1 S 16 GB 
*DD-lM 40 GB 
*DD-lL 96 GB 

* These doubled capacities are currently in Beta test. 

Ampex currently offers a 7 square foot library that holds 7 DD-2L for a capacity of 2.3 
TB. Another autochanger is available that will hold 256 DD-2S cassettes for a 
capacity of 12.8 TB. The DD-2 drives can reach a transfer rate of 120 Mbps. EMASS 
offers three sizes of autoloaders, the AML/J, AMLE and AML/2. The AML/2 has the 
largest capacity and could support either 16,896 DD-2S tapes for a total of 845 TB, or 
10,752 DD-2M for a total of 1,613 TB in 1300 square feet. Using the DD-2 M tape 
would result in 1,240 GB per square foot. To relate this to a paper volume, 1,6 13 TB 
represents 32.3 billion 50 KB document images which could fill 3,226,000 file 
cabinets covering 753 football fields. 

The Sony DD-1 drives have a recording speed of 128 Mbps. Sony offers a cassette 
tower which can hold all three sizes of DD-1 cassettes and either one or two drives 
providing a storage capacity ranging from 512 GB to 2.2 TB in less than 8 square feet. 
There are two larger libraries which hold 320 DD-1M cassettes for 12.8 TB capacity, 
or 736 DD-1M cassettes for a total capacity of 29.4 TB. 

Optical Cards 

Requirements for personal storage that need to be met by high density storage systems 
may incorporate the low-cost option offered by numerous vendors supporting the 4.6 
MB optical card invented and patented by J. Drexler. This credit-card sized optical 
storage media can store 2,300 ASCII text documents or 92 document images using 
WORM technology on a media carrying a 10-year life expectancy. These cards are 
being used for individual medical record storage, personal registration data, and 
financial transactions. A test is being conducted at the border between Canada and the 
U.S. Soon, frequent travelers may be able to use their Canon optical registration card 
in addition to a fingerprint scanner to speed processing through customs. 

Compact Disc Read Only Memory 

and a alternative printing industry was born. The 12 cm, 650 MI3 disc can hold 
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325,000 2-KB pages of ASCII text. To print this many pages would require 1.9 tons 
of paper. There are numerous library units to house CD-ROMs. One of the interesting 
jukeboxes on the market can hold 240 disks in a spiral configuration. Four of these 
"slinky-looking" units can be connected to provide access to 960 discs. A different 
type of library unit holds eight rows of eight drives providing simultaneous on-line 
access to 64 discs. Other libraries offer larger capacities ranging from 500 discs in a 
Pioneer jukebox to 1478 discs in a DISC jukebox. 

New CD applications include multi-media which support full motion entertainment or 
instructional video storage. By early 1996, the price of a drive to record a CD-R 
(recordable) dropped from an opening price in 1991 of $15,000 to less than $1,000. 
Affordability and availability allows the media to be used for small departmental or 
desktop storage applications. It has also opened new doors for small publishers to 
create and distribute documentation. Drives to record and erase data on the compact 
disc are due out before the end of 1996. 

There is considerable controversy in the industry today about the forthcoming Digital 
Video Disc (DVD). At a minimum, the DVD should: 

1) Record a full length feature movie 
2) Offer picture quality better than video discs 
3) Provide audio in three to five languages 
4) Build in a copy-protection system 
5 )  Support choices between subtitles or dubs 
6) Insure parental-lockout features. 

The proposed DVD format exceeds all of these requirements. 
Agreements that are in place meet these specifications: 

1. Backward compatibility with current CD media. This will protect the software 
vendors who have in hundreds of programs on this media. It will also protect 
consumers who own disc collections. 
2. Two substrates - each 0.6 mm thick, with a data layer capable of holding up to 4.7 
GB - bonded together to form a 1.2 mm thick disc. 
3. EFM Plus signal modulation. This scheme is simpler to implement and yields a 
more robust and stable product, a desirable feature for the entertainment industry. 
4. Reed Solomon Product Code (RS-PC) error correction. This error correction code 
is similar to that on the magnetic and optical media, rather than that used in CD-R. 
This is important because CD-Rs are not ideal for computer applications. Data cannot 
be placed arbitrarily on the disc, it has to chain each recording session to the end of the 
last session. Moving to RS-PC, allows a random, block-oriented kind of recording 
anywhere on the disc surface. The DVD format that will be available for recording 
data, will not be available to consumers until 1998-99 and the capacity will be 2.6 GB. 

186 



Rewritable Magnetic Disks 

In 1995, the new Zip drive was introduced by Iomega. The price is under $200 and 
the removable magnetic media is available in 25 MB ($10) or 100 MB ($20) 
capacities. The drive has since taken the personal data storage industry by storm and 
led to the development of an entire market for personal storage media. This demand 
has been encouraged by the electronic in-box revolution taking place in reaction to the 
ease of downloading documentation from the Internet. Other available disks offer 
capacities of 120 MB (3M’s drive that can also read the 3.5 inch 1.44 MB floppies), 
135 MB (SyQuest EZ135), 170 MB (Avatar APS 170 PB), or 1 GB (Iomega Jaz). 

SyQuest offers removable magnetic drives with associated removable floppies. These 
magnetic drives cost between $500 and $700. A 2.5 inch floppy is available with a 
42.8 MB capacity. A 1.8 inch floppy is also available which holds 80 MB. These 
media are commonly used in the printing industry to exchange color prints because a 
digitized color image requires roughly 20 MB of capacity. 

The Bernoulli disk from Iomega, is based on barium ferrite media. The current 
storage capacity of 230 MB is spread over two platters that can be accessed 
simultaneously. These two disks are back-to-back in the cartridge and as they spin, 
the air between them forces them away from each other and toward the recording 
heads. They are often used in rugged environments because if there is an interruption 
in power, the media falls away from the heads to avoid any head damage to the disk or 
loss of data. This media is also a favorite of some security-oriented organizations 
because the media can be shredded. 

Rewritable Optical Disks 

Magneto-optic (MO) technology uses optical properties and some principles of 
magnetic storage to store data on 2.5, 3.5, 5.25, 12- and 14-inch optical disks. To 
replace data on a MO disk requires the first head pass over the disk to erase the data, a 
second pass to let the track cool, and the a third pass to record the new data. 

Desktop requirements will soon be met by the 2.5 or 3.5 inch optical disk. Sony offers 
the 2.5 inch MD-Data disk that holds 140 MB, the equivalent of 15 minutes of video 
(using MPEG-1 compression). The current capacity of the 3.5 inch disk is 640 MB. 
These disks can spin faster and provide shorter seek times than their 5.35 inch 
counterparts. A desktop jukebox was introduced by Fujitsu at the 1996 AIIM show. It 
can hold up to 35 of the 3.5 inch disks and up to two optical drives providing 22.4 GB 
of storage. 
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The 5.25 inch disk currently holds 2.6 GB. This size of disk has become the media of 
choice for network and jukebox applications. Multifunction drives have been 
introduced by numerous vendors that will write to either 5.25 inch WORM or erasable 
platters. 

Phase change technology can write directly over the data on a track and replace it with 
new data, therefore saving time required by the MO drives. The popularity of phase 
change media is expected to grow. In the fall of 1994, Matsushita introduced the 
phase change dual (PD) drive. This drive is being considered a standard in the 
European community. This drive records on a rewritable 4.72 inch phase change disk 
but it can also read a 4X CD-ROM to serve a dual purpose for the consumer. Two 
new jukeboxes are available from Pioneer. The 50 platter unit provides 32.5 GB and 
the 100-platter unit provides 65 GB. 

Nikon has combined the two technologies (MO and phase-change) and is bringing a 
direct overwrite MO disk to the market. They market a 12 inch disk with the storage 
capacity of 8 GB. The transfer rate is 1.1 Mbps and the cost is $1,100 per disk. This 
disk and drive can be installed in the ATG Cygnet jukebox and there are customers in 
Korea who are interested in using this system for the management of governmental 
records. Currently, Lockheed Martin is developing a 14 inch disk that can hold 12 GB 
and meet Mil Standard E-5400. It is not known when or if this product will be made 
commercially available. Kodak is also working to bring an erasable disk to the market 
before 2000. 

WORM Optical Media 

Non-erasable WORM media is available in 5.25, 12-, or 14-inch sizes. By the end of 
1995, the 5.25 inch platter held an average of 2.6 GB. There are numerous jukeboxes 
that are available to accommodate this size media. These vary in size from 10 to 1,054 
platters. 

Philips LMSI offers a 12-inch WORM drive that operates with a dual-head so that 
each side of the disk is available to the user simultaneously. The user is provided with 
12 GB of storage without the need to flip the disk in a standalone environment. To 
compliment this drive, a 6-platter magazine fits as a single unit into a modified version 
of the drive providing 72 GB of storage with a disk swap time of less than 3 seconds. 
The removable magazine can easily be vaulted for security. 

In 1995, Sony announced a 15 GB disk and dual-head drive that should be shipping by 
the third quarter in 1996. The drives will be available in one of two different jukebox 
configurations. For every drive, the jukebox flees up space for 10 platters. The 
smaller jukebox will handle from 1 drive and 76 platters, to 4 drives and 46 disks. The 
trade-off ratio is the same for the larger jukebox. The drive/disk Combination will run 
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fiom 2 drives and 156 disks to 6 drives and 116 platters. Disks in 6 drives will 
provide the user with 90 GB on-line simultaneously. 

Kodak's latest 14 inch optical platter has the capacity of 14.8 GB and incorporates a 
non-erasable form of phase-change technology. 
provides access to 1.9 TB. The new dual-sided 25 GB disk and drive is due out in the 
fall of 1996. That introduction will take the large jukebox to a 3.3 TB capacity. 

The 132 platter Kodak 

Optical Tape 

This media is one of the most exciting and versatile on the market today. It was 
originally introduced into the U.S. in 1986-87 by IC1 Imagedata. A 12.5 inch open 
reel can hold 1 TB of data. As with other open reel systems, there is no way to 
automate the system as it stands today. The tape must be mounted on a floor-model 
drive that occupies 6 square feet. Transverse recording writes data perpendicular to 
the length of the tape. Of interest: if you were to print out 1 TB of ASCII data, the 
paper requirements would consume 42,500 trees. A single TB would accommodate 
either 1 million 500 page books, or 1600 CDs, or 2000-4 drawer file cabinets, or 5,000 
9-track tapes. There are systems in UK, Canada, Republic of South Afi-ica, and 
Australia in addition to the U.S. Applications include satellite data, oil data, medical 
images, transaction processing and document archives. 

Other vendors, including Kodak and Dow Chemical, developed different types of 
optical tape. There are also several vendors working to perfect an optical tape 
cartridge or cassette subsystem. Most of these are members of the Optical Tape Study 
Group lead by Fernando Podio at NIST. The subsystem closest to commercialization 
will be coming from LOTS Technology. The engineers at this company are building 
their own drive to read Kodak optical tape in a 3480-sized cartridge. This drive will fit 
into any of the autoloaders which uses the 3480-type cartridge. The drive can record 
up to 1 TB on a single unit at 120 Mbps. LOTS Technology could expand STKs 
6000-Unit 3480-type library capacity to 6 PB. Sixteen libraries would provide 96,000 
TB or 96 Petabytes of robotically-addressable storage. The 96 PB could replace 1,920 
billion image documents -- roughly equal to the volume of pages in 9,600 Library of 
Congress buildings. Beta Units should be available by the close of 1996. 

Thin Film Media 

The NT-1 cassette from Sony contains thin film media which is only 2.5 mm wide and 
4.8 microns thick. The tape can record 45, 60, 90 or 120 minutes of digital music, up 
to 53 minutes more than an audio CD. The length of tape is 20 meters and it has 
already been specked out for data - 612 MB! The digital data tape would replace 3.4 
9-track tapes, 4 file drawers holding 12,240 document images, or 306,000 ASCII 
pages that would take 3,570 pounds of paper to print. 
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Unfortunately, the system was withdrawn from the marketplace in late April, 1996. 
Only time will tell if it reemerges or not. 

Conclusion 

The abstract for this paper was submitted in February. Changes were made to the 
body of the paper when it was revised in early May. The July revision, was made due 
to the technology advances since that point in time. By the time this paper appears in 
the proceedings for September, more products will have been introduced, some 
vendors will drop out and other vendors will enter the market. If you have updates to 
add, give me a call and I will reflect them in future releases of my book. If you want 
to check what has changed since this paper was released, I invite you to contact me! 
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Abstract 

The purpose of this paper is to discuss data warehousing storage issues and the impact of 
EMC open storage technology for meeting the myriad of challenges government 
organizations face when building Decision Support/Data Warehouse systems. 

Introduction 

Most technology advisors in government believe that data warehousing is a perfect match 
with government agencies. The reason is because data warehouses work best for large 
organizations with mission-critical data distributed on a variety of heterogeneous systems 
- as is often found with federal, state and local government agencies. Although slow to 
jump on the data warehousing bandwagon, agencies have begun developing full-blown 
data warehouses. 

Most data warehousing planners focus their efforts on four foundation pieces - or 
cornerstones - of a data warehouse: (1) the operational data and its acquisition, 
transformation and integration into a data pool, (2) the database management system and 
associated servers for managing the data pool, (3) the client DSS applications, and (4) the 
storage system where the information resides. 

One of these cornerstones if planned incorrectly will cause enormous waste and 
frustration and can make the entire DSS susceptible to collapse. Yet it is the one 
cornerstone that usually gets the least amount of thought and planning. The hidden 
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of EMC Corporation. Other trademarks are the property of their respective owners. 

This paper is being distributed by EMC Corporation for informational purposes only. EMC Corporation 
does not warrant that this document is free from errors. No contract is implied or allowed. 

Abbreviations used: DW - Data Warehouse, Data Warehousing; DSS - Decision Support System; OLTP - 
&-Line Transaction Processing 
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cornerstone is the storage system that physically manages the movement, placement, 
backup, and restoration of data. 

Potential problems associated with data storage are acute because the DW places greater 
stress on the storage system in terms of data volume and seek functions than operational 
data from business process systems. And the value of all that data is entirely dependent 
on the protection and speed of data movement provided by the storage system. If it 
doesn’t work well - the DSS is compromised. 

A discussion of open storage technology and its impact on DW environments must take 
into account other drivers of information technology change. Trends in servers, hardware, 
software, data management, networking, geographical distribution of systems, I/O 
management, failure rates, procurement strategies, and disaster recovery are all important 
to consider when trying to understand the benefits of EMC open storage technology. 

This paper briefly recaps the history of computing and storage, reviews some current 
trends, and then progresses to the problems associated with storage in today’s expanding 
data warehousing operations. It concludes with a description of the key storage 
shortcomings inherent in DW environments and the EMC open storage features that can 
overcome both long- and short-term challenges when managing Decision Support/Data 
Warehousing implementations. 

Information Technology Recap 
There are three distinct phases in information processing: the automation of labor 
intensive tasks, online transaction processing, and data warehousing. In essence, these 
represent a transition from CPU-centric computing to data-centric computing to 
information-centric computing. This evolution parallels the transition from batch 
computing to “realtime” processing to the distribution of information and empowerment 
of knowledge workers. In many ways they are synonymous and represent similar 
challenges. Each phase addresses a business’s return on investment and produces its own 
technology challenges. 

Significant trends are related to these phases. 

a Generation of data is increasing with the expansion of OLTP and DW. 
Computing is transitioning from a CPU-centric to an information-centric 
orientation. 

information. 

organizations, and is increasing the pressures and demands on suppliers and 
implementors. 

a Management challenges are increasing exponentially with increased demand for 

e Information is now the key to service enhancements for all government 
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Trends in Data Technology 

1970 1980 1990 

Decade 

Figure I - Trends in Data Technology 

The first phase, batch-oriented data processing, is not relevant to DW and not part of this 
discussion. 

Phase two, OLTP, is now widely deployed with a trend towards clientkerver 
implementations and more widely distributing the users and data. This is where most 
RDBMS systems are now active as organizations continue to move operations online. 
Most legacy and second generation online applications are moving to this type of 
implementation. The databases in these environments are growing fast, with more than 
lOGB the norm and many growing to hundreds of gigabytes. 

Data Warehousing 

Phase three, the latest information processing trend, requires information managers to 
adopt a concept known as data warehousing. DW promises employee empowerment and 
creates the demand for a broad range of historical information presented in a useful 
format. So in addition to demanding access to critical operational data, end users also are 
seeking historical information to accomplish key job functions; analyze program impact 
and effectiveness, trends analysis, improve citizen services, and help identifl and reduce 
fraud or other inefficiencies. This information is dominated by standard forms of textual 
or image data, but increasingly can include voice and video data. More complex data 
types, due to their large sizes, greatly increase the demands on the storage and 
communications systems. 
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Operational data, from which the data warehouse is constructed, is typically transported 
to a database in a centralized repository (data warehouse) where it may again be 
distributed to organizational servers. The operational data is scrubbed for inconsistencies 
and converged to eliminate duplication in the DW. All this movement, storage, and 
cleansing of data requires a high level of storage system performance and integrity. 

Data warehousing creates historical data from operational data. Decision Support 
Systems gather DW data or summaries of it and transform it into easy to understand 
information. Since operational data is OLTP-oriented information gathered from the 
applications that run day-to-day operations, the DW database is systematically updated so 
operational data is represented to a known point in time. The speed of the DW update is 
dependent on the performance of the storage system. The more frequent and more 
voluminous the updates, the more critical the Decision Support Systems and the storage 
system. 

The data quality, access time, and window of availability are of extreme importance since 
DSSs depend on the DW to produce their information. The DW storage system affects 
the integrity of data in the DW, the speed that the DW data can be accessed, the 
availability of the DW itself to the server system, and the efficiency of the updates to the 
DW. 

EMC’s family of Integrated Cached Disk Array (ICDAO) and high performance backup 
solutions directly address the storage requirements of a modern data warehouse while 
preserving the ability to choose best-of-breed technologies for other DW components. 

Open System Server Dependence on MIPS 
Storage subsystems for open systems have predominately followed a server 
manufacturer, CPU-centric model. The storage system being provided with the server. 
While it is ofiten possible to substitute controllers and disk drives to increase capacity 
and/or performance, the limiting characteristics of these storage subsystems has not 
changed substantially. 

CPU performance has considerably outpaced server I/O performance in the open systems 
arena as illustrated in Figure 11. 
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Relative Perfbrmance Trends 
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Figure 11- Relative Performance Trends: CPU vs. Storage 

Servers/Databases - CPU Focus 
Generic and portable operating systems, industry hype, and database developments have 
contributed to the problem. Simply, storage subsystems have not been a focus of server 
hardware architectures. Open systems DW servers suffer from limited storage expansion 
capabilities, and often, increased storage requirements force customers to upgrade CPU 
types and cabinetry for increased data capacity. Many times, I/O communication channels 
are overloaded in fear of using up additional CPU or memory expansion slots. DW 
database performance is a function of both CPU and I/O performance, so high 
performance open storage improves overall performance and off-loads the CPU. This 
way the entire system is better utilized and more in balance, in many cases eliminating or 
deferring server upgrades. 
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Figure 111 - RDBMS Performance 

EMC accomplishes dramatic throughput improvements for updates and queries by 
providing large amounts of onboard cache memory in an intelligent, microprocessor- 
based storage system. By focusing on the storage component, EMC has optimized the 
performance and management of this unseen but critical DW component. EMC’s ICDA 
system manages the disk drives, controllers and diagnostics as a coordinated system, 
relieving the CPU from these overhead tasks and delivering the highest levels of 
performance. 

