
Automated Clustering-Based Workload Characterization

Odysseas I. Pentakalos

Code 930.5

NASA GSFC

Greenbelt MD 20771

odysseas@cesdis.gsfc.nasa.gov
301-286-4403

Daniel A. Menasc_

Dept. of CS

George Mason University
Fairfax VA 22030

menasce@cs.gmu.edu

Yelena Yesha

Dept. of EE and CS

Univ. of Maryland

Baltimore County

Baltimore MD 21228

yeyesha@cs.umbc.edu

1. Introduction

The demands placed on the mass storage systems at various federal agencies and national

laboratories are continuously increasing in intensity. This forces system managers to

constantly monitor the system, evaluate the demand placed on it, and tune it appropriately

using either heuristics based on experience or analytic models. Performance models

require an accurate workload characterization. This can be a laborious and time

consuming process. In previous studies [1,2], the authors used k-means clustering

algorithms to characterize the workload imposed on a mass storage system. The result of

the analysis was used as input to a performance prediction tool developed by the authors

to carry out capacity planning studies of hierarchical mass storage systems [3]. It became

evident from our experience that a tool is necessary to automate the workload

characterization process.

This paper presents the design and discusses the implementation of a tool for workload

characterization of mass storage systems. The main features of the tool discussed here

are:

• Automatic support for peak-period determination: histograms of system

activity are generated and presented to the user for peak-period determination.

• Automatic clustering analysis: the data collected from the mass storage system

logs is clustered using clustering algorithms and tightness measures to limit

the number of generated clusters.

• Reporting of varied file statistics: the tool computes several statistics on file

sizes such as average, standard deviation, minimum, maximum, frequency, as

well as average transfer time. These statistics are given on a per cluster basis.

• Portability: the tool can easily be used to characterize the workload in mass

storage systems of different vendors. The user needs to specify through a

simple log description language how the a specific log should be interpreted.

The rest of this paper is organized as follows. Section two presents basic concepts in

workload characterization as they apply to mass storage systems. Section three describes

clustering algorithms and tightness measures. The following section presents the

253

architectureof thetool. Sectionfive presentssomeresultsof workloadcharacterization
usingthetool. Finally, sectionsix presentssomeconcludingremarks.

2. Workload Characterization

One of the important steps in any capacity planning and performance modeling study is

workload characterization. The purpose of this step is to understand the characteristics of

the workload submitted to a system and determine a synthetic descriptiotr-----called

workload model---of the global workload. To make these concepts more specific, let us

turn our attention to a mass storage system subject to two types of requests: tip gets and

tip puts. Imagine that the system is observed during a few hours of operation the

following information about each request is gathered:

• type of request (get or put),

• request arrival time,

• size of the file involved in the request, and

• time at which the file transfer completed.

If the system is sufficiently busy during the observation period you may collect thousands

of such tuples. The question is what to do with this information? To use this information

in a predictive performance model, one needs a more compact representation than a list

with thousands of entries, one per request. If one looks at all requests, we may find that

one can aggregate them into a reasonably small number of groups of "similar" requests.

The notion of similarity is formalized in the next section. In this section we consider an

intuitive meaning to the term. Within each group, each request is characterized by a pair

(Z, S) where Z is the time since the last arrival of a request of the same type (get or put)

and S is the file size. Suppose that one draws a scatter plot, such as the one in figure 1,

where the x axis represents values of Z and the y axis represents values of S. As one can

see, there is a natural grouping or clustering of points that have similar values of Z and S.

Each cluster can then be represented by the coordinates of its center, called the centroid.

In the case of the example of figure 1, the centroids are: (Z1 = 2.48 sec, SI= 4.26 MB),

(Z2= 4.95 sec, $2= 107 MB), and (Z3= 13.76 sec, $2= 45.2 MB). The other information

we obtain from the clustering exercise shown in figure 1 is that 41.2% of requests fall

into cluster 1, 26.8% fall into cluster 2, and 41.2% fall into cluster 3. One can now drop

all measurements and work with the more compact representation of the workload

provided by the three clusters.

Another important aspect in workload characterization is the determination of the interval

during which measurements are obtained. For capacity planning studies and system

sizing, one usually looks for the periods of time when the system is more heavily utilized,

or the peak period. This is usually obtained by looking at histograms of system activity,

for example number of requests submitted or number of bytes transferred, during each

254

hour of the day for many days. The peak period is the time interval or sets of time

intervals during which the load on the system is high compared to other intervals.

Consider figure 2 that shows a histogram of number of get requests submitted to a mass

storage system during a period of one day. As one can see, the peak period is between

9AM and 6PM. Thus, this is the period during which measurements should be collected.

120

100

80

60

2O

0

i i....

cluster 1

@,
0 5 10

cluster 3

Z (sec)

15

Figure 1 - S versus Z scatter plot.

No. of Gets
45O

4OO

35O

3OO

_= 250

_ 2oo
150

100

50

0

Interval

Figure 2 - Histogram for determination of peak period.

255

So, in summary, workload characterization is composed of the following steps:

1. Determine the basic type of requests (e.g., tip gets and itp puts).

2. Collect measurements on system activity for each type of request over a period of

several days and