Open system hardware is made for generic use. Open systems servers may be used as 
communications gateways, clients, X-windows servers, firewalls, video servers, and 
OLTP or DW database servers. These applications range from CPU-intensive to disk- 
intensive environments. The majority of servers utilize the same software and hardware 
technology and are not primarily designed for storage-intensive applications. Server 
research and development expenditures bear out this fact, with the majority of investment 
dedicated to chip, operating system, and CPU design. 

Server storage is off-the-shelf technology and “bolted on” using standard components and 
connections. There are a range of connectivity standards and device types, the most 
common being SCSI (Small Computer Systems Interface). Typically, an I10 card plugs 
into the server system bus and supports multiple SCSI disks per card. The storage system 
is built into the server cabinet, but not in a very integrated way. The disks operate 
independently or if there is an intelligent controller providing some coordination, it 
utilizes CPU cycles. Sharing of storage to boost utilization is rare between homogeneous 
servers and not supported between heterogeneous servers. 
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To address availability concerns, many server vendors have * 

striping) and RAID 1 (disk mirroring) hctional 
increase performance and reliability respectively, there are 
within their storage subsystems and these features are again using valuable CPU cycles. 
The failure of a power supply, fan, SCSI channel, or controller may cause an entire bank 
of devices to fail. The use of RAID 1 technology within the server is questionable since 
many other components are unprotected and they can cause the mirrored disks to fail. 

Database developers have created portable products that perform across many hardware 
architectures. Consequently, performance is software-oriented and highly dependent upon 
the speed of the processors. I/O bottlenecks and performance degradation are often 
addressed through CPU upgrades. CPU upgrades frequently cause a rippling effect in the 
remainder of the server system resulting in device and controller upgrades, downtime, 
and hardware incompatibilities. The reliance on MIPS for database performance has kept 
server emphasis on CPU technology and placed storage technology on the back burner. 

Data warehousing is by nature both a storage-intensive and storage-expansive application 
area. Although open systems servers and databases tend to be CPU-oriented, EMC has 
developed the ICDA system to elegantly integrate intelligent storage algorithms with high 
quality storage hardware. This enhances the performance, scalability, availability, and 
reliability of the DW storage component. And these storage systems easily connect to 
every major open systems server without the need for special devices or drivers. EMC 
enables open systems DW servers and databases to scale and support small, medium, and 
large data warehouses effectively. 

Distribution of DW Data 

Decision Support Systems rely on the decentralization of information to the DSS user, 
but widely distributed applications and hardware have brought about difficult challenges 
in infrastructure configurations, availability, and systems management. With ever- 
improving communications bandwidth and technology, DSS applications running on 
intelligent clients can be distributed to the end user while maintaining data warehouses in 
a centralized or nearly centralized state. Single DW servers or small groups of DW 
servers provide many data security, availability, and operational advantages over a widely 
distributed DW scenario. There are good reasons for centralizing DW data while 
maintaining a highly distributed DSS environment. 

In a distributed environment, storage devices are usually purchased independently for 
multiple server types at multiple sites. Server upgrades and consolidation may necessitate 

cally reconfigured at best. This 
requires field administrators, application 

experts to “qualifl” new configurations both a labor- and training-intensive effort. 
For the DW implementation, it is therefore more effective to minimize the number of data 

e devices be abandoned at worst or 
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warehouses, centralizing the data as much as possible. This could provide dramatic 
impact for megacenters and other government consolidations currently under way. This 
increases utilization of the storage investment. For sites with multiple data warehouses or 
other co-located systems, EMC supports the ultimate in storage flexibility - hot re- 
allocation of storage devices to heterogeneous servers. The result is extremely high 
storage utilization. 

Storage management operations differ among CPU server types within a vendor’s range 
and usually differ among vendors. There are different routines for mounting, mounting,  
striping, and mirroring devices. Methods differ in the way bad spots are mapped to 
existing and mirrored pairs, in the way failed mirrors are swapped out, and in the routines 
used to resynchronize the devices. In a mixed server environment, different disk storage 
subsystems require extensive training, configuration, logistical, and operational 
knowledge resulting in labor-intensive and error-prone operations. Databases that 
replicate full or partial data warehouses require storage management knowledge for every 
type of server involved. Obviously, the greater the DW distribution the greater the 
potential overhead. EMC uses a single management scheme regardless of the server 
attached, even if multiple concurrent open systems servers are running on a single ICDA 
system. This simplifies the storage management challenge even with distributed data 
warehouses. 

DW Data Availability 

Some argue that the DW data is not “business critical’’ and so should not be considered 
for protection. We assume that an organization’s investment in the DSS/DW is 
substantial, both in dollars and human resources, and that the DW data itself is key to at 
least one aspect of a firm’s management. Consequently it is important enough to protect. 

Data warehouses need or will need to store large amounts of data, so the high number of 
storage devices required in either centralized or distributed servers results in higher error 
and failure rates. The number of components that comprise a system are directly 
proportional to the failures rates experienced. 

Standard Server Storage 
To avoid failures and associated downtime in the DW, many servers mirror their storage 
(RAID 1) requiring a like spare for each primary drive. However, a failure of a disk 
controller can also cause entire I/O channels to become unavailable. To avoid this, server 
vendors require that all mirrored channels reside on separate controllers. Storage devices 
must be load-balanced between the channels, that is, every other device on a similar 
channel are primary with the remaining devices mirrored spares. This scheme works fine 
until a controller fails, causing all I/O to be achieved on a single controller, reducing 
performance. In extreme cases, servers may use dual-port controllers to continue 
mirroring spares in case of a controller failure. All of these methods require intimate 
server expertise and prove to be a cumbersome and administrative-intensive solution. 
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It should be noted that server mirroring of DW storage subsystems of this size helps 
reduce some downtime, but additional storage devices, controllers, and channels can 
greatly increase the failure rate and further increase administration requirements. To 
minimize this type of DW storage failure and to simplify administration, EMC efficiently 
packages all the necessary DW storage components into a storage cabinet. A single ICDA 
system includes all disks, from 35 GB to 1.1 terabytes of storage, as well as duplexed 
fans, power supplies, backup batteries, and controller boards. 

Electro-mechanical disks tend not to fail from one second to the next, rather, over a 
period of time. Monitoring storage devices and their associated components for errors 
usually requires manual filtering of device logs. EMC again outpaces server storage with 
extensive automatic diagnostics, reporting, and self-correcting capabilities. D W failures 
are detected and corrected in time to prevent loss of data. 

Open systems server storage suffers from inconsistent management utilities and limited 
fault detectiodcorrection operations. EMC overcomes these DW challenges, ensuring the 
delivery of DSS information. 

DW Updates/Backup/Recovery 

Government departments and agencies like Defense, Intelligence and Secretary of State 
are now operating longer and increasingly on a global basis. Data warehousing/decision 
support systems are following this trend. DSS applications are beginning to drive a 
constant demand for online information over flexible work hours, increasing storage 
requirements and distribution of DW data over multiple time zones. This has the effect of 
significantly decreasing both the DW update window and the archival window for DW 
database managers. 

Since most data warehouses are read only, backup can be viewed as disaster protection. 
In data warehousing, data corruption or deletion is caused principally by a programming 
error or by actual physical damage to the storage system. Programming errors can occur 
during an update or during a database modification, a frequent occurrence at many DW 
sites. Updates to the data warehouse use DW server resources, slowing DSS queries, and 
may require shutdown of the database. A large data warehouse, a frequently updated DW, 
or a combination of these requires a high performance storage system to minimize update 
time. Unless the DW is offline for an extended period, high performance backup or online 
backup protects DW information from deletion or corruption. 

For DW operations that run 7 x 24, online backups appear to be a solution, however they 
can create serious server performance degradation hindering productivity and workflow. 
Complicating the challenge, open systems DW databases (RDBMS) environments offer 
minimal archival utilities, usually limited to files recognized by UNIX@ file structures. 
Database tables are treated as a single large volume that restricts the granularity of the 
restore. Restoring a single row of one table would require restoration of the entire 
database. Conversely, database-supplied archival methods ignore operating system files. 
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Information managers are often required to maintain multiple archive schedules and 
utilities for each DW operating system and database. 

EMC storage systems support up to 32 concurrent channels and intelligent writes to disk, 
speeding DW updates. In addition, the EMC Data Manager backup system provides high 
speed backup at up to 78GB per hour, with support for RDBMS integrated online backup 
due in 1996. Additionally, the ICDA system’s local mirroring augments data protection 
without a performance penalty, and EMC’s unique remote mirroring feature is a reliable 
disaster recovery method. EMC solutions enable database managers quickly update the 
DW or quickly recover in the event of a disaster or data loss. 

Data Centralization 
Although data warehousing is different in many ways than OLTP systems, it is likely to 
benefit from one OLTP trend - the recentralization of data. 

As many agencies downsized or consolidated their organizations and distributed 
computing, management difficulties increased, downtime increased, productivity 
decreased, and departmental computing hungered for empowerment. Soon they realized 
the burden of the operational realities, and that they were not prepared and did not have 
available the tools or expertise to manage their own environments. Distributed 
management tools for decentralized data were and still are in their infancy. 

This may be the reason for an interesting and significant trend taking place in the 
industry. Government organizations continue to crave more and more information, as can 
be seen in the move to add decision support/data warehouse applications, yet are 
returning the management of distributed systems back to IT. To effectively manage this 
distributed data, IT is centralizing the management of storage while maintaining 
distributed applications. This tends to increase productivity and lower procurement and 
operational costs. Figure IV illustrates the trend to centralize data centers found in the 
commercial market. Although slower in its initial implementation of DW, government 
entities are expected to see similar results. 
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Data Center Centralization Trend 
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Figure IV - Data Center Centralization Trend 

In less than five years, a major paradigm shift has taken place. The challenges mentioned 
here have database managers and the information industry evolving architectures that 
massively or regionally centralize data. In 1990, more than fifty percent of all companies 
were creating distributed architectures. In five years, less than fifteen percent of the 
industry is planning to continue decentralizing corporate information. More than two- 
thirds of industry is implementing strategies that centralize information in some fashion. 
This trend is reflected in numerous government agencies from defense megacenters to 
civilian data centers. 

The trend is more than just a consolidation strategy. We are seeing a major change in the 
procurement, investment, and management strategy of storage. The industry is moving 
from a CPU-centric to an information-centric mind-set and data warehousing is leading 
the charge. Automating manual tasks and online operations no longer supply the 
competitive edge to businesses. More and better information, the promise of data 
warehousing, is the key to successful ventures, products, services, productivity, and roll- 
outs. 

There have been two significant changes in the procurement and investment of hardware 
and s o h a r e  in the open systems market. Open architectures, such as UNIX, enabled the 
customer to purchase hardware independently of the manufacturer, protecting software 
investments. Relational database products enabled the buyer to further protect the 
information investment, procuring hardware and software solutions independent of the 
information. 

The industry is now recognizing that an open storage strategy, adopted as an autonomous 
entity, is a natural extension of the open systems model. The storage subsystems should 
be procured, maintained, and upgraded independently of the CPU, operating system, and 
database in much the same vein that a network is not dependent upon database or 
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hardware vendors. EMC has pioneered this model in the large data center and now is 
offering the same advantages for open system servers, 

Information is becoming the primary focus of organizations and will 
focus prior to this cen 
inevitability. A robust ge cture is fundamental to th 
management of this information. Builders of data wareho 
paradigm change and implement intelligent storage management strategies make their 
organizations more competitive. 

co n, The drive toward DW is ev 

Intelligent Open Storage olutions for the DW 
As discussed, data warehousing has some storage attributes in common with operational 
systems, but it also has its own unique requirements. 

The following characteristics are necessary for DW storage architectures to achieve the 
benefits of an information-centric strategy. 

0 High Data Integrity Performance 
0 Open Architecture 
0 ScalableNery Large Capacity 
0 Continuous Availability 
0 Intelligent Management 
0 Disaster Recovery 

High Data Integrity Performance 

In the past, economically protecting data and performance have been mutually exclusive 
goals. The use of RAID 1 (disk mirroring) technology provides consistent performance, 
but requires twice the amount of disks. Other RAID implementations provide data 
protection with only one extra disk for each four or five operational disks, but are weaker 
performers. EMC ICDA systems offer industry-leading RAID 1 performance and RAID- 
S, a high performance RAID 5 implementation. 

EMC open storage systems have implemented very large caches (up to four gigabytes) 
that contain recently used data as well as buffering for the latency of writes to multiple 
devices; excellent for DW updates. This cache is nonvolatile, as a power loss would be 
catastrophic resulting in lost data. EMC systems also provide the ability to multiplex I/O, 
that is, convert synchronous requests from servers into parallel reads and writes further 
increasing performance. This use of RAID technology combined with large nonvolatile 
caches and parallel I/O, provides a high performance, high availability DW storage 
environment. 

Many databases require the use of extensive server memory to mimic I/O caching. This is 
undesirable as the operating system, applications, and network are also competing for 
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database tests h 
n, scan, transaction, 

Open Architecture 
An open storage archite 
used in open systems s 

systems based upon 

management and shortened life cycles. 

In most cases, open systems servers use mall Computer System Interface) as both 
the interface and device standard. SCSI interfaces allow servers to be attached through 
standard SIC (SCSI Interface Cards) controllers. IBM@ has created a new interface called 
SSA, but it has not been adopted as an i try standard at this time and could be a lock- 
in strategy for customers. A ting industry-&hen standard is based on a fiber 
interface, but is still in the pment stages. EMC is tracking both technologies 

and will integrate based upon market demand. 

EMC’s open architecture is a proven design with thousands of customers. It is ideal for 
DWDSS implementations because it is flexible enough to address the unknown twists 
and turns the DW is likely to take as it grows and matures. 

ScalableNery Large Capacity 

A DW storage solution should allow for simultaneous connectivity of servers accessing 
channels to all storage devices. EMC ICDA systems are highly configurable, allowing 
dedicated or shared access to devices without rewiring, cabling, manual switches, or 
removal of drives. This is the difference in implementing a DW storage system as a 
logical information center versus a physical configuration. The storage system is separate 
from the server to accommodate multiple attachments and remove dependencies on the 
server vendor’s design. EMC systems’ physical assimilation of storage includes 
attachments for multiple se h with multiple channels. The DW can grow in 
servers or storage and be accommodated by the ICDA without the need to trade-out 
existing storage. 
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Functionality 
Figure V - Open Storage Scalability 

EMC scalability/capacity features include: 

e The ability to increase server attachments, 
The ability to increase the number of channels per server, 

e The ability to inc devices per channel, 
e The ability to sustam 

e n a single system. 

e 

e while upsizing the storage configuration, 
and 
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for continuous availability, rather, it forces the issue. A single component failure of a 
consolidated system without redundant components can cause increased downti 
failure may effect all devices. A single fan failure in a cabinet serving multip 
could cause all server applications to become unavailable. 

EMC ICDA systems use redundant components to handle the entire load based upon a 
sibling failure. For example, one power supply can carry the entire load of a system in 
case of a failure. This is also true of fans and controllers and even buses within an EMC 
storage system. 

Availability not only means operational, but sustained performance. Open system servers’ 
I/O subsystems have mirrored components to some degree, but suffer from economies of 
scale. They must duplicate each I/O subsystem with multiple matched pairs. EMC 
consolidated storage requires that only a few matched pairs are necessary for an entire 
ICDA system. 

EMC’s RAID implementations discussed previously protect access to the DW by 
preventing the halt of a DW server due to a failed disk and also enable the recovery of 
data from the failed drive. The EMC advantage is that the ICDA is operating as a system, 
not using valuable server CPU resources to manage the RAID and other availability 
features. 

In addition, EMC storage systems can allocate “hot” spares in case of a failure. This spare 
can be allocated as a replacement device for any failed storage component. Hot spares 
practically eliminate the vulnerability of a hard failure by narrowing the time window of 
repairing the faulty device. 

EMC’s continuous availability features utilize modular technology to both repair and 
upgrade systems. All components are field serviceable and cause minimal disruption. 
Continuous availability and storage consolidation increase DW access, permitting 
volumes and databases to be reallocated to other servers in case of a server failure. 
EMC’s high availability architecture delivers information availability as an economical 
added value of open storage consolidation. 

Intelligent Storage Management 

Storage system monitoring, detection, and reporting, combined with collaborative support 
and management standards are an integral part of EMC storage products. In this way, DW 
storage problems are not catastrophic as redundant systems or intelligent algorithms 
recover the failed component. EMC open storage systems also include online access from 
a 7 Y 24 support organization to monitor and diagnose problems instantaneously with 
minimal disruption. 
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In addition EMC provides a centralized management console for configuring and 
5, channels, physical and logical groupings, and 

RAID levels as 

Backup/Disaster Recovery 

ng the definition of att 
ed. This results in simplified, proactive storage management. 

As mentioned earlier, backup windows for offline archivals are rapidly decreasing and 
performance degradation for online backups inhibit further 
data storage expansion. Offline windows can be expanded with increased I/O 

ance and the throughput of online archives improved. The increased performance 
open storage systems may in itself suffice for increased backup demands. 

For environments requiring massive data recovery, the EMC Data Manager closely 
couples the backuphecovery system with the ICDA system. This high performance 
product automates online data archiving transparent to the application and minimizes 
operations, training, and skill sets of administrative staff. It also provides security of all 
distributed data by consolidating and managing it as a single logical entity. 

EMC has a unique feature - Symmetrix Remote Data Facility (SRDFTM) that duplicates 
disk information transparently to a second local or remote location to provide continuous 
business operations in the event of a storage center disaster. This is accomplished with a 
robust fiber communication interface that supports sustained high performance data 
transfer over T3 lines. 

Summary 

Government entities are seeing the continued expansion of OLTP and the emergence of 
data warehousing. This is forcing a rapid transition from a CPU-centric to an information- 
centric information infrastructure. Dramatic decreases in storage device costs coupled 
with greatly increased demand for information has quadrupled storage server 
requirements and is enabling IT staffs to build scalable open systems data warehouses. 
Storage is a key technology of the data warehouse and therefore a critical element in its 
successful implementation, 

Standard, server-supplied storage technology has failed to keep pace with DW 
requirements. This is partly due to server vendors’ MIPS-centric development efforts and 
the generic design of open system servers. Decreased availability, poor management 
tools, inconsistent information, and end-user management delusion are forcing companies 
to consolidate information or recentralize data. The data warehouse adds to the problem 
by creating one or more additional data pools. Deployments of open system servers 
utilizing RDBMS DW software are confronted with the same problem. Keeping pace 
with the information demand while retaining the current investment in open systems 
technology is a major challenge. 
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a strategy that 
strategy gives 

effectiveness and 

on management is the key to competitive business strategies and 
s necessary for succ 
s that rely on existing server 

will find it difficult to cost-effectively manage their information. Open 
in the industry or in data warehousing, but a major 

cture fulfills the requi 
using to this environment. D 

Business Value 

EMC’s intelligent storage systems are a DW advantage for organizations because they 
enable open systems topologies that offer the advantage of inexpensive server MIPS, 

the DW. An ICDA system does this by removing the storage limitations 
(performance, capacity, scalability, reliability, and manageability) that have previously 
hindered D W implementations. 

Decoupling storage is investment protection and storage optimization lowers D W costs. 
High availability storage increases the reliability of the DSS applications and increases 
the DW ROI. Multiserver support and high availability deliver more information 
fulfilling the promise of the DW - competitive advantage. 

Conclusion 

e is a cornerstone of every DW environment - a 
entation through high capacity deliv 

and better storage management. A superior 
the key, hidden storage issues discussed and delivers solid 

business value. 

The following open storage checklist provides a basis for evaluating DW storage 
products. Imp DSSDW-dependent applications require a check-off in the 
advantageous column. In tion, the service, upgradability, and storage reputation of 
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Data Warehousing - EMC Open Storage Checklist 
I Requirement: 

HostlServer Support Type 
Device Sharing 

Number of Hosts Supported 
Platform Support 

SCSI Channels Supported 
Maximum Storage Capacity 

RAID Support 
High Availability Features 

Dynamic Spares 
Field-Replaceable Components 
Online Swappable Components 

Maximum Cache Size 
Maintenance & Diagnostics 

support 

Proactive Support Features + 
Device Assignments 

Operating System Support 

Disaster Recovery Support I 
RDBMS Support 

~ 

Desirability: 
Limited Acceptable 

Single Homogenous Multiple Homogenous 
None Multiple Homogenous 

Hosts 
4 to 15 Less than 4 

Single Vendor 

Less than 4 4 to24  
Less than lOOGB 101 to 256GB 

No High Availability Duplexed Fans 
RAID 0 RAIDO&I 

Features Duplexed Power Supplies 
Alternate SCSI Path 

Fault-Resilient Cache 

Unavailable Single Spare 
Unavailable Selected Components 

None Selected Components 
Less than 256MB 256 to 5 12MB 

I ~~ ~... ~ _. . ~ 

Error messages I Error messages 
Field Service Field Service 

Remote online support 

No Fault Detection or Fault Detection and 
Reporting Reporting to Local Locatior 

Hard-wired Physical Assignment 

Single Support U N I T  
Novel$ 

High Speed Backup Remote Mirroring 
High Speed Backup 

I 

I Oracle@ None 

(EMC) 
Advantageous 

MultiDle Heteroeeneous 
Multiple Concurrent 
Heterogeneous Hosts 

Greater than 15 
Sun, HP9000, 

IBMIRS16000, DEC@ 
Alpha, Sequent@, Pyramid, 

SGI, Compaq@, 
AT&T/GIS@, IBMlSP2@ 

Greater than 24 
Greater than 256GB 

RAID 0,1,& 5 
Duplexed Fans 

Duplexed Power Supplies 
Duplexed Controllers 
Alternate SCSI Path 

Fault-Resilient Cache 
RAID 1,5 Support 
Multiple Spares 
All Components 
All Components 

Greater than 5 12MB 
Onboard diagnostic 

processors 
Auto error reporting to 

service provider 
Remote online support 

Field Service 
Self-maintenance Option 

Automatic Fault Detection 
and Reporting to Remote 

Location 
Logical Assignment 
Physical Assignment 

UNrX 
Novel1 
N P  

os/400@ 
Mainframe 

Remote Mirroring 
Hierarchical Storage 
High Speed Backup 

Oracle 
Informix 
Sybase 

DB2@ 
MS-SQL@ 
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Abstract 

The storage requirements of today’s organizations are exploding. As computers continue 
to escalate in processing power, applications grow in complexity and data files grow in 
size and in number. As a result, organizations are forced to procure more and more 
megabytes of storage space. This paper focuses on how to expand the storage capacity of 
a very large database (VLDB) cost-effectively within a Oracle7 data warehouse system 
by integrating long term archival storage sub-systems with traditional magnetic media. 
The Oracle architecture described in this paper was based on an actual proof of concept 
for a customer looking to store archived data on optical disks yet still have access to this 
data without user intervention. The customer had a requirement to maintain 10 years 
worth of data on-line. Data less than a year old still had the potential to be updated thus 
will reside on conventional magnetic disks. Data older than a year will be considered 
archived and will be placed on optical disks. The ability to archive data to optical disk 
and still have access to that data provides the system a means to retain large amounts of 
data that is readily accessible yet significantly reduces the cost of total system storage. 
Therefore, the cost benefits of archival storage devices can be incorporated into the 
Oracle storage medium and UO subsystem without loosing any of the functionality of 
transaction processing, yet at the same time providing an organization access to all their 
data. 

Introduction 

As organizations rely more and more heavily on historicflegacy data for trend analysis 
and data mining for competitive advantage purposes, it is imperative that the organization 
has ready access to all its data. Maintaining data on-line, both historic and current, 
however, comes with the price of additional hardware costs (i.e., magnetic disk devices 
and their controllers). As data ages, it may not be accessed or updated as frequently as 
current data, yet still needs to be accessed on a periodic basis. An alternative means to 
effectively manage and store the data becomes necessary to ensure the organization has 
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to its data. The use of lower cost archival Storage 
storage provides the means to control costs and have ready 
relation4 data stores, such as Oracle’s ite@ture handle the sl 

typically associated with 

This paper will discuss a prototype system w used both magnetic media and near-line 
y with the Oracle7 re1 database management s 

aces, storing on-li 
odtrwsactions on 

nstance, An Oracle ipstance consists of an area of 
named the System Global Area (SGA) and a number of Oracle 

ses, To test the prototype, a C program and Oracle’s PLISQL modules, managed 
the movement of aged data from on-line tablespaces to archival tablespaces, 

The goal of the prototype was to prove to a customer that Oracle’s relational database 
management system can effectively manage their proposed system architecture, 
consisting of 10 years worth of data (approximately 1.2 terabytes), stored on both 
magnetic and optical media. The customer needed to ensure that data stored on magnetic 

e in a reliable and feasible 
er requires a cost-effective 

to grow over the years, 

ia can be accessed transparently by 0 
ng their performance criteria. The c 

means to store and provide access to their data which is 

Architecture 

The prototype architecture was designed us e, an optical jvke box 
and the Archival Management and Stor ) file system software. 
AMASS is a product of EMASS Incorporated, The file system is completely 
transparent and provides 
libraries on workstations and departmental servers. hitecture implements 
a block-based, direct what appears to be 
unlimited disk c es and media (volumes), normally 
considered off-li -line logical device with a single 
mounted file system. Th plemented at the virtual file system 

layer of the UMIX Kernel. Incorporation of the AMASS file system at the VFS 
layer provides system call transparency to host applications. The core modules of the 

ich are maintained in an on- 

ct access to botb op 

e syatem are: Metadata On-line Index, C 
contain file information in a fnode structu 

UO module, The AM 

re consisted of a total of four tablespaces. An Oracle database is 

drive using the UNIX 
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file system and the other two tablespaces’ datafiles were 
through AMASS. It should be noted that the datafiles on the 
separate disks. 

Oracle 8z AMASS VO Architectures 

Oracle and AMASS UO architectures match up perfectly and allow coexistence of both 
products. Both systems use a cached block UO management design to increase 
performance and minimize unnecessary UO to a storage device. 

Oracle manages its data in the database buffer cache section of the SGA. Database 
buffers store the most recently used blocks of database data. These buffers can contain 
modified data that have not yet been permanently written to disk. Users connect through 
user processes and communicates with the database through server processes. Oracle 
creates the server processes to handle requests from connected user processes. User UO 
requests, via application programs or dynamic access, are handled by system processes 
which handles read (server process) and write (database writer (DBWR)) requests. 
Oracle can be configured to vary the number of user processes per server process. In a 
dedicated server configuration, a server process handles requests for a single user 
process. A multi-threaded server configuration allows many user processes to share a 
small number of server processes. 

To access the data residing on the optical disks, the AMASS file system handles UO 
requests for the Oracle processes instead of UFS (UNIX File System). AMASS 
implements an UO cache area similar to Oracle’s SGA. The AMASS cache consists of 
raw partitions which are used as the staging area to handle readwrite requests between 
the media and the file system. If the data the user requests resides in cache, the request is 
satisfied immediately, otherwise UO processes request the appropriate media be loaded 
into a drive and then the data is subsequently read into the cache. The data is then 
returned to the requesting user process, which in this case, would be the Oracle server 
process. This block of data will also then be stored in the database buffer cache of the 
SGA until it is swapped out. 

Reads: If a user’s request for data exists in the database buffer cache of the SGA, results 
are returned immediately. If the requested data is not resident in the database buffer of 
the SGA, a server process requests the proper database blocks from either the UFS or 
AMASS datafiles and returns the data to the Oracle server process. If the data is 
physically resident on the AMASS datafile and the requested data blocks are in AMASS 
cache, the data is read into the database buffer, if not, the blocks need to be physically 
accessed from the optical media. 

Writes:Write requests between both architectures (UFS and AMASS) are handled in a 
similar manner. The SGA and AMASS cache have similar queuing rules. All Oracle 
database transactions - inserts, updates or deletes - are processed within the SGA. The 
changed database blocks are not immediately written to their respective datafiles. All 
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committed transactions are saved to Oracle redo log files to be used for database recovery 
if necessary. In all write operations, the Oracle server process, DBWR, flushes the dirty 
database blocks in the database buffer cache to the data’s respective datafiles. Datafiles 
resident on the UNIX file system are updated immediately. The datafiles on the AMASS 
file system are initially written to the AMASS cache. AMASS has its own processes that 
are responsible for flushing its cache to its storage media, in this case, the optical disk. 
AMASS has one Zibio-# process for each drive within the library. AMASS maintains a 
sorted queue of write requests in which the Zibio-# process reads to determine which 
blocks are available to be flushed to the optical disk. Additionally, Oracle and AMASS 
have different schemas to guarantee the SGA or AMASS cached data is not lost during 
system anomalies. 

Figures 1 illustrates the high level I/O flow between Oracle and AMASS. Figure 2 
illustrates how data blocks are passed through AMASS cache, the UNIX VFS layer, the 
Oracle SGA and finally to the user. 
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Prototvpe Proof of Concept 

Prototype Environment 

Configuration I :  Functionality Test 

The first test was conducted on an GI Challenge L Server. The server had 2 processors, 
32 Megabytes of main memory and a 2 gigabyte disk drive sharing a controller with other 
drives+ All the Oracle software, datafiles and redo logs were on the same disk drive. All 
monitoring and startups were initiated and processed on the server as opposed to a client, 

Configuration 2: Performance Test 

The second run was conducted on an SGI allenge Server. The server had 4 
756 Megabytes of main memory and six 2 gigabyte dual-headed barracuda 
striped across three controllers. All database monitoring and startup scripts were initiated 
from a client workstation. 

Both configurations used the same optical disk system. The system consisted of eight 
1.2 gigabyte drives, each one having its own SCSI ID. One controllei: was used for the 
optical disk system. The optical disks write at a rate of 300 KB/sec and can be read at a 
rate of 600 KB/sec. All transactions to and from the optical disk system are interfaced 
through an AMASS cache. The AMASS cache consisted of a 16 gigabyte RAID 5 
system. The AMASS cache consists of 9 tunable cache blocks per open file/Oracle data 
file. 

Both configurations used SGI’s IRK 5.3 UNIX operating system. The Oracle 
configuration consisted of Oracle7 release 7.2.2 of the DBMS, parallel query option and 
SQL*Net 2.2. 

Testing 

The database contained two identical tables, T-ACTIVE and T-ARCHIVE, four indexes 
(two per table) and a single view, V-MENU. The view was a union of a common set of 
columns from the tables T-ACTIVE and T-ARCHIVE. Appendix 1 contains the DDL 
for the creation of these objects. The software designed to test the archive concept was 
composed of three parts. 

Part I) Loaded table T-ACTIVE, to a magnetic disk via a PWSQL module vith 
10,000 rows, a sequence was used to ensure uniqueness. After the tab16 was 
loaded, the PL/SQL code updated the inserted rows to randomly spread out the 
value of the column; ‘changed-date.’ 

Part II) A C program selected a number of rows from T-ACTIVE that met a 
date condition on the ‘changed-date’ column. The rows that met the condition 
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were written to table T-ARCHIVE on an optical disk and its associated indexes 
were updated. The rows written to the optical disk were then deleted from 
T-ACTIVE. The tablespace that contains the archived table is usually maintained 
as a ‘read-only’ tablespace. Prior to running the second PL/SQL code, the 
tablespace in placed in ‘write’ mode. After the data to be archived was written, 
the tablespace was placed back in ‘read only’ mode. 

Part III) Issue a query that selects rows from the view V-MENU. The query 
was designed to select rows from both T-ACTIVE and T-ARCHIVE. 

Functionality Test 

The first test used an Oracle configuration with 2 KI3 database blocks and all the default 
settings for the various database (init.ora) parameters. Minor tuning was conducted on 
the Oracle kernel to provide incremental improvements (i.e., increasing the number of 
rollback segments, etc.). The results of test one proved that the concept was viable, 
however, performance was unacceptable. The following test results are for the first test, a 
summary of the results for both tests are shown in Table 1. 

Loading the table T-ACTIVE -- 0:06.0 (read 6 minutes) 
Migrating data to optical drives -- 1:13.37 
Querying both active and archived data -- 0:01.13 

The results of the functionality test precipitated discussions for the performance test. It 
was determined that the environment needed to be upgraded and tuned. The hardware 
architecture needed to be upgraded to increase main memory and add more disk drives. 
In addition, the Oracle database was not tuned on its initial installation (i.e., default 
settings were used) and significant improvement should be gained by altering a number 
of the adjustable parameters. The AMASS software and its associated cache have 
numerous adjustable parameters that were not fully utilized. It was determined that the 
performance test be conducted taking into account the following recommendations 
generated as a result of the functionality test: 

Rebuild the Oracle kernel with an increased block size 
Add memory to the SGI server and increase the number of database buffer blocks 
Separate indexes on the T-ARCHIVE table to a separate tablespace residing on a 
different optical disk 
Separate indexes on the T-ACTIVE table to a separate tablespace residing on a 
different magnetic disk 
Perform inserts with array processing 
Turn on read-ahead on the optical jukebox 
Tune the checkpoint interval on the database 
Have the SGI server dedicated to Oracle and not concurrently running the storage 
management software 
Initiate processing from a client workstation instead of a server 
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Performance Test 

The performance test was conducted on a new set of hardware as described above and 
through a client workstation. The Oracle instance was rebuilt with a 16 KB block size 
and larger redo log files and a larger temporary tablespace. With additional magnetic 
disks, separate data and index tablespaces were created leaving the Oracle software 
libraries on their own magnetic device. On the optical jukebox, two tablespaces were 
created, one for the data and one for the indexes. The tablespaces resided on different 
optical platters and thus different drives. 

The first run of the performance test used the same software as in the functionality test. 
In this test, T-ACTIVE was first loaded with 10,000 records and then with 100,000 
records to test loading times. The times to load T-ACTIVE were as follows: 

Load 10,000 rows -- 0:04.20 
Load 100,000 rows --0:09.29 

The initial PL/SQL script used to load table T-ACTIVE was modified into a C program 
with no array processing and one commit point. This load took approximately 1 minute 
and 2 seconds (0:01.02). The code was then further modified by removing the database’s 
sequence processing function and by not performing the update to the ‘changed-date’ 
column. The load under this scenario took 30 seconds (0:00.30). Since the test required 
various ‘changed-date’ values, the section of code used to vary the data in this column 
was replaced with Oracle’s DECODE process. The resulting load with this modification 
took 50 seconds (0:OOSO). The same modified code was used to load 100,000 records, 
this run took 6 minutes and 59 seconds (0:06.59). In terms of time, the two different 
loads were essentially linear, actually, the 100,000 record load was a bit more efficient 
than the smaller load. Comparing the 10,000 record loads between the functionality and 
performance test, the performance test showed an 86% improvement in load time. This 
improvement was attributed to application tuning and the hardware upgrade. Since the 
goal of this testing was to determine the feasibility of migrating data to optical disks, we 
accepted our loading results and shifted our attention to the migration process and did not 
revisit the loading process. The last load of T-ACTIVE was with 100,000 records. It is 
with this load that we tested the migration process. The results of the load portion of the 
performance test is as follows and an overall summary can be found in Table 1: 

Load of 10,000 rows -- 
Load of 100,000 rows -- 0:OOSO 

0:06.59 

The migration PUSQL code was run unmodified (i.e., same code as the functionality 
test) and took 44 minutes and 42 seconds (0:44.42). Instead of half the number of rows 
being migrated as in the functionality test, only a third of the records in the performance 
test were migrated. This difference was due to how we modified the loading script. It 
should be noted however, that we migrated 33,334 rows in the performance test vice the 
4997 rows in the functionality test -- the results of this migration in itself was a 
significant improvement time per the number of rows loaded as shown below: 
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Functionality Test Migration -- 
Performance Test Migration -- 67 rows/minute 

750 rows/minute 

The AMASS cache block was sized at 1 MB. Analysis of UO monitoring suggested an 
increase of the AMASS cache block. Enlarging the block size should cause fewer writes 
to the optical disk system. A size of 64 MB was determined to be sufficient to continue 
testing. The migration process was rerun taking 5 minutes and 50 seconds to migrate 
33,334 rows to the optical disk system. An 87% improvement from the previous run 
resulted. 

Migrate 33,334 rows with 1 MB AMASS cache block -- 0:44.42 
Migrate 33,334 rows with 64 MB AMASS cache block -- 0:05.50 (57 18 rows/minute) 

Considering the modifications to the Oracle kernel and the AMASS cache, the migration 
results have improved substantially. The Oracle Trace and TKPROF utilities were then 
utilized to fine tune the process. Because the migration PWSQL code included two select 
statements, both tables were altered to be parallelized with a degree of 8. The migration 
code was rerun with this modification with a resultant time of 5 minutes and 29 seconds 
(0:05.29). Reviewing the output of the TKPROF process, it was found that the temp 
tablespace was heavily utilized. As a result, we increased the Sort Size parameter to 10 
MB and added 16 batch writes to the init.ora parameter file. The migration process was 
rerun with the resultant time of 5 minutes and 1 second (0:05.01). 

Further investigation of the TKPROF output revealed that the ‘SELECT COUNT(*) 
FROM V-MENU’ SQL statements took on average 1 minute and 42 seconds to nm. 
This SQL statement was run at the start and end of the migration process. This means 
that approximately 3 minutes and 24 seconds or 67% of the migration time was devoted 
to counting the number of rows in T-ACTIVE and T-ARCHIVE. This SQL statement 
has a GROUP BY clause which is part of the view and not the physical table and thus 
results in two full table scans and does not employ any indexes. Therefore, due to the 
inordinate amount of time and processing that was consumed when querying the view, we 
replaced the provided SQL statement with the following SQL statement: 

select count (*), “Online” 
from T-ACTIVE 
UNION 
select count(*), “Archive” 
from T-ARCHIVE 

The migration process was rerun with a resultant time of 1 minute and 51 seconds 
(0:01.51). The modification of the migration process produced another 63% improvement 
in run time. All of this was attributed to the two queries, before and after the migration, 
took a total of .5 seconds vice 3 minutes and 24 seconds. The final breakdown, in time, 
of the entire migration process is as follows: 
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Alter Tablespace to read write -- .13 seconds 
SELECT COUNT(*) -- .25 seconds 
Select data to extract from T-ACTIVE -- 29 seconds 
Insert extracted data into T-ARCHIVE -- 38 seconds 
Delete extracted data from T-ACTIVE -- 40 seconds 
Alter Tablespace to read-only -- .13 seconds 
SELECT COUNT(*) -- .25 seconds 

Results 

Reviewing the whole migration process, it was determined, that the migration from 
magnetic media to the optical media actually takes place when the optical media’s 
tablespace is altered to read-only. When this occurs, the dirty pages in the SGA are 
written to the AMASS cache. At this point, the data is now archived. The actual write to 
the optical disk takes place when four of the nine AMASS cache blocks are full. 

The results of the performance test were much more conclusive. The improved hardware 
and the extensive tuning of the Oracle kernel, AMASS system and the test software 
proved to be essential modifications for the test. 

Table 1: Migration Test Results 

Operation 
Load of On-Line data 
table (10.000 rows) 
Migration of 4997 rows 
from On-Line to Near- 
Line (optical) and 
deletion from the On- 
Line device 
Query of view (union of 
both On-Line and Near- 
Line tables) 
-- After instance reboot 
-- Data cached 
-- Flushed cache 

Functionality Test Performance Test 
6 minutes 50 seconds 

1 hour 
13 minutes 
37 seconds 

1 minute 
51 seconds 

* migrated 33334 

1 minute 
13 seconds below) 

20 seconds N/A 
34 seconds N/A 

Note: The third part of the test (query using view V-MENU) was not conducted during 
the performance test. It was determined in the functionality test, that data on optical disk 
can be queried and subsequently selected along with data from magnetic media. 
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-or emDIoying the use of Long-Term Archival Technology 

(1) Write efficient application code and tune it for high performance! 

Probably the most important aspect of the archive function is that the application and 
associated SQL and PL/SQL code be as efficiently written as possible. During the 
development phase, the SQL and PL/SQL should be subjected to numerous tuning 
exercises under varying conditions. Proper access to the database significantly reduces 
the run-time of the archival process as was indicated in testing. 

Utilize the array interface when inserting a large number of rows into tables. Use to your 
advantage the decode statement to provide a way to avoid having to scan the same rows 
repetitively, or to join the same table repetitively. 

After the code has been written, use the utilities provided by Oracle. Run the ANALYZE 
command on the tables you’ll be querying. The ANALYZE command collects statistics 
about the tables and stores them in the data dictionary. Determine if the optimizer is 
selecting the most efficient access path for your SQL statements by running EXPLAIN 
PLAN. The EXPLAIN PLAN diagnostic statement gives you an inside look at how the 
optimizer is planning to process your SQL statement. The results of the analysis may 
provide the impetus to use hints in your SQL statements. Hints are a mechanism 
allowing you to manually tune individual SQL statements, overriding the optimizer’s 
decisions for that statement by including your own optimization hints within the SQL 
statement. 

Additionally, through the use of the parallel query option, you are able to scan intensive 
queries in a parallel fashion. Set the degree of parallelism close to the total number of 
disk heads on the drives containing the datafiles of the tables and indexes you are using 
during the archive process. 

(2) Strategic placement of database objects during physical database design! 

It is critical that the database objects (tables and indexes) associated with the archived 
data be placed on separate tablespaces. The tablespaces, if possible, should be accessed 
from different controllers. In addition, separate tablespaces for tables and indexes 
reduces the contention during the insertion of records and associated indexes. To further 
reduce contention, stripe the datafiles across multiple disks and controllers. 

(3) Tune the Oracle kernel (inikora) for optimal performance! 

The Oracle kernel must be tuned to take advantage of the inherent tunable features of the 
Oracle database. The first parameter to be set should be the DBBLOCK-SIZE. This 
parameter must be set prior to installing the database. For the performance test, we set 
this parameter to 16Kl3, we found that performance was enhanced when this was reset 
from its initial setting of 2KB. The following parameters should be set in the init.ora file: 
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OPTIMIZER-MODE -- COST 
The OPTIMIZER-MODE parameter tells the query optimizer, when set to COST, 
to use the cost based optimizer. If you are selecting more than 10% of your data, 
it is optimal for Oracle to use a full table scan to satisfy NCUNITS is an integer 
used in combination with the MAXIOSZ parameter to define the AMASS cache 
block size. The cache block size is determined by the following equation: 
your query. Couple this with Oracle’s parallel query option, significant 
performance improvements will be gained. 

SORT-AREA-SIZE -- 10 MB 
The size in bytes a user process has available for sorting. 
improvement can be substantial. Allocated on a per user basis. 

Performance 

ASYNC-IO -- TRUE 
This will allow parallel disk writes and have the potential of increasing 
performance 20%. 

DB-WRITERS -- 8 
Ability to perform multiple database writes. At a checkpoint the master database 
writer determines which blocks in the database buffer cache need to be written to 
disk. The master database writer divides up the work and notifies slave database 
writers to write blocks. A good value would be equal to the number of disks 
containing data files. 

DBBLOCK-WRITE-BATCH -- 16 
The number of blocks a database writer passes at one time to the operating system 
to write to different disks in parallel and to write adjacent blocks in a single UO. 
A good value would be equal to twice the number of DB-WRITERS. 

(4) 
performance! 

Tune the AMASS cache and associated system components for optimal 

Significant performance gains will be achieved by properly tuning the AMASS cache. 
AMASS has configurable options broken into the following four areas: cache 
configuration, performance, jukebox scheduling and miscellaneous. In the test of the 
archive concept, we tuned parameters that affected the cache and performance areas. 
Tuning in the cache area proved to be the most beneficial for the purposes of this test. 

maximum inputloutput size 

MAXIOSZ is the size, in bytes, that AMASS uses internally to read data from and 
write data to the optical media. It is recommended that MAXIOSZ be kept as 
large as possible to achieve maximum throughput rates. Initially, this parameter 
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was set to 1 MB and remained so throughout the test. This parameter is derived 
by the O/S vendors implementation of their scsi device driver. 

NCUNITS number of cache units 

NCUNITS is an integer used in combination with the MAXIOSZ parameter to 
define the AMASS cache block size. The cache block size is determined by the 
following equation: 

Cache Block Size = NCUNITS * MAXIOSZ 

The cache block is the basic unit used by AMASS to transfer data to and from the 
cache. When a file is read from or written to the AMASS file system media, it 
passes through the cache in cache block sized packets. 

The initial test, had this parameter set to 1. It was subsequently set and 
maintained at 64. We found that a 64 MB cache block size increased the 
performance of the transfer to the optical disk. 

NFNODES number of fnodes (file nodes) 

The NFNODES parameter defines the number of files that can be open 
concurrently in the AMASS file system, This parameter is automatically 
calculated during AMASS configuration based on the number of cache blocks 
available in the cache disk. 

The performance parameters define whether or not multiple cache blocks are read 
(READMEAD) as a file is read and if more than one volume is a volume group can be 
written to at a time. For our purposes, we modified the READAHEAD parameter. 

file read-ahead 

The READAHEAD parameter is either set to enabled (1) or disabled (0). When 
enabled, AMASS will automatically read the requested block along with an 
additional three cache blocks of data from the AMASS file system media with 
every read request. 

(5) Plan the periodicity of the archival process! 

The timing of the archival process should coincide during low level activities of the 
production system. If numerous tables are be queried and subsequently deleted from, this 
will result in an increased load to the production system. Logic calls for query and 
modification type activities of a batch nature to be conducted during relatively quiet 
periods of system inactivity. 
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(6) Sizing of the Jukebox 

The I/O bottleneck is directly related to the number of optical devices within your 
jukebox as related to Oracle users requests that do not have data in the SGA or the 
AMASS cache. Observed rates of 600 KB/sec on reads and 300 KB/sec on writes were 
observed and expected. 

The implementation of optical media in an Oracle database environment, to the 
knowledge of the authors, has never been attempted in a production environment. 
Therefore, it is necessary to test and evaluate various database activities within this new 
environment to verify all database functionality and administration features operate as 
they do in an all magnetic media environment. The customer proof of concept we 
conducted did not have the time to do a thorough investigation of all the different 
possible scenarios a typical IS organization may use. Following are some of the areas 
that need further investigation to fully ensure the viability of using long-term archival 
storage media. 

System Startup 

The Oracle control file contains the names and locations of the datafiles which are opened 
and checked for integrity. Upon startup, Oracle opens and checks each datafile associated 
with a tablespace for database instance integrity. Therefore, for each tablespace space 
created, Oracle will cause the optical media to be loaded into the MO drive and verify the 
file’s tablespace header information. Startup times will be slower the traditional Oracle 
disk instance. 

Archive Considerations 

Select & Insert (DML): An Oracle implementation with optical disks is best suited for 
transactions that do queries and initial loading of data with inserts. Data inserted onto 
optical disks should be archived data which is typically static and will not be altered in 
the future. Queries on the archived data will successfully transfer data at the expected 
read rates of the optical media, 600 KB/sec. Inserts exceeds performance requirements 
due to the AMASS cache and write algorithms implemented within the AMASS cache 
I/O architecture. 
Update (DML): AMASS does not handle dynamic columdrow size updates the same 
way as a disk device. In archive architectures the media is formatted and the archive 
software can not update a used block on the media. The process for an update of a data 
block is to copy the block into memory, mark the current media block as unusable, in 
memory update the block with new results, then write the new memory block(s) to the 
optical media. The only case where a block is not marked invalid is when an update does 
not increase or decrease the data within a block. 
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Oracle database block row chaining and row migration should be avoided or further 
dead space issues on media will result. 

Performance 

Writes are not limited by Oracle and AMASS, but enhanced, since Oracle allocates 
contiguous data blocks with in an extent. AMASS writes will be done contiguously since 
the creation of the tablespace within Oracle opens the datafile location(s) and allocates a 
contiguous set of blocks on media. 

The AMASS I/O cache and Oracle database buffer cache both use an LRU algorithm 
which does not contend with the I/O among both software kernels. Sizing of the database 
buffer cache (shared memory) and AMASS cache (rdsk) are related when tuning and 
sizing the architectures to meet system throughput requirements. 

Matching AMASS cache block size to Oracle's database block size did not significantly 
improve performance, rather having a larger cache block sizes proved I/O gains for the 
large insert transactions and full table scan queries. This results due to the manner in 
which AMASS handles its cache blocks for YO. 

Read times can be enhanced within Oracle by setting the initialization parameter, 
DB-FILE-MULTIBLOCK_READCOUNT, to match your queries. Additionally, the 
AMASS architecture was tuned for read-ahead. 

Archive Technologies 

The AMASS I/O architecture reads and writes data in blocks. Other archive architectures 
which use block I/O may work as well. Archive architectures that perform I/O using file 
format may not provide the same ease of use, ease of administration and good media 
space management. 

Indexes 

Depending on queries and mechanical robotic movement, the use of indexes may reduce 
performance significantly. Using full table scans may be the correct approach. Further 
testing is necessary in this area. Functionally, indexes were proven to work. In our 
testing, and by the advice of database tuners, indexes should be created and placed on the 
same optical disks as its base table. Separation of indexes spreads the I/O request across 
media and removes medja thrashing caused by having two data structures on the same 
media. Another alternative is to create the archived table's indices on magnetic media. 
This should result in improved performance by removing the extra robotic movement 
time of loading the index tablespace in the drive. 
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Tape Technology 

The use of tape technology was not tested but needs to be discussed. Optical testing was 
performed due to the customer’s media life expectancy requirement. It is possible 
though, that tape technology could be used as the archival medium. Some of the factors 
that need to be considered and tested are as follows: 

0 The effect of Oracle startup and the effects of reading the header of each tablespace 
during the database integrity start up phase. 

0 Tape thrashing. Accessing a set of tables randomly, e.g., first table at end of tape, 
second in middle of tape. Additionally, user programming may be necessary when 
accessing table data in order to gain acceptable query and UO transfer rates. User 
applications should consider querying tables in sequential order as they were written 
to tape. 
Use of indexes may not be beneficial at all, indexes would need to reside on disk. 

Robotic Hardware 

Jukebox sizing is based totally on the user’s requirements. 
considerations are as follows: 

Some of the hardware 

0 Response time 
0 Simultaneous insert transactions 
0 Simultaneous query transactions 
0 Off-line media management acceptability 

Conclusion 

This exercise proved the concept of migrating data from magnetic devices to optical 
devices. Not only is it possible to do so, but performance-wise it is feasible. It was found 
that properly tuning the Oracle kernel, the AMASS cache system, system memory and 
I/O and the application code, the actual migration process is essentially a function of 
selecting requested data, inserting this data into another table and then deleting selected 
rows from the table on the magnetic media. 

The prototype architecture, as shown in the proof of concept, provides the means to 
architect VLDB cost-effectively by using disk and optical storage devices using COTS 
products. This architecture should allow businesses to respond to customer needs by 
maintaining information on-line and near-online and having access to their data in a 
transparent manner. 

225 



Acknowledgments 

Vangard Technologies: Eric Eastman and Dave Donald 
1121 1 East Arapahoe Road 
Englewood, CO 

Lab Environment and Optical Library 
AMASS Documentation Suite . 

800- 840- 6090 

Silicon Graphics Inc.: Liz Reynolds and Fred Beck 
Denver, CO 
Challenge L hardware 

Emass Incorporated 
10949 East Peakview Ave 
Englewood, CO 

AMASS Software 
800-654-6277 

Oracle Corporation: Joe Conway 
Advanced Programs Group 

Oracle 7.2 Server Tuning 
Oracle7 Server Concepts 
Open Data Warehousing with Oracle 7 Parallel Data Management Technology 

226 



Appendix 1 

CREATE TABLE T-ACTIVE 
( 
MENU-NUM NUMBER(9) 

MENU-LABEL VARCHAR2(2000) 

ADDED-USER-ID VARCHAR2( 15) 

CONSTRAINT CARMENUC-NUM-NN NOT NULL, 

CONSTRAINT CARMENUC-MENU-LABEL-NN NOT NULL, 

DEFAULT SUB STR(USER, 1,15) 
CONSTRAINT CARMENUC-ADDED-USER-ID-NN NOT NULL, 

CONSTRAINT CARMENUC-ADDED-DATE-NN NOT NULL, 

DEFAULT SUB STR(USER, 1,15) 
CONSTRAINT CARMENUC-CHANGED-USER-ID-NN NOT NULL, 

DEFAULT SYSDATE 
CONSTRAINT CARMENUC-CHANGED-DATE-NN NOT NULL, 

PRIMARY KEY (MENU-NUM) 
USING INDEX PCTFREE 5 
TABLESPACE ONLINE 
STORAGE ( 

ADDED-DATE DATE 

CHANGED-USER-ID VARCHAR2( 15) 

CHANGED-DATE DATE 

CONSTRAINT IAMENUO 

INITIAL 150K 
NEXT 150K 
PCTINCREASE 0 
1 

CREATE INDEX IACTIVE-CHANGED-DATE ON T-ACTIVE 
(CHANGED-DATE) 
TABLESPACE AINDEX 
STORAGE ( 

INITIAL 150K 
NEXT 150K 
PCTINCREASE 0 
1 

CREATE TABLE T-ARCHIVE 
( 
MENU-NUM NUMBER(9) 

CONSTRAINT CARMENUC-NUM-NN NOT NULL, 
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MENU-LABEL VARCHAR2(2000) 

ADDED-USER-ID VARCHAR2( 15) 
CONSTRAINT CARMENUC-MENU-LAE3EL-NN NOT NULL, 

DEFAULT SUBSTR(USER, 1,15) 
CONSTRAINT CARMENUC-ADDED-USER-ID-NN NOT NULL, 

CONSTRAINT CARMENUC-ADDED-DATE-NN NOT NULL, 

DEFAULT S U B  STR(USER,l ,15) 
CONSTRAINT CARMENUC-CHANGED-USER-ID-NN NOT NULL, 

DEFAULT SYSDATE 
CONSTRAINT CARMENUCCHANGED-DATE-NN NOT NULL, 

CONSTRAINT IARMENUUO 
PRIMARY KEY (MENU-NUM) 
USING INDEX PCTFREE 5 
TABLESPACE ARCHIVE 
STORAGE ( 

ADDED-DATE DATE 

CHANGED-USER-ID VARCHAR2( 15) 

CHANGED-DATE DATE 

INITIAL 150K 
NEXT 150K 
PCTINCREASE 0 
1 

) 

CREATE INDEX IARCHIVE-CHANGED-DATE ON T-ARCHIVE 
(CHANGED-D ATE) 
TABLESPACE ARCHINDEX 
STORAGE ( 

INITIAL 150K 
NEXT 150K 
PCTINCREASE 0 
) 
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Abstract 

In order to reduce costs, computer manufacturers try to use commodity parts as much as 
possible. Mainframes using proprietary processors are being replaced by high 
performance RISC microprocessor-based workstations, which are further being replaced 
by the commodity microprocessor used in personal computers. Highly reliable disks for 
mainframes are also being replaced by disk arrays, which are complexes of disk drives. 

In this paper we try to clarify the feasibility of a large scale tertiary storage system 
composed of 8-mm tape archivers utilizing robotics. In the near future, the 8-mm tape 
archiver will be widely used and become a commodity part, since recent rapid growth of 
multimedia applications requires much larger storage than disk drives can provide. We 
designed a scalable tape archiver which connects as many 8-mm tape archivers (element 
archivers) as possible. In the scalable archiver, robotics can exchange a cassette tape 
between two adjacent element archivers mechanically. Thus, we can build a large scalable 
archiver inexpensively. In addition, a sophisticated migration mechanism distributes 
frequently accessed tapes (hot tapes) evenly among all of the element archivers, which 
improves the throughput considerably. Even with the failures of some tape drives, the 
system dynamically redistributes hot tapes to the other element archivers which have live 
tape drives. Several kinds of specially tailored huge archivers are on the market, however, 
the 8mm tape scalable archiver could replace them. 

To maintain high performance in spite of high access locality when a large number of 
archivers are attached to the scalable archiver, it is necessary to scatter frequently accessed 
cassettes among the element archivers and to use the tape drives efficiently. For this 
purpose, we introduce two cassette migration algorithms, foreground migration and 
background migration. Foreground migration transfers a requested cassette from an 
element archiver whose drives are busy to another element archiver whose drives are idle. 
Background migration transfers cassettes between element archivers to redistribute 
frequently accessed cassettes, thus balancing the load of each archiver. Background 
migration occurs the robotics are idle. Both migration algorithms are based on access 
frequency and space utility of each element archiver. To normalize these parameters 
according to the number of drives in each element archiver, it is possible to maintain high 
performance even if some tape drives fail. We found that the foreground migration is 
efficient at reducing access response time. Beside the foreground migration, the 
background migration makes it possible to track the transition of spatial access locality 
quickly. 
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I. Introduction 

Recently, large scale tertiary storage systems are becoming is more and more desired for 
multimedia applications or scientific data such as satellite images. Today, magnetic disks 
have become cheap with large capacity, however, this capacity is still not enough to 
archive multimedia data or satellite images. To archive huge data sets, magnetic tape 
archivers which have some tape drives and robotics for management of the tapes in them, 
are often used, but most of the current commercial tape archivers are not scalable and 
there is no way to migrate data from one archiver to another except by copying the data. 
Accordingly it takes a long time to redistribute data. 

To address these issues and aiming towards scalable commodity archivers, we have been 
developing a scalable tape archiver for satellite images. It consists of some commodity 
element archivers and tape migration units between two adjacent element archivers. We 
believe a reasonable size tape robotics will become a commodity component in the near 
future. It is easy to add or remove element archivers to the scalable tape archiver at any 
time and any number of element archivers can be attached. To redistribute data, a cassette 
is transferred from one element archiver to another through the tape migration unit instead 
of copying data. 

In this paper, we present a cassette migration mechanism for the scalable archiver and its 
performance evaluation. The scientific data such as satellite images are characterized not 
only by their size but also by access locality. Accordingly, when storing these data, 
efficient utilization of the tape drives and the proper positioning of frequently accessed 
cassettes substantially affects the performance. In order to achieve high performance in 
spite of changing access locality, two load balancing mechanisms, foreground migration 
and background migration, are introduced to the scalable tape archiver. The foreground 
migration transfers a requested cassette from an element archiver whose drives are busy 
to another element archiver with idle drives. Background migration transfers a cassette to 
redistribute frequently accessed cassettes between idle element archivers. The foreground 
migration is efficient at reducing access response time. Beside the foreground migration, 
the background migration makes it possible to track the transition of spatial access locality 
quickly. 

I. Design of The Scalable Tape Archiver 

The scalable tape archiver is composed of any number of small size tape archivers 
(element archivers) and cassette migration units connecting any two adjacent element 
archivers. Figure 1 shows the organization of the experimental scalable tape archiver 
using an 8mm tape jukebox, NTH-200B7 as the element archiver. The NTH-200B has 
two Exabyte 8505 tape drives, a tape handler robot and a cassette rack with 200 slots. It 
also has a controller for its own tape handler robot and for the tape migration unit on its 
right. The host computer sends commands for holding, releasing and moving a tape and 
so on to the controller and receives the status of the element archiver through an RS-232C 
port. The tape handler robot takes a cassette from a slot in the rack or from the drives and 
places it in another slot or drive according to the command received. The tape drives are 
normal Exabyte 8505’s and are connected to the host computer through a SCSI bus. The 
tape migration unit has a wagon to migrate a cassette tape to another element archiver. 
Cassette tape migration is executed as follows. 
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1. 

2. 

3. 
4. 

5. 

The tape migration unit brings the wagon back into the source element archiver, if the 
wagon is not currently in the source element archiver. 
The tape handler robot in the source element archiver takes the cassette to migrate 
from a slot or a drive. 
The tape handler robot places the cassette in the tape migration unit’s wagon. 
The tape migration unit sends the wagon from the source element archiver to the 
destination element archiver. 
The tape handler robot in the destination element archiver picks up the cassette tape 
from the wagon, and places the tape into the appropriate slot or drive. 

These steps are coordinated so that the counterweight of the tape handler robot does not 
interfere with the movements of the tape migration unit. 

Figure 1 
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I. Cassette Migration Strategy 

A. Access locality 

First, we describe the heat and temperature metrics [ 11. The heat is the access frequency 
of a cassette or an archiver over some period of time. The heat of a cassette is the sum of 
its access frequencies and the heat of an archiver is the accumulated heat of the cassettes in 
it. Temperature is defined as the heat of a cassette or as the heat of the archiver divided by 
the number of tapes it contains. 

High access locality hinders the efficient use of the archivers. If hot cassettes are 
concentrated on a few element archivers, the hot element archivers may receive too many 
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archiver consists of sixteen element archivers and the initial distribution of the cassette 
tapes in the scalable tape archiver is shown in Table 2. The access locality follows an 
80/20 rule, that is 80% of the accesses are to 20% of the cassettes. 

A. Simulation results 

Figure 2 shows the average response time after 50,000 accesses from the initial cassette 
distribution. Compared to the result of no migration, response time is significantly 
reduced when only foreground migration is introduced into the scalable tape archiver. 
Furthermore, using background migration can produce in addition more improvement. 
Figure 3 shows the average response time at intervals of even 2,000 accesses where the 
request arrival rate is 0.045 requests per second. Between the two background migration 
strategies, there is no difference, but using background migration makes it possible to 
track the changing of access locality quickly. 

Table 1: Simulation Parameters 

Number of element archivers 
Maximum number of cassettes in an element archiver 

I Robot 
average 
move time + robot move time with holding and nlap;nq cassette 

ve setup time + 
pe eject time + robot 
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Table 2: Initial cassette tape distribution 
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Figure 2: Average response time of initial 50,000 accesses 
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Figure 4 shows the average response time after 50,000 accesses from the initial cassette 
tape distribution when all tape migration wagons in the scalable tape archiver move 
slower. It takes 30 second to move the slower wagon from an element archiver to 
another, while it takes 9 second to move our experimental scalable tape archiver's. The 
cassette tape migration achieves better performance than using no migration even if the 
tape migration wagons are slower. The slower tape migration units do not deteriorate the 
performance very much. Therefore it is not necessary to use expensive high speed tape 
migration units. To connect some inexpensive small size commercial tape archivers with 
low cost tape migration mechanisms improves the performance significantly. 
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Figure 5 shows the average response time at intervals of 2,000 accesses from the initial 
state. In this simulation, a drive in the eighth element archiver fails when the scalable tape 
archiver receives 10,000 requests and it recovers after receiving 20,000 more requests. 
Figure 6 also shows the average response time at intervals of 2,000 accesses from initial 
state where both drives in the eighth element archiver fail and recover. The heat balancing 
strategy and the space emphasizing strategy are selected as foreground migration and 
background migration respectively. The average response time of the scalable tape 
archiver is not affected by the single drive failure significantly. Two drives failure 
deteriorates the average response time when the request arrival rate is 0.055. However, the 
scalable tape archiver can serve requests for the tape in the eighth element archiver, which 
has no drive in it, while ordinary archivers do not work in this situation. 
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Figure 5: Average response time measured at intervals of 2,000 requests with single 
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I. Conclusion 

In this paper, we described the design of a scalable tape archiver and the cassette 
migration algorithms for it. Only using foreground migration led to a large improvement 
in performance of the scalable archiver. In addition to foreground migration, background 
migration can improve performance even move. Using background migration together 
with foreground migration, the scalable tape archiver can continue to serve the requests, 
even when some drives fail. 

We have already finished designing and developing the hardware of the scalable tape 
archiver and are now developing software for the scalable tape archiver. In the future we 
will examine the behavior of the scalable tape archiver with data striping. 
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Abstract 

This paper reports on the multiple difficulties inherent in the long-term archiving of 
digital data, and in particular on the different possible causes of definitive data loss. 

It defines the basic principles which must be respected when creating long-term archives. 
Such principles concern both the archival systems and the data. 

The archival systems should have two primary qualities: independence of architecture 
with respect to technological evolution, and genericness, i.e., the capability of ensuring 
identical service for heterogeneous data. These characteristics are implicit in the 
Reference Model for Archival Services, currently being designed within an ISO-CCSDS 
framework. A system prototype has been developed at the French Space Agency (CNES) 
in conformance with these principles, and its main characteristics will be discussed in this 
paper. 

Moreover, the data archived should be capable of abstract representation regardless of the 
technology used, and should, to the extent that it is possible, be organized, structured and 
described with the help of existing standards. The immediate advantage of 
standardization is illustrated by several concrete examples. 

Both the positive facets and the limitations of this approach are analyzed. The advantages 
of developing an object-oriented data model within this context are then examined. 
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1. Introduction 

The observations and data gathered during spaceborne scientific payloads carried on 
board satellites or interplanetary probes are archived on the ground in the form of digital 
data, which are generally accessible to the PI teams or to larger communities. After more 
30 years of experience in this field, the following facts have been observed: 

- the volume represented by this data is always on the increase; 

- some of the data has been lost because the physical medium became unreadable; 

- other data has been or is likely to be lost because its structure was dependent on 
operating systems which are now obsolete; 

- other data has been lost because an exhaustive and correct data description was no 
longer available; 

- it has turned out to be impossible to keep as many access sofhvares in operating order as 
there are sets of data - essentially for reasons related to cost. Consequently, some of the 
data, while not actually lost, is no longer accessible; 

- knowledge - or rather human expertise - concerning the oldest data is quickly 
disappearing. 

Within this context, a safeguard plan for conserving data archived on 70,000 magnetic 
tapes at the French Space Agency (CNES) has recently been implemented. This data 
represents, for the most part, a priceless scientific heritage which should remain of great 
interest for several decades to come, or even longer. The cost of producing this data 
represents, in fact, the cost of all scientific space missions since the 196O's, which is, 
needless to say, enormous. 

In practice, most of the observations made above are valid in many other fields 
(scientific, cultural, audio-visual, industrial, etc.). They boil down to the contradictions 
between the need to archive data in the long term and the speed at which the technology 
being used becomes outdated. Generally speaking, the loss of digital data is very often 
'insidious', as the digital data is not physically 'visible'. Due to this fact, its degradation 
does not strike the mind as strongly as the deterioration of a book, for example, whose 
characters get less and less readable with time, or like an historical monument which 
crumbles to the ground. 

This analysis led us to undertake a thorough technical study of the problems posed by 
long-term archiving. We reached the conclusion that the setting up and maintenance of 
long-term archival services can only be achieved if certain stringent conditions are 
imposed on the archival systems and data. 
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In order to avoid any ambiguity in the vocabulary, let us specify that by the term archival 
system, we mean a hardware and so 
functions: insertion of the data suppli 
and anything needed for i 
dissemination of the data to the users. Such a system is itself a component of 
service, which is the human organization which, in 
operating order. 

Briefly, it may be said that archival systems should respect two main requirements: 

- the independence of their architecture with respect to technological evolution: any 
archival system relies on rapidly evolving technologies and must thus be able to evolve 
along with these technologies. Nevertheless, its architecture should be such that 
technological evolutions in one field (the physical media containing the data, for 
example, or else the user interface) should not have repercussions leading to an 
uncontrollable chain reaction throughout the system. The system components must thus 
not be correlated among themselves. This characteristic led us to reflect on the modelling 
of archival services, and to design a Reference model for these services [4]. 

- the genericness , i.e. the capability of ensuring an identical service for heterogeneous 
data. The primary aim of this genericness is to reduce the volume of software to be 
maintained. 

At the same time, the data should also take into account two other requirements: 

- its independence with respect to any technology: the data should be capable of an 
abstract representation which is completely independent of the technology being used, 

- the application of standards to the data in terms of structuring, organization, 
description, etc. The application of such standards is a necessary condition if the 
objective of genericness, defined at the system level, is to be attained. 

An archival system prototype was developed by CNES in 1995 to test such an approach. 

later in this article we will analyze - through the lessons learned in our experiments - the 
consequences of the requirements specified for the system level and for the data and 
metadata level. 

2. The problem on the system level 

It has been seen that any archival system is based on rapidly evolving technology. Our 
purpose should thus be to construct a modular 

pendent from the others to be ab1 
stem in which each 
evolve individually 

e or the principles of inter-component communication into 
question. 
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At the level of the MMI component, the emergence of W3 is a typical example of rapid 
technological change. The use of X11 -type client-server systems has very quickly 
become outdated. Many access systems have thus become obsolete. Only those systems 
designed with an independent MMI component were able to adapt easily to this new 
technology. 

These considerations first led us to look for a solution in terms of a general model for a 
long-term archival service which would be totally independent of technological advances. 
Other teams, in particular in the USA, have taken a similar approach and it soon became 
clear that we shared a common view of the problem on the first level of the model. 

This first level of the archival service model was no more than an outline and an 
elaboration of an actual Reference Model which is currently being used within an ISO- 
CCSDS framework [4]. We shall thus limit ourselves to a rough description of this first 
model, and then go on to describe a system prototype developed by us in conformance 
with this preliminary model version, along with the lessons learned fiom this prototype. 

It seems useful first of all to define the limits of an archival service and to identifj the 
external elements interacting with this service. The following four external elements may 
thus be distinguished: 

the data producers, 
the data users, 
the system administrator, 
the authority responsible for choices and for decisions regarding policy and financing. 

At the level of the model diagram shown below (figure l), we have not included the latter 
since its interaction at the level of the archival system is limited. 

The service itself consists of five major functions (or sub-services) with respect to the 
data : (see figure 1) 

ingest, which serves as the interface between the data producers and the service. This 
function controls the conformance of data and metadata provided by the producers 
with respect to the requirements defined by the archival service (standardization, etc.) 
and performs the actual insertion of this data and metadata into the service. 

physical data storage, involving an interface which hides the internal architecture. 
This storage may be designed to comply with the IEEE Mass Storage System 
Reference Model, 

data management , based on the organization of metadata, 

access to metadata which makes it possible for the service to check the user's access 
rights and for the user to be aware of the available data and to define a query, 
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* dissemination which makes it possible to retrieve the data from the storage service, to 
extract the parts in which the user is interested, and to deliver these parts to him. 

Note : The distinction between external and internal elements must be made clear before 
the limits of a long-term data archival and access system may be defined. In our 
approach, the formatting of the data into a normalised and long-lasting format is done by 
the data producer rather than by the archival system. Similarly, any processing for the 
purpose of data analysis is the responsibility of the data user, while the service is 
uniquely responsible for delivering the data corresponding to the user's query. 

n 
PRODUCER 

~ I I 
I 

STORAGE DlSSlMINATlON 

CONSUMER ic 
E 3  ADMINISTRATOR 

Figure 1: Preliminary view of the archival service model 

Architecture of the first prototype 

An archival system prototype was designed essentially on the basis of the modelling 
principles defined above, by making use of components already installed and used by 
CNES. Each component will be specified below, along with its description. 

The system proposes access to chronologically ordered data. W Within the system, a 'set 
of data' is characterized by a set of homogeneous data acquired in the same experiment, 
and having undergone the same processing. The principal components of a user query are 
the set of data and one or more time intervals with which it is associated. 
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* The storage system used is STAF (Service de Transfert et d'tlrchivage des Fichiers, or 
"File Transfer and Archival Service"). This system for the long-term physical 
preservation of data was set up at CNES 2 years ago. It functions in a heterogeneous 
environment, and is based on a client-server architecture. The client, responsible for 
data archiving and retrieval, functions on different host systems (UNIX, NOS-VE, 
etc.). This type of architecture makes the storage technology, and thus its evolution, 
invisible to the user (see figure 2). 

2 x 5500 I Go Cartridge = I 1  TeraBytes 180 GigaBytes 

IBMR22 I 

Wide Area Network 

SOLAWS UNICOS NOSNE 
HPAJX 
AIX 
etc ... 

Figure 2: STAF diagram 

* Metadata is managed by means of an ORACLE relational data base (cf. figure 3). This 
concerns for the most part the set of references for data placed in the storage service. 
The data base also manages : 
- the data protection, 
- the management of browse data (quick-looks), 
- the resources and quotas allotted to each user. 
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Figure 3: The main elements managed by the data base 

The data ingest service inserts only the metadata into the system, at the level of the 
data manager. This is performed by software based on the Oracle SQL*loader tools. 
The insertion of the data itself at the level of the storage function is independently 
performed by the data producers. 

The access service is based on a WWW server. The latter is linked to the data base by 
means of a cgi-bin written in Pro*C. The WWW server is responsible for checking the 
user's identification. This service is a critical point in the system, as it provides system 
access throughout the Internet. It has thus undergone a security study, to prevent any 
ill-intentioned intrusion. 

The data dissemination service is the set of generic programs enabling both the 
retrieval of data from the archive and its delivery, either by means of an FTP onto the 
user station or, at the level of the server station, into a W3 directory owned by that 
user. These programs, written in C, depend on a standardized date format, and use 
EAST descriptions [2] to extract the parts in which the user is interested from the 
archived files (see 6 3.2). 
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Based on SQL’Loader 

\ / + 6 G On-Line DATA row 
I 

DlSSlMlNATlON 

STAF FTP ... 

Figure 4 : The prototype architecture 

3. The problem as far as the data and metadata are concerned 

3.1 Fundamental rules for data independence with respect to the technology 

The first fundamental rule, which is clearly necessary, is the independence of the data 
with respect to the machines, the operating systems and its environment in general. Any 
digital data item can be abstractly represented by a sequence of bits divided into fields. 
Each field may be subdivided into sub-fields, and the latter may be further subdivided 
until indivisible units of information are reached. The first rule requires in particular: 

- that the bit sequence contain no information inserted by the operating system which 
created it: only the relevant bits defined by the user shall be included. Consequently, the 
use of any file structure into which the operating system has inserted information to help 
in administration or control is strictly forbidden. 

- that the coding of elementary fields be performed in conformance with recognized 
standards (ISOAEC 646 for characters, IEEE for floating-point numbers, standard 
representations of images and graphs, etc.) and that any representation specific to a given 
manufacturer be prohibited. 
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The second rule to be appli oncerns the necessity of h 
description of the bit sequence available: the position 

the abstract representation o 

given field. 

3.2 The application of advanced data standards and the key to system genericness 

The infinite diversity of information representations which may be imagined is such that 
it is certainly useless to try to provide advanced and generic data access facilities without 
first investing in the standardization of these representations. Let us consider two simple 
examples which we have encountered, concerning the standardization of times and dates 
on the one hand, and the standardization of descriptions on the other hand. 

Standardization of times and dates : in certain scientific disciplines such as Space 
Physics, data is often organized chronologically. We discovered in the older data that the 
variety of time and date representation formats was almost as large as the number of 
existing data sets. Given such a situation, when a user is interested in data for a given 
time frame, two options exist : 

- either to supply the archived files containing this time frame, which is hardly 
satisfactory, 

- or to develop and implement at the archival system level a specific extraction program 
for each set of data, an unrealistic approach with respect to the long-term perspective. 

It quickly became obvious that a standardization of times and dates would resolve this 
problem in a satisfactory manner. We therefore selected the standardization proposed by 

defined by the user from one or more files. 
in figure 5 below, to extract only that data 

ch corresponds strictly to the time frame requested by the user. The extraction 
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Archived Files Results sent to the user 
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OR 

/ E.T.3 

Figure 5: Extraction of chronologically ordered data 

1 file 

I 
Standardized data descriptions : we discovered that the data was often described either 
incompletely (certain fields are left out of the description) or incorrectly (due to changes 
in the data creation program which were not carried over to the description documents). 
Moreover, the form of the description generally differs from one project to the next. The 
beginnings of a solution to this difficult and crucial problem in long-term archiving were 
found through the standardization of data description languages. 

Our experiment, in our first prototype, was based on the EAST language (Enhanced Ada 
SubseT, [2]. This is a formal language around which certain general tools have been or 
are currently being developed. Worth mentioning in this field, in particular, are the Data 
Description Record Generator, the Data Generator, the Data Interpreter and the Data 
Formatter [3]. 

The interactive creation of data descriptions in EAST is performed with the help of a 
graphical interface, and the use of these descriptions for reading and writing data makes it 
possible to guarantee, during construction, the consistency between the data and its 
description. 

Within this framework, we experimented with the use of a generic tool enabling the user 
to select a subset of information fields present in the archive. 
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The use of this tool involves two stages: 

Figure 6 : Field extraction 

The above are two meaningful examples with which we have experimented. They 
illustrate the correlation between the level of data and metadata standardization which we 
were able to attain and OUT capacity to preserve and keep the data accessible in the long- 
term. 

4. Learned lessons 
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Sweden VIKING, ISEE1, VOYAGER, GEOS). No specific tool had to be developed to 
make this data accessible through our prototype. 

The service provided to the user is much better than the simple extraction of data from an 
archive, and since the volume of data transmitted to the user corresponds only to that data 
in which he is actually interested, there is a much more free space on the network to 
perform these transmissions. 

Scientists do not naturally apply standards simply on principle. On the other hand, in a 
case such as that of times and dates, when the experiment teams applied the standard at 
the moment of data production, they perceived it as a way of immediately obtaining a 
better access service. 

The limitations 

The use of a relational model is the main limitation of our system. Adding a new 
selection criterion other than those defined at the moment of installation involves serious 
modifications both in the relational model of the metadata management function and in 
presentation at the level of the access function. This limitation curbs the open-endedness 
of the system. 

5. Conclusion: towards an object-oriented data model 

Without going into the details of work currently being performed on the object-oriented 
modelling of a long-term archival service, we shall explain a few important concepts: 

Data with shared characteristics can be collected into sets known as 'collections'. 
These collections can then be grouped together into 'collection groups', the collection 
groups themselves can be grouped together as well, and so on. Moreover, a collection 
may belong to several distinct collection groups. This representation led us to the 
construction of a directed graph. 

In order to define a query, a user will navigate through a directed graph which groups 
the data together according to scientific field, selection criteria or any other shared 
characteristic. To reach the data itself, each group offers selection criteria by means of 
which the user may select a given daughter group. This approach will provide the user 
with an infinite number of possibilities when searching for interesting data: if he 
wishes to create a new search route, he need only install the new groups needed to 
propose it. 

The lowest level group is a data collection grouping together a set of elementary 
logical data objects, while these logical objects are themselves made up of storage 
objects, Le. in the general case, files. This approach, which may seem complicated at 
first glance, provides the system with considerable flexibility. A collection could 
correspond to a virtual data set, created at the same moment as it is being accessed. 
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For example, a set of image data can, at the level of storage, be made to correspond 
either to files containing several images or to files containing only a part of an image: 
through this approach, this becomes invisible to the system, which enables access to a 
collection of images reconstituted during this access, either by cutting up a file or by 
concatenating several files. 

Selection criteria for specific cases are available at the level of the groups or 
collections, and the same approach could also permit transformation or delivery 
criteria which could be applied to the data collections. 
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1. Introduction 

The demands placed on the mass storage systems at various federal agencies and national 
laboratories are continuously increasing in intensity. This forces system managers to 
constantly monitor the system, evaluate the demand placed on it, and tune it appropriately 
using either heuristics based on experience or analytic models. Performance models 
require an accurate workload characterization. This can be a laborious and time 
consuming process. In previous studies [ 1,2], the authors used k-means clustering 
algorithms to characterize the workload imposed on a mass storage system. The result of 
the analysis was used as input to a performance prediction tool developed by the authors 
to carry out capacity planning studies of hierarchical mass storage systems [3]. It became 
evident from our experience that a tool is necessary to automate the workload 
characterization process. 

This paper presents the design and discusses the implementation of a tool for workload 
characterization of mass storage systems. The main features of the tool discussed here 
are: 

Automatic support for peak-period determination: histograms of system 
activity are generated and presented to the user for peak-period determination. 
Automatic clustering analysis: the data collected from the mass storage system 
logs is clustered using clustering algorithms and tightness measures to limit 
the number of generated clusters. 

e Reporting of variedfile statistics: the tool computes several statistics on file 
sizes such as average, standard deviation, minimum, maximum, frequency, as 
well as average transfer time. These statistics are given on a per cluster basis. 
Portability: the tool can easily be used to characterize the workload in mass 
storage systems of different vendors. The user needs to specify through a 
simple log description language how the a specific log should be interpreted. 

The rest of this paper is organized as follows. Section two presents basic concepts in 
workload characterization as they apply to mass storage systems. Section three describes 
clustering algorithms and tightness measures. The following section presents the 
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architecture of the tool. Section five presents some results of workload characterization 
using the tool. Finally, section six presents some concluding remaks. 

2. Workload Characterization 

One of the important steps in any capacity planning and performance modeling study is 
workload characterization. The purpose of this step is to understand the characteristics of 
the workload submitted to a system and determine a synthetic description-called 
workload model-of the global workload. To make these concepts more specific, let us 
tum our attention to a mass storage system subject to two types of requests: ftp gets and 
ftp puts. Imagine that the system is observed during a few hours of operation the 
following information about each request is gathered: 

e type of request (get or put), 
e request arrival time, 
e size of the file involved in the request, and 

time at which the file transfer completed. 

If the system is sufficiently busy during the observation period you may collect thousands 
of such tuples. The question is what to do with this information? To use this information 
in a predictive performance model, one needs a more compact representation than a list 
with thousands of entries, one per request. If one looks at all requests, we may find that 
one can aggregate them into a reasonably small number of groups of “similar” requests. 
The notion of similarity is formalized in the next section. In this section we consider an 
intuitive meaning to the term. Within each group, each request is characterized by a pair 
(2, S) where 2 is the time since the last arrival of a request of the same type (get or put) 
and S is the file size. Suppose that one draws a scatter plot, such as the one in figure 1, 
where the x axis represents values of 2 and the y axis represents values of S. As one can 
see, there is a natural grouping or clustering of points that have similar values of 2 and S. 
Each cluster can then be represented by the coordinates of its center, called the centroid. 

In the case of the example of figure 1, the centroids are: (Z1= 2.48 sec, S1= 4.26 MB), 
(Z2= 4.95 sec, S2= 107 MB), and (23= 13.76 sec, S2= 45.2 MB). The other information 
we obtain from the clustering exercise shown in figure 1 is that 41.2% of requests fall 
into cluster 1,26.8% fall into cluster 2, and 41.2% fall into cluster 3. One can now drop 
all measurements and work with the more compact representation of the workload 
provided by the three clusters. 

Another important aspect in workload characterization is the determination of the interval 
during which measurements are obtained. For capacity planning studies and system 
sizing, one usually looks for the periods of time when the system is more heavily utilized, 
or the peakperiod. This is usually obtained by looking at histograms of system activity, 
for example number of requests submitted or number of bytes transferred, during each 
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hour of the day for many days. The peak period is the time interval or sets of time 
intervals during which the load on the system is high compared to other intervals. 
Consider figure 2 that shows a histogram of number of get requests submitted to a mass 
storage system during a period of one day. As one can see, the peak period is between 
9AM and 6PM. Thus, this is the period during which measurements should be collected. 
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Figure 1 - S versus Z scatter plot. 

No. of Gets 
450 I 400 

350 

300 

9 250 
(3 

2 
0 200 

150 

100 

50 

0 

Figure 2 - Histogram for determination of peak period. 

255 



4. Cluster the measurements obtained into a small number of groups or clusters using a 
clustering algorithm (see next section). 

The process described above can be q oriou e consuming. The purpose of 
the tool described in this paper is to automate ole process for mass storage 
systems. The next section discusses in detail the s used to perform clustering 
analysis and the criteria used to determine the number of clusters to use in workload 
characterization. 

3. Clustering Algorithms 

During the process of workload characterization of a mass storage system, logs of the 
requests which arrive at the system to be processed are analyzed. The objective of 
clustering is to classifl the individual requests into a relatively small number of classes 
which impose on the average a load on the system similar to that of the actual workload. 
This classification is made based on a measure of similarity or proximity between the 
requests. A log with n data points consisting of d components each can be described as a 
set of vectors Zi = (x i , , ,  ..., for i=l, ... ,n, where xi,& is the k-th feature of the i-th data 
point in the log. The proximity between data points is described most commonly in terms 
of an n x n matrix, called the proximity matrix where entry di,j = d(' , j )  is a distance 
metric (or dissimilarity measure) between the i-th andj-th data point. The three most 

commonly used distance metrics are: the Euclidean distance d( i , j )  = cd &=I - x , , ~ ) '  , 

the Manhattan distance d(i, j )  = xR=I Ixi,& - xj,& 1, and the sup distance d 

d(i, j )  = maXii&id lx;,& - xj,& I 

is to determine the 
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classification is a nested sequence of partitions or a single partitioning. Finally, an 
exclusive, intrinsic algorithm is agglomerative or divisive based on whether the algorithm 
proceeds by gradually merging clusters into larger and larger classes or by subdividing 
larger clusters into smaller ones. 

The specific algorithm used in our tool can now be described using the above 
terminology as an exclusive, intrinsic, partitional, agglomerative algorithm. The problem 
of exclusive, intrinsic, partitional clustering can be stated as given n points and a desired 
fixed number of clusters K, select the partition of those points into clusters such that 
points in one cluster are more similar to points in their cluster than to points in the other 
clusters. The number S (n,K) of ways to partition n points into K clusters is given by: 

Therefore, an exhaustive evaluation of all possible partitions is not feasible. The centroid 
of cluster C, is given by: 

The within-cluster variation ekfor cluster C, is the average distance of all points in the 
cluster to its centroid. Thus, 

and the tightness E ,  of a particular clustering is defined as the average of the within- 
cluster variation normalized by the maximum value of all within-cluster variations. 
Hence, 

2 ek 
1 

j=l 

E,  = K 
K max(ej 1 k=l 

Note that both ek and E,  are numbers between 0 and 1. The closer to zero the value of 
the tightness, the better the clustering quality is. Typically, an iterative algorithm is used 
to minimize the global metric E , .  One disadvantage of iterative algorithms is that 
occasionally they terminate at a local minimum rather than at the desired global 

257 



minimum. In practice, one can get more confidence at the quality of the solution by 
repeating the algorithm with various different starting partitions and ensuring that the 
algorithm terminates at the same solution. The K-means algorithm is one such 
agglomerative, iterative algorithm. It is defined as follows: 

1. Start with an initial assignment of points to K clusters. 
2. Compute the centroid i;?k of each cluster ck for k= 1, ..., K. 
3. For each point x' in the collection do: 

j = min,,ki;K {d(x',i;?k) /* find the cluster closest to point x' */ 
let i be such that x" E Ci 
if i #  j then 

Cj = Cj u (21. /* add x' to thej-the cluster if not already there */ 

Ci = Ci - (2) /* remove x' from the i-th cluster */ 
end if 

4. Recompute the centroid G j  of each cluster Cj for j = l,.., K .  
5. Repeat steps 2 through 4 until no point changes its cluster assignment during a 

complete pass or a maximum number of passes is performed. 

A number of variations exist for the K-means algorithm based on how the initial cluster 
centroids are selected and on whether the cluster is recomputed after each re-assignment 
of a point or after an entire pass through the points has completed as described above 
[4,5,6,7]. The version of the algorithm used in our tool is the one proposed by Forgy[S]. 

4. Architecture of the Tool 

Figure 3 shows the architecture of the workload characterization tool. Modules are 
shown in ovals and internal databases are shown in parallel solid lines. The figure also 
shows the Hierarchical Mass Storage System (HMSS) log and a file containing a 
description of the log format as the two input files to the tool. Users interact with the tool 
through a Graphical User Interface (GUI). Through this interface they can request the 
tool to open a specific log, generate histograms for peak period analysis, do workload 
characterization through clustering, and view file access statistics and the results of the 
workload characterization process. 

The Filter process reads the log descriptor and reads the HMSS log and stores the 
information in a Measurements DB. This feature of the tool allows it to be used to 
characterize workloads for virtually any HMSS provided one can specify the log format 
using the log descriptor. Once the information is entered into the DB it can be used as 
input to the Histogram Generator and Clustering Engine modules. The Histogram 
Generator plots a histogram of system activity for a selected day and time and a selected 
type of request (get or put). The Clustering Engine reads the data points from the 
Measurements DB, runs a K-means clustering algorithm, and saves the data into a 
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Workload DB. This module also generates tightness measures to illustrate the quality of 
the clustering generated. The Report Generator module reads the workload model fiom 
the Workload DB and generates a workload description in the format expected by 
Pythist-a tool for performance prediction of mass storage systems developed by the 
authors [3]. The Report Generator also stores that information in a format needed by the 
Results Manager for presentation of file access statistics and workload model 
characteristics to the users of the workload characterization tool. 

Measurements Work 1 o a d Pythia Workload Results 
DB DB DB DB 

Figure 3 - Architecture of the e Tool. 

5. Using the Tool 

This section describes the operation of the tool by going through a sample session of 
workload characterization. Figure 4 shows the main screen of the tool. The menu bar has 
three options. The File menu provides options for opening a log of data, saving the 
results of the workload characterization, and quitting fiom the tool. The View menu 
provides options for generating a histogram, viewing the tightness measure as a function 
of the number of clusters, and generating a workload characterization. Finally, the Help 
menu provides help on the use of the tool. The Data Range window describes the range 
of the data values contained in the currently selected log file. Initially, the range will be 
empty, but as soon as a log file is opened from the File menu option, the entries will be 
filled automatically to describe the range. The user may change the range under 
consideration at any time. 
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Figure 4 - Main Screen of the Tool 

The next step after opening a log file is to view a histogram of the data so that the peak 
period for this workload can be detected. This is done by selecting the Histogram menu 
option from the View menu. Figure 5 shows the window that comes up for selecting 
which workload (get or put) should be considered in the histogram. Figure 6 shows a 
sample histogram for get requests. The results shown are for the first day in the data 
range when the histogram computation was executed. The user may modify the data 
range and run the histogram again. Pressing the “Previous Day” button, loads the data for 
the previous date and displays the histogram, and pressing the “Next Day”button loads 
the data for the next date. Pressing “OK” closes the histogram window. Browsing 
through the histograms for a number of days allows one to select the peak period during 
the day. 
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Once the peak period has been selected, the data range can be modified and the user can 
then select the “Tightness” option from the View menu. Figure 7 shows the window 
which appears for this option Again, it allows the user to select the type of workload to 
be analyzed and also the range of clusters to be evaluated. Figure 8 shows the sample 
plot for a cluster range of two through ten for get requests. This plot is very helpful in 
determining the most appropriate value for the number of clusters. It allows one to 
visually select a local minimum for the tightness measure which compromises between a 
fairly accurate workload with as small a number of clusters as possible. 

Figure 7 - Tightness Configuration Window 

The final step in the workload characterization is to determine the cluster centroids, and 
cluster sizes, for a given number of clusters. This is done by selecting the “Workload” 
option from the View menu. The Workload Configuration window comes up, shown in 
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figure 9, which allows one to select the workload type, and number of clusters. Once the 
workload has been computed the Workload window pops-up which describes the 
workload parameters as shown in figure 10. The workload window includes information 
such as the name of the log file, the number of clusters selected, and for each cluster, 
describes the centroid, the number of points from the log which belong to the cluster, and 
the frequency. 

Figure 10 - Workload Window 

6. Concluding Remarks 

This paper described the design and operation of a tool for automating the workload 
characterization of mass storage system workloads. The tool is based on a variation of 
the K-means clustering algorithm. In addition to characterization of the workload, the 
tool allows one to determine the peak-period of system usage by providing a browsing 
capability through histograms of workload requests, and also simplifies the task of 
selecting the number of clusters present in the workload by plotting a measure of the 
accuracy of the clustering as a h c t i o n  of the number of clusters. 
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Abstract 

During the coming years, digital data storage technologies will continue an aggressive 
growth to satisfy the user’s need for higher storage capacities, higher data transfer rates 
and long-term archival media properties. Digital optical tape is a promising technology to 
satisfy these user’s needs. As any emerging data storage technology, the industry faces 
many technological and standardization challenges. The technological challenges are 
great, but feasible to overcome. Although it is too early to consider formal industry 
standards, the optical tape industry has decided to work together by initiating pre- 
standardization efforts that may lead in the future to formal voluntary industry standards. 
This paper will discuss current industry optical tape drive developments and the types of 
standards that will be required for the technology. The status of current industry pre- 
standardization effortswill also be discussed. 

1. Introduction 

The data storage industry needs to satisfy a substantial growth in user’s requirements for 
high performance, large capacity mass storage subsystems. New applications and data 
types, and the need to store and quickly retrieve massive amounts of data require systems 
with large on-line and near on-line capacities, very high transfer rates and good archival 
media properties. A hierarchy of storage devices is needed to satisfy these requirements. 
Optical tape subsystems will fit well in that storage hierarchy. Optical tape media offers 
the potential for high aerial density, high transfer rates and an expected long archival life. 
As an emerging technology, however, the optical tape industry faces many challenges. 
Magnetic tape, a competing technology, is well established and also promises high 
performance products with high capacity and high transfer rates. The technological 
challenges that the optical tape industry faces are feasible to overcome. Standardization is 
also a challenge as it has been for other data storage technologies. Recent industry 
developments, and standardization issues will be addressed in the following sections. 
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2. Current Product/Developments' 

There is only one optical tape drive on the market today. The CREOEMASS drive offers 
one Terabyte of data on a 35 mm reel of optical tape. The sustained transfer rate is 3 
Mbytesh. The media used by this drive is WORM (Write-Once Read Many). The 
specified access time is 65 seconds average for one Terabyte. 

In 1995, the Advanced Technology Program (ATP) of the National Institute of Standards 
and Technology (NIST) awarded two projects related to this technology WS Department 
of Commerce News, 112. One awardee was LOTS Technology, Inc. ("Digital Data 
Storage Technology via Ultrahigh-Performance Optical Tape Drive Using a Short- 
Wavelength Laser"). The project includes the development of optical tape read/write 
technology which could lead to systems capable of storing one Terabyte and capable of 
transferring that data at a rate of at least 100 Megabytes per second. In order to achieve 
this performance, the project includes the development of optical tape storage technology 
in which up to 180 tracks can be simultaneously written and read with multiple, 
independently controllable laser beams. It is planned that the first application of this 
technology would be an "IBM-3480tt-style cartridge. 

The other ATP awardee in this technology field was a joint venture of Terabank Systems 
Inc., Polaroid Corp., Science Applications International Corp., Xerox Corp., Carnegie 
Mellon University, Energy Conversion Devices, Inc., NASA Goddard Space Flight 
Center, and the University of Arizona ("Technology Development for Optical-Tape- 
Based Rapid Access Affordable Mass Storage (TRAAMS)"). (Motorola Corp. joined the 
ventwe later on.) This project includes the development of a thin-gauge 
erasablehewritable optical tape on which a bit of data can be recorded on a spot six-tenths 
of a micrometer in diameter. The proposed tape handling methods would move the tape at 
2,500 centimeters per second. The expected transfer rate is 6 Mbytesh and when 
accessing multiple tracks of the tape it can reach up to 100 Mbytesh. Assuming the ATP 
project is successful, the expected user capacity of the first product that could result from 
the use of this technology is 100 Gbytes. 

In addition to the projects awarded by ATP, technology projections indicate the following 
developments (see Table 1). Table 1 indicates technology projections, not product 
announcements. 

LOTS Technology's first development will hopefully result in a product with one 1 
Terabyte capacity and a sustained transfer rate of 15 Mbytesls using a WORM optical 

Certain trade names and company products are mentioned in the text in order to adequately describe 
industry developments. In no case does such identification imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor does it imply that the products are or will be 
necessarily the best available for the purpose. 

The ATP cost shares high-risk industrial R&D projects to overcome technical barriers, rather than product 
development. If projects are successful, companies will develop products exploiting the technology with 
their own funds. In the descriptions of ATP projects in this paper, the technology projections reflect 
specifications of products that the companies hope to develop to exploit the new technology if the ATP 
projects are successful. 

1 

2 
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tape .5 in width and 400 m long. EMASS has plans for a line of optical tape drives. The 
first product is scheduled to a capacity of 200 
transfer rate. This product uses WORM media and s 
seconds, Chu [2]. (As of this writing, July 1, 1996, 
has placed on hold this optical tape program and the com 

Terabank’s technology projections include doubling the capacity and the transfer rate of 
the first product that might result from the ATP technology to 200 Gbytes and 12 
Mbyteds. Support for WORM and rewritable media is expected. Researchers at Philips 
Research Laboratories have described a compact optical tape recorder with a 80 Gbytes 
capacity in a 8 mm cassette at approximately 30 Mbitsls transfer rate and 15 seconds 
access time, van Rosmalen, Kahlman, Put, and van Uijen [3]. Primelink proposes an 
optical tape drive with 36 Gbytes and 72 Gbytes with an access time of less than 1 
second and a transfer rate for the first version of the drive of 15 Mbit/s, Newel1 [4]. 

Table 1 - AIIM Optical Tape Study Group Technology Roadmap(*) 

(**) Raytheon has placed on hold the E-MASS optical tape program 

267 



Other plans and developments were reported by NHK and Sony researchers. NHK 
researchers reported development of a high capacity optical tape recorder able to store 
information for high definition TV and fbture TV systems, Tokumaru, Arai, Yoshimura, 
and Oshima [5 ] .  Sony researchers reported developments of a helical scanning optical 
tape recorder and new tracking methods for that recorder, Narahara, Kamtami, Nakao, 
Kumai, and Ozue [6]. 

Media manufacturers include: IC1 Imagedata (dye polymer Eastman Kodak 
(WORM phase change media), Polaroid (phase change media) and Southwall/Dow 
(bubble forming media). Other companies have researched the use of magneto-optical 
(MO) media. Details of these media characteristics and formulations can be found in 
different publications, Ashton [7]. Changes might be expected in these media. Final 
media configurations cannot be designed independently of the drive manufactures' 
specifications and requirements. 

3. Standards for Optical Tape Media/Subsystems 

In order to establish optical tape as a recognized data storage technology, the optical tape 
industry will need to provide users with storage solutions that conform, if possible, to 
voluntary industry standards. A family of standards is required for any particular data 
storage technology. One classification of these standards includes: 

3 Data interchange standards 
3 Test methods standards 
3 Data integrity standards 

3.1 Data interchange standards 

Data interchange standards promote the availability of competitive products and multiple 
sources of media. They also increase the user's confidence in the technology by assuring 
mediddata interchange between products and the long-term availability of drives and 
media. The following model represents four levels of compatibility, Hogan [8] 

0 Level 4 - Applications 

There are many application level standards. The following are some examples of this type 
of standards: 

3 data compression schemes for raster-scanning documents 
3 control codes for word processing 
a media error monitoring and reporting techniques for verification of stored data 

IC1 Imagedata will be withdrawing from the optical tape business over the next two years. 
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Logical volume label and file structure standards are in this level. They facilitate the 
interchange of data among different information processing systems. 

Level 3 - Logical format for the media 

Level 2 - Physical format of the media 

This level of standards deals with the recorded characteristics of the media. It includes 
characteristics such as: 

3 data and track format 
= track locations 
a modulation schemes 

0 Level 1 - Media properties 

This level of standards specifies the unrecorded or unformatted characteristics of the 
media. It specifies the physical and optical properties and assures the interchange 
(readwrite) of media among different drives. The media properties that must be 
standardized include characteristics such as: 

a mechanical properties 
3 dimensional properties 
a optical properties 
3 readwrite/erase properties 

3.2 Test methods standards 

Test methods standards for the media characteristics help avoid conflicts between media 
suppliers and drive manufacturers, allows for easy documentation of round-robin tests, 
and allows testing for conformance to media interchange standards. 

The type of characteristics that require test methods are: 

3 mechanical properties 
3 optical properties 
3 recording layer properties 
3 substrate properties 
3 preformat properties 
5 environments: operational and storage 

3.3 Data integrity standards 
Long term availability of data depends on many factors including data integrity, media 
life expectancy and the availability of subsystems that can access the media where data 
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resides. As noted above, data interchange standards improve the chances of the long-term 
availability of drives and media. Standards for daWmedia preservation are also required. 

They include: 

a standard media error monitoring and reporting techniques to verify stored data 
a life expectancy standards 

Media error monitoring and reporting techniques allow users to monitor the status of the 
stored data. An example of standard media error monitoring and reporting techniques (for 
optical disk drives) can be found in ANSI/AIIM MS59 [9]. Life expectancy standards 
allow users to select media according to their long-term requirements by comparing 
manufacturer’s media life expectancy claims. 

4. The Association for Information and Image Management International 
(AIIM) Optical Tape Study Group 

AIIM formed the Optical Tape Study Group (OTSG) in response to industry interest in 
initiating technology discussions and pre-standards work. AIIM OTSG is an open forum 
where industry and users can together discuss technical issues such as media 
characteristics, metrology and data integrity of optical tape medidsystems and user’s 
needs. The Study Group has attracted broad industry and user’s participation. OTSG does 
not have the responsibility for developing formal standards. However, the OTSG may 
generate, in the future, standard development projects proposals. 

The OTSG has prepared a matrix of unrecorded media characteristics and it is planning to 
develop a document specifying these characteristics. Test methods for the media 
characteristics are also discussed and they will be documented. In addition, OTSG is 
specifying media error monitoring and reporting (MEMR) techniques to veri@ stored 
data on optical tapes. The documentation of these MEMR techniques is underway. Table 
1 shows the Technology Roadmap developed by the OTSG. Table 2 shows industry and 
user organizations included in AIIM OTSG’s participant’s list. The OTSG held two 
meetings in 1995 and three meetings in 1996. The next meeting will be held October 3 - 
4, 1996 at AIIM Headquarters, 1100 Wayne Ave., Suite 1100, Silver Spring, MD. 

5. Conclusions 

Any emerging data storage industry faces many technological and standardization 
challenges. The technological challenges are great, but feasible to overcome. 
Standardization will also be a challenge. In addition to the only existing commercial 
drive, several drive developments are taking place. Some of them might become 
commercial products in the coming years. The industry is not mature enough to address 
formal standards developments. However, recognizing that standards are necessary when 
products become available, the optical tape industry has initiated pre-standards work 
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through the AIIM Optical Tape Study Group. Drive and media makers as well as other 
organizations are discussing media characteristics, test methods for these characteristics, 
data integrity issues and user's needs. This industry anticipatory work may lead to formal 
standardization efforts. 
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Abstract 

The data storage and retrieval demands of space and Earth sciences researchers have 
made the NASA Center for Computational Sciences (NCCS) Mass Data Storage and 
Delivery System (MDSDS) one of the world's most active Convex UniTree systems. 
Science researchers formed the NCCS's Computer Environments and Research 
Requirements Committee (CERRC) to relate their projected supercomputing and mass 
storage requirements through the year 2000. Using the CERRC guidelines and 
observations of current usage, some detailed projections of requirements for MDSDS 
network bandwidth and mass storage capacity and performance are presented. 

Introduction 

The mission of the NASA Center for Computational Sciences is to enable advanced 
scientific research and modeling for NASA-sponsored space and Earth science 
researchers by providing a high performance scientific computing, mass storage and data 
analysis environment. Science efforts supported by NCCS resources include climate data 
assimilation and other atmospheric and oceanographic sciences, orbit determination, 
solid-earth and solar-terrestrial interactions, magneto hydrodynamics, and astrophysics. 
The NCCS is a part of NASNGoddard's Earth and Space Data Computing Division 
(ESDCD). 

The NCCS has been directed to focus on use of Commercial Off-The-Shelf (COTS) 
products and "open" software that runs on more than one vendor's hardware platform. 
The Mass Data Storage and Delivery System currently uses UniTree software for 
hierarchical file storage management. 

MDSDS Environment and Configuration 

The MDSDS UniTree system became operational at the NCCS in October 1992. Since 
that time, MDSDS robotic storage has grown from the initial two StorageTek 4400 silos 
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with 2.4 TB total capacity (200-MB 3480 cartridge tapes) to 6 StorageTek silos with 28.8 
TB capacity uncompressed (800-MB 3490E cartridges; in operation the MDSDS stores 
about 1 GB compressed data per cartridge). The MDSDS is currently adding an IBM 
3494 robotic library with an additional 24 TB (10-GB 3590 tape cartridges). 

The MDSDS UniTree software runs on a Convex C3830. While UniTree supports both 
NFS and ftp, access is limited to ftp to support throughput demands from the NCCS's 
supercomputers. 

Local high-speed network connections join the MDSDS with the NCCS supercomputers, 
which are the primary sources and sinks for MDSDS data. The original Ethernet was 
augmented by an UltraNet/HiPPI connection in early 1993. By late 1994 the 
UltraNeUHiPPI connection had been replaced with two HiPPYTCP connections, and 
FDDI was deployed to provide higher speed access to the rest of the NASNGoddard 
campus. 

The NCCS Supercomputers have undergone significant augmentation from the 4- 
processor Cray YMP (1.2 GFLOPs) in place October 1992. The current supercomputers 
are 3 Cray J90 systems, at present configured with 68 processors (13.3 GFLOPs) and to 
be upgraded to 96 processors (-19 GFLOPs) by spring of 1997. 

StorageTek ACS 
5 441 0 silos 

Crav - ConvedUniTree Mass Storaae Svstem 

8 StorageTek 3490 freestanding 
cartridge drives 

IBM 3494 
3 3590 Magstar tape drives 
1 L12 Control Unit 
1 012 Drive Unit 
9 SI0 Storage Units 

20 MBlsec x E 

216 GB disk (formatted) 
(135 GB for DMF) 

5932 5932 5932 
24 CPUs, 200 MFlops per processor 
51 2 MW central memory 

20 CPUs, 200 MFlops per processor 
512 MW central memory 

24 CPUs, 200 MFIops per processor 
1024 MW central memory 

ART - 7/31/96 

Figure 1. Cray-ConveflniTree Mass Storage System 
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Requirements Input: Current MDSDS Usage Characteristics 

Pentakalos et al. [ l ,  21 have studied and modeled the behavior of the NCCS UniTree 
system and Tarshish et al. [3,4] have reported on its growth. In addition, ESDCD and 
NCCS staff maintain ongoing statistics to measure MDSDS usage and performance 
characteristics. The following characteristics are derived from ongoing observations and 
from some related studies. 

Network Load 

Much like a water plumbing system, a high-end storage and delivery system's 
performance must accommodate bursts that can be an order of magnitude or greater than 
rates averaged over time. For example, between June and August 1996, MDSDS 
aggregate network rates in excess of 17 MB/s have been observed in daily usage, whereas 
MDSDS average daily network traffic for June 1996 (7 1 GB/day) evenly distributed over 
an entire day would amount to 0.84 MB/s. 

The middle of the working day is when the peak MDSDS request loads usually occur (cf. 
Pentakalos [2]) a characteristic common to other storage facilities (Behnke et a1.[5]). It is 
especially typical for MDSDS traffic from sources other than NCCS supercomputers to 
peak during working hours. The non-supercomputer traffic to the MDSDS is significant 
(about 20-50 GB/weekday) but represents only about 23 % of all MDSDS traffic (Figure 
2). 

Cray us. Nan-Cray Traffic t o  and from 
MDSDS UniTree 

3 T  

avg Cray monthly traffic = 1.77 TB 
avg nonCray monthly traffic = 5 5  TB 

avg total monthly traffic = 2.47 TB 
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Figure 2. Cray vs. Non-Cray Traffic to andfrom MDSDS UniTree. 
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Relationship Between NCCS Supercomputing Resources Used and MDSDS Traffic 

Historically, MDSDS transfer traffic has scaled approximately linearly with the increase 
in NCCS supercomputing CPU power once the user community has had time to adjust to 
new supercomputing technologies (Figure 3) : 

* In November 1993, shortly after delivery of the 6-processor Cray C90 (2.5 times the 
CPU power of previous 8-processor Cray YMP), a 30-day average for MDSDS traffic 
was -36 GB/day. 

In late January 1996, Cray C90 usage was at its peak, and MDSDS traffic 30-day 
average reached -101 GB/day. 

The replacement of the 6 Cray C90 processors (1 GFLOP 'each) with 48 Cray J90 
processors that were slower (0.2 GFLOP each) but much more plentiful resulted in some 
decrease in MDSDS traffic as users modified codes to improve throughput in the more 
parallel supercomputer environment. At this writing the third Cray J90 (20 additional 
processors) has been in place only a short time, but there are indications that MDSDS - 
supercomputer traffic is on the increase. 

In addition, storage growth rates have tended to increase even if supercomputer CPU 
capacity stays the same for an extended period once users become accustomed to new 
supercomputing paradigms. As long as there are sufficient resources (both in available 
supercomputing capacity and in budgetary support), researchers tend to increase the 
resolution or complexity of models. In addition, the largest-volume users of the 
supercomputers tend to make ongoing refinements to code to maximize throughput. 
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'FY96 H2 is projected from first four months of the half 

MDSDS Net Growth and New Data Added 
vs. Average Supercomputing GFLOPs 

1 2  

1 0  
6-mo. MDSDS Net Growth 

u) p a  (TB) s 
6-mo. MDSDS New Data LL 

u 6  v c 
m 
a 4  6-mo. Avg. Supercomputer 
I- 

Added (TB) 

GROPs 
2 

0 

Figure 3. MDSDS Net Growth and New Data Added vs. Average Supercomputing 
GFLOPs. 

Not a Black Hole for Storage: Retrieval Traffic Is Significant 

As illustrated in the figures below, retrieve traffic is significant, so the MDSDS must be 
able to retrieve files quickly and efficiently. Clearly, the NCCS cannot afford to tune the 
MDSDS to optimize writingktoring at the expense of poorer performance for 
readingretrieving files. 

0 NCCS users retrieve old files, not just recently created files (Figure 4). 

MDSDS users retrieve nearly as much data as they store (Figure 5 ) .  About 1.5 
million MDSDS files were transferred between August 1995 and July 1996. 53% of 
the bytes transferred were stored, and 47% of the bytes transferred were retrieved. 
However, 62% of the Jiles transferred were newly stored, and 38% were retrieved. 
This implies that on average, files retrieved are larger than files stored (averaging 
24.8 MB and 17.1 MB respectively) and suggests that smaller files are somewhat less 
likely to be retrieved. 
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Age o f  MDSDS UniTree Files Retrieved 
Between 1/3/95 and 6/24/96 
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Figure 4. Age of MDSDS UniTree Files Retrieved Between 1/3/95 and 6E4D5. 
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Figure 5. Weekly MDSDS Data Transfer Trafic. 
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Working Set and Temporal Locality 

The 3 months of MDSD 

averaged 2.6 TB. 

Of the 1.34 TB new data created in a month, on average only 0.25 TB (less t 
would be retrieved in that same month; the remaining 0.48 TB of unique data 
retrieved would be more than 1 month old. 

* On average 1.3 TB would be retrieved in a month; of that, 0.73 TB would be unique, 
so on average a given byte retrieved in a month would have been retrieved twice. 

* However, 2/3 of the 0.73 TB unique data retrieved was retrieved only once, so the 
remaining 0.24 TB was responsible for all the repeated retrieves (0.86 TB of traffic). 
Figure 6 shows the average proportions of bytes and files retrieved repeatedly over a 
1 -month period. 
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Avg. Total Bytes Retrieved: 1.34 TB 
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Figure 6. MDSDS nth ge Locality of Reference: Unique vs. Total Files and 

hat a file had been retr ed more than once increased when the time 
examined is expanded to six months: of the 10.3 TB retrieved during 6 months between 
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August 1995 and April 1996, 3.6 TB was unique data. The entire working set over 6 
months was 9.5 TB. On average, at the time of retrieval: 

* 1.2 TB (33%) of unique data was one month old or younger. 

2.1 TB (58%) of unique data was 6 months old or younger; 1.5 
data was older than 6 months. 

2%) of unique 

Figure 7 shows relative proportions of files and bytes retrieved repeatedly over the 6 
months examined. 

MDSDS UniTree 6-Month Locality of Reference: 
Unique vs. Total Files and Bytes Retrieved - %' UniqBytes 
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For 6 months during the period 
July 18, 1995 to April 16,1996: 

Total Files Retrieved: 360,993 
Unique Files Retrieved: 151,742 

Total Bytes Retrieved: 10.3 TB 

Number of Repeat Retrievals of 
Same File over 6 Months 

Figure 7. MDSDS UniTree ti-Month Locality of Reference: Unique vs. Total Files and 
Bytes Retrieved. 

The MDSDS UniTree system's disk cache is configured to favor retaining most recently 
used files on disk, but at present there are no other reasonable means to set aside portions 
of the disk cache for special purposes (e.g., areas for files retrieved vs. files stored vs. 
files being moved to different tapes to consolidate free space on tapes). As a result, the 
cost to accommodate a RAIDed disk cache that holds six months' or even one month's 
working set would be prohibitive for the current machine architecture in the current 
budget climate. However, the re-use patterns may bear further to study to explore 
whether the near-online storage could be organized to optimize retrieval of the most 
frequently used data. 
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Distribution of File Sizes: Number of Files vs. Number of Bytes 

While nearly a millionfiles stored in-the MDSDS system are 1 MB in size or smaller, the 
vast majority of the data stored in the MDSDS is in files of 50 MB and larger (Figure 8, 
Figure 9) .  This suggests that storage media with poor stop/start performance would not 
be suitable for the large number of small files, unless the file management software can 
compensate for small files, e.g., by grouping many small files together when writing, or 
by automatically directing small files to different media. 

MDSDS File Distribution by File Size 
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Figure 8. MDSDS File Distribution by File Size. 

MDSDS Byte Distribution by File Size 
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Figure 9. MDSDS Byte Distribution by File Size. 
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Repacking Is a Way of Life 

MDSDS users delete nearly half a terabyte of data per month, an amount that approaches 
113 the quantity of new data stored (Figure 10). Consequently, repacking (consolidating 
files from partly empty tapes to free those tapes for re-use) is a crucial activity The I/O 
load from this tape repacking is significant and must be factored into the performance of 
the MDSDS system. Under the MDSDS's current release of UniTree software (Convex 
UniTree+ 2.0), at least 4 bytes must be moved for each byte copied from a tape being 
freed by repacking. 

In addition, repacking is also the mechanism used to move MDSDS files to new storage 
media. This evolution to newer, more dense media is essential in order to ( 1 )  
accommodate increasing volumes of new data and (2) ensure that older files continue to 
be readable as storage technology advances. In the 4 years since the MDSDS was 
deployed, there have already been 3 rounds of repacking to migrate files from 3480 
cartridges (200 MB each) to 3490 cartridges (400 MB) to 3490E cartridges (800 MB). 
With the recent arrival of IBM Magstar tape drives, a new round of repacking will move 
some MDSDS data to the 10-GB IBM 3590 cartridges. 

MDSDS Net Growth Rate, New Data, Deleted Data 
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Figure 10. MDSDS Net Growth Rate, New Data, and Deleted Data. 

Reauirements Inmk Some Projections for the Future 

Several different sources have provided projected requirements information: 
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Near- and Medium- Term Research Program Changes: 

The following changes are expected to have significant impact on MDSDS growth and 
volume of data transferred: 

Climate Data Assimilation researchers have announced plans to increase the clim 
model's vertical resolution and to save more diagnostic output starting in Fall 1996. 
These changes are expected to quadruple the amount of data produced by a climate 
model integration run. 

In FY98, the Climate Data Assimilation production work is currently slated to move 
off the NCCS supercomputers and onto EOSDIS-sponsored platform(s). 

A new Ocean Data Assimilation effort with projected requirements similar to Climate 
Data Assimilation production (CERRC [6]) is expected to begin ( e g ,  FY99 requiring 
125 GFLOPs sustained and generating -200 TB/year). 

The NCCS MDSDS also anticipates providing long-term storage for the High 
Performance Computing and Communications (HPCC) program's Earth and Space 
Science (ESS) Cooperative Agreement effort, which will run through 1998-1999 (URL: 
http://nccsinfo.gsfc.nasa.gov/ESS/). Current plans show the Goddard Testbed machines 
and MDSDS connected via HiPPI, and perhaps later, via an ATM-to-HiPPI switch. ESS 
Grand Challenge Investigators who use those scalable parallel Testbed machines to be 
sited at Goddard are expected to store about 30 TB in the MDSDS system over the 3 
years of the project. 

Mission to Planet Earth Science-User Survey Results 

In mid-1996, the Office of Mission to Planet Earth sent a survey to NASA Earth science 
researchers to help clarify the resources needed for computing and numeric modeling 
capabilities over the 5 years spanning 1997-2001. More than 200 researchers responded. 
Among the findings 

35% wanted to double their model resolution (implies at least 4-fold increase in 
model output produced). 

0 6% wanted to increase their model resolution by an order of magnitude (could easily 
increase model output by more than 2 orders of magnitude). 

* 

NCCS Science Research Users: the CERRC Report 

In January 1995 the Computer Environments and Research Requirements Committee 
(CERRC) reported on NCCS Earth and space science computing requirements for the 
years 1997-2004 after gathering information from researchers who use NCCS resources 
(CERRC [6]). The CERRC obtained input from both Goddard- and NASA-based 
researchers, and those at universities and non-NASA institutions (the latter use about 

88% had requirement for access to high-speed networking and/or mass storage 
//' 
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27% of NCCS resources at present). The CERRC report predates some of the recent 
Federal budget reduction exercises, and it describes computing requirements that 
presume the science investigations would be funded at reasonab 

Briefly, the CERRC report relates the need for 
Ps sustained by 1999 and 1 TFLOP s 

ces research codes that drive these CPU 
4. The space and Earth 
irements are expected to 

generate the need for 400 TB in robotic storage in 1997, and 2000 TB robotic storage by 
1999. 

NCCS Planned Supercomputer Upgrades 

In response to the requirements detailed in the CERRC report and budget direction from 
management, the NCCS currently expects to make available to users increased 
supercomputing CPU power along the following lines: 

* FY97: complete the 3-fold increase (to 19.2 GFLOPs) compared to FY95’s 6 GFLOP 
Cray C90. 

* FY99: an additional increase of nearly 5-fold to -90 GFLOPs. 

* FYOO and beyond: continuing incremental augmentations, as budgets and 
supercomputing technology costs allow. 

Storage and Network Requirements 

The CERRC report and ongoing observations of MDSDS usage contained the most 
concrete information on trends and projections, and so are the primary sources for the 
requirements presented here. As with all projections for the future, the results are only as 
good as the assumptions and initial data, so the NCCS monitors usage, program direction, 
and industry to revise and update the picture. Caveats aside, the results from 
requirements-projecting exercises have proven useful in resource and budget planning. 

Sustained network rate requirements were derived directly from the CERRC report’s [6] 
data traffic figures cited for the milestone years (500 GB to 1 TB daily data traffic in 
FY97 and 1-2 TB daily traffic by FY99). In FY97, this leads to the need for sustained 
bandwidth of 6-12 MB/s; FY 99 would require 12-24 MB/s sustained. Peak network 
bandwidth requirements incorporated the empirically observed need to accommodate 
burst rates an order of magnitude higher than sustained loads. 

Growth rates for interim years were calculated 2 ways: in the conservative method, the 
growth rate is tightly coupled to the supercomputing power, and so remains constant in a 
year (such as FY98) in which there are no supercomputer augmentations. The “heavier 

c” estimate assumes that growth rates will continue to increase in the interim years 
e to increases in resolution, complexity, and optimization for throughput, as noted 

above). 
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recommendations from the C 

MDSDS Robotic Storage Foreca 
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Figure I I .  MDSDS Robotic Storage Forecasts. 
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Abstract 

NASDAs new Advanced Earth Observing Satellite (ADEOS) is scheduled for launch in 
August, 1996. ADEOS carries 8 sensors to observe earth environmental phenomena and 
sends their data to NASDA, NASA, and other foreign ground stations around the world. 
The downlink data bit rate for ADEOS is 126 MB/s and the total volume of data is about 
100 GB per day. To archive and manage such a large quantity of data with high reliability 
and easy accessibility it was necessary to develop a new mass storage system with a 
catalogue information database using advanced database management technology. The data 
will be archived and maintained in the Master Data Storage Subsystem (MDSS) which is 
one subsystem in NASDA's new Earth Observation data and Information System (EOIS). 
The MDSS is based on a SONY ID1 digital tape robotics system. This paper provides an 
overview of the EOIS system, with a focus on the Master Data Storage Subsystem and the 
NASDA Earth Observation Center (EOC) archive policy for earth observation satellite data. 

Introduction 

The NASDA Earth Observation Center (EOC) is developing a new Earth Observation data 
and Information System (EOIS) to archive and distribute level 0 and processed data and 
information related to Japanese (MOS, JERS and ADEOS) and foreign (LANDSAT, SPOT 
and ERS) earth observation satellites. This paper provides an overview of the Master Data 
Storage Subsystem (MDSS) and NASDA's EOC data archiving policy. The MDSS 
archives processed data and is based on a SONY ID1 tape robotics system and FDDI 
networks. 

* Present address: NASA Goddard Space might Center 
Greenbelt, Maryland 20771 
sobue@eos.nasa.gov 
Tel : 301-286-0148 
F ~ x  : 301-286-0267 
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NASDA EOC Data Archive Policy 

The EOC, NASDA's primary data center, receives, records, processes, archives, and 
distributes earth observation satellite data and related information from Japanese and 
foreign EO satellites. NASDA's EOC has maintained raw data using HDDT (High Density 
Digital Tape) and processed data using 9-track magnetic tape since NASDA's EOC was 
established. Maintaining the present archive of 50,000 magnetic tapes is cumbersome and 
expensive. Thus, NASDA's EOC is developing the MDSS utilizing ED1 digital tapes. 

Master Data Storage Subsystem Overview 

The MDSS (see Figure 1) consists of three SONY ID1 digital tape recorders, an ID1 digital 
tape library (file bank system), robotics, work stations, and an FDDI network. A midsize 
ID1 digital tape holds 36 Gigabytes which is 300 times more than an MT. The MDSS 
archives 736 ID1 midsize tapes which is equivalent to 220,800 magnetic tapes (see Figure 
2). The archiving cost for ED1 tapes is around 0.75 dollar/GB which is 270 times cheaper 
than magnetic tape. Thus, NASDA's EOC adopted ID1 tapes to archive level 0 and 
processed data. The physical format for ID1 tapes is the SONY ID1 special format, the 
logical format of level 0 data is NASDA's special format and the logical format of 
processed data is HDF or CEOS superstructure. 

. . . . . . . . . . . . 7 
CI 

Figure 1. Master Data Storage Subsystem (MDSS) 
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Figure 2. Improved Storage Space Utilization 

In response to user requests, within 10 minutes the MDSS can simultaneously transfer 3 
different 100 MB files to EWS (SONY NEWS) buffer disks. After staging a 100 MB data 
file (one granule of data), the file is transferred from a NEWS to a client subsystem such as 
the Media Conversion Subsystem (MCS) or the Film Generation Subsystem (FGS) using 
the EOIS communications protocol. The MDSS is also capable of ingesting existing 
processed data from magnetic tapes, converting the format and writing the data to ID1 
tapes. 

Master Data Subsystem Development 

NASDA's EOC began developing the March, 1994 and will complete 
development by th archive data not only for existing 
satellites (JERS- 1, and ERS) but also new Japanese EO 
satellites (ADEOS, the Advanced Earth Observing Satellite, will be launched in August, 
1996). In addition, NASDA's EOC is also developing other EOIS subsystems such as the 

wse data distribution subsystem, data distribution subsystem, 
stem and the ADEOS receiving, recording and processing 

d existing satellite operations. 

of 1996. The 
-1/1 b, LANDSAT, 
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Conclusion 

Starting from the end of 1996 NASDA's EOC will archive all earth observation satellite 
data on ID1 digital tapes. NASDA's EOC is also studying advanced data base management 
techniques using object oriented technology to integrate the MDSS, which uses ID1 data 
recorders, with other newly developed EOIS subsystems such as the Browse Data 
Distribution Subsystem (BDS) which uses RAID disk and Magnetic Optical Jukebox 
technology, and the Catalogue Subsystem (CATS) which uses RAID disk storage. 

290 



Progress in Defining a Standard for File-Level Metadata 

Joel Williams 
Systems Engineering and Security 

7474 Greenway Center Drive 
Greenbelt MD 20770 
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Introduction 

In the following narrative, metadata required to locate a file on a tape or collection of 
tapes will be referred to as file-level metadata. This paper describes the rationale for and 
the history of the effort to define a standard for this metadata. 

The Problem 

Extremely large data systems, such as the Earth Observing System Data and Information 
System (EOSDIS), must rely on hierarchical File Storage Management Systems (FSMS) 
to stage files to disk as required for fast access, and to migrate files to tape for more 
economical storage when there is no requirement to keep them on disk. There is no 
standard format for such files when they are moved to tape, and so each FSMS uses a 
proprietary format. Files, particularly those which have been updated frequently, may be 
scattered over several tapes, and the information required to reconstruct the files is likely 
to be stored on disk separate from the tapes on which the files reside. Some file-level 
metadata information may be embedded as header information on each block on the 
tapes, so that any program reading the file would have to identify this header and 
understand that it is not really part of the file. 

Changing from one FSMS to another would therefore most likely require the re-writing 
of all of the tape files written by the original system. For a large archive this would be 
extremely expensive. 

Initial Analysis 

This situation has been analyzed in the paper dated March 15, 1995, An Assessment of 
Requirements, Standards, and Technology for Media-Based Data Interchange by David 
Isaac and Dana Dismukes of the M I T E  Corporation. The work was funded by the 
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Goddard Space Flight Center (GSFC) Earth Observing System Data and Information 
System (EOSDIS) Project. In the paper the following conclusions were made: 

Standards for media-based approximately 
$2M per storage system mig nal computing 
capacity to support copy op 
While there was no current standards activity addressing the problem, there was 
sufficient interest in the customer and vendor community to support such an 
activity. 
While the requirement to refresh media as it ages somewhat reduces the potential 
for cost savings from media-based data interchange, it does not eliminate it. 

In order to avoid the copy operation of re-writing an extensive tape archive when 
transferring tapes from one FSMS to another, there must be a standard way of 
transferring the file-level metadata. This metadata needs to contain sufficient information 
to enable the receiving system to reconstruct the file system represented by the tapes. 
Transferring this metadata would enable the receiving system to incorporate the tapes 
with a minimum of effort. 

In this context, we are not concerned with the semantics of the information contained in 
the files themselves. We are only concerned with the information required to identify the 
file (for example its name) and to associate it with one or more delimited bytestreams on 
one or more tapes. The bytestreams themselves would have to be ordered, as in the case 
of multi-reel files or striped files. 

Initial Proposal for a Standard Tape Format 

Encouraged by the MITRE study, the NASA GSFC EOSDIS project asked Joel Williams 
(then of the MITRE Corporation, currently of Systems Engineering and Security, Inc.) to 
develop a Straw Man standard and to gauge the reaction of the vendor and user 
community to this standards effort and to the proposed Straw Man standard itself. 

The Straw Man standard was a tape format standard. The fundamental concept of the 
standard was to put a directory on each tape of the archive so that by reading the directory 
an application could determine where the files or file segments on the tape were located. 
The Straw Man was inspired by two proposed standards which include on-tape 
directories, the DD1 (ISO/IEC CD 14417) and the DD3 (ANSI X3.267) standards, and 
also by the EMASS practice of placing a directory on D2 tapes. In addition, during this 
same time period when the Straw Man was beging developed, IBM announced its 
Magstar product, which has a directory at the beginning of the tape. Subsequently, Sony 
has announced a tape which has a directory on a chip on the tape cassette. 

was for a logical tape format, and would have been written at 
nology, although it 
e directory without 
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There are two different types of on-tape 
the file (such as its name, for instance) and th 

positioning of the tape. 

The DD3 standard, as outlined in 
the tape quickly, but the (file name, position) map 

Logical Beginning of Tape 

Data (other Scan Groups) 

A Scan Group contains approximately 195KB of User Data and is 
protected by Reed-Solomon encoding I 

Each of these scan groups contains approximately 195KE3 of user-written data, including 
end-of-record markers, but exclusive of error correcting codes. The Internal Leader 
Header scan groups are reserved for directory information, and whenever the tape is 
mounted, they are read into the drive memory, then modified before the tape is 
dismounted. It contains information that allows for fast positioning of the tape, and 
additional information such as 

293 



Repeat for Each Volume on the Tape 

Figure 2 

the volume id, the number of mounts, the time and date of the last five mounts, and the 
tape manufacturer. 

The Magstar directory provides similar functionality, and also includes extensive 
information concerning any errors which may have happened when the tape has been 
accessed. 

The DD1 proposed standard is outlined in Figure 2. It contains all of the file-level 
metadata which would be required to locate a file on the tape, given the file name. 

The following blocks are defined: 

* The Volume Set Information Table. This is at the beginning of the tape, and 
contains information on the number of volumes contained on the tape, and 
identifies the cassettes in a volume set. This information supports files which are 
striped across different tapes. There is only one Volume Set Information Table on 
each tape. 

0 The Directory Information Table. There is one of these for each logical volume 
on the tape, and it consists of the following four blocks: 

- 
- 

The Volume Information Table, which describes the volume 
The File Information Table, which contains information used for positioning 
the tape to files in the Data Area 
The User Information Tables, which contain information on each file in the 
following Data Area, such as the file name, version number, creation date, etc. 
The Update Table, which is used to ensure that the directory has been updated 
properly. 

- 

- 
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* The Data Area, which contains the files in the volume described in the Directory 
Information Table. 

The Straw Man proposal looks very similar to the DD1 proposal, and is outlined in 
Figure 3. 

In addition to information such as the file name and its location, the directory contains the 
following information: 

Pointer to the next file segment if the file is continued 
Pointer to the first file segment if the file does not begin in this location 
Pointers to the other stripes if the file is striped 

In this way multi-reel files and striped files are supported. 

First Directory Partition 

I 

Subsequent Directory Partitions, if any, have the same format as the first 
except for the Version and Volume Information. File Partitions all have 
the same format. 

Figure 3 

Presentation of the Straw Man and Reactions to it 

This Straw Man proposal was first circulated at the Fourteenth IEEE Symposium on 
Mass Storage Systems at Monterey, California in September, 1995. Subsequently, it was 
briefed to THIC, the ISOKCSDS Archiving Workshop at GSFC, the ANSI X3B5 
Committee, the AITM Optical Tape Study Group, and to individuals at the National 
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Security Agency. Several changes were made to the original proposal to lower the 
overhead of having to re-write the directory whenever the tape was updated. 

The decision was made to form a Study Group under the auspices of the Association for 
Image and Information Management (AIM). The group's name is the File-Level 
Metadata for Portability of Sequential Storage (FMP) Study Group, and the first meeting 
of the group was on April 1 at the AIIM International Convention in Chicago Illinois. 
The group is chaired by Fernando Podio of the National Institute of Standards and 
Technology 0.' 

The F'irst FMP Meeting 

The first FMP meeting was held April 1-2 in Chicago. The following organizations were 
represented: 

Ampex 
Applicon 
Datatape 
EMASS 
Fermilab 
NASA GSFC 
LDS Church 
HPSS 
Kofax Image Products 
Lawrence Livermore National Lab 
Legacy Data Systems 
Library of Congress 
Los Alamos National lab 
Lots Technology 
LSC Inc. 
Micro Design International 
MITRE 
National Media Lab 
NIST 
Research Libraries Group 
Systems Engineering and Security 
Storage Technology 
Terabank Systems 

The Straw Man proposal was presented at this meeting, and various other presentations 
were made. The consensus of the group was that an on-tape directory containing file- 
level metadata was impractical for performance reasons. There was general agreement, 

For further information about the FMP study group, contact Fernando Podio at fernando.podio@nist.gov 
(Fernando Podio) 
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however, that there needed to be a standard for the export of file-level metadata, and that 
it was advantageous to work toward that standard under the auspices of AIIM. 

In this regard, the group agreed to a statement of work as follows: 

The AIIM FMP SG will document an interchange format for file-level metadata for 
data stored on sequential storage media. This approach does not concern the data 
format on the physical media or drive. 

Figure 4 graphically depicts how this interchange standard would work. 

The original system would of course maintain its own metadata in some form, which 
could remain proprietary. This metadata would enable it to manage the tapes under its 
domain. When it came time to migrate these tapes to a new system, the original system’s 
metadata would be exported to the public standard. The new, receiving system would 
read this standard metadata and convert it to its own representation, which might also be 
proprietary. In this way, the new system would be able to take over the management of 
the tapes without re-writing them. 

The major challenge in developing this standard for file-level metadata export is to 
develop something that is broad enough to cover current and anticipated practice. 
Cooperation from the vendor community will be important in meeting this goal. 

File-Level Metadata 

( I F i l o l L e v e l ~ y  I ) ( 
New System 

:- 
~ Tapes 

Figure 4 
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The Second FMP Meeting 

The second meeting of the FMP Study Group occurred June 17-18 at the AIIM 
headquarters in Silver Spring, Maryland. The following organizations were represented: 

BDM 
D atatape 
Department of Defense 
EMASS 
NASA GSFC 
Hewlett Packard 
HPSS 
IBM 
Lawrence Livermore National Lab 
Lots Technology 
LSC Inc. 
IIT Research 
National Media Lab 
NSA 
NASA Langley 
NIST 
Norsam 
Systems Engineering and Security 
Storage Technology 
Terabank Systems 

Discussions at this meeting centered on determining the data elements which constitute 
the file-level metadata required to be exported. These elements, it was determined, fall 
into three categories. The lists below characterize and contain examples from each 
category which were discussed at the meeting. 

Data elements having to do with the tapes 

- TapeID 
- 
- Tape model or type 
- 
- Compression information 
- 

Tape Universally Unique Identifier (UUID) 

Statistics about errors on the tape 

Exporting FSMS and vendor name, operating system version, hardware 
identification 

Data elements having to do with the files on the tapes 

- 
- 
- Method of tape addressing 

File Name (including version information, if any) 
File Universally Unique Identifier (WID) 
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- 
- Striping information 
- 
- 
- FileFamily 
- Tapeset 
- Volume group 

Location of file segments, including magic cookie information if it exists 

Information identifying multiple copies of the file 
Account IDS for billing purposes 

Data elements having to do with the file system represented by the tapes 

- Directory and file structure 
- Hard and soft links 
- Principal names and groupings for security purposes 

The next meeting of the FMP Study Group is October 1-2 at the AIM Headquarters, 
1100 Wayne Ave. in downtown Silver Spring, Maryland. 
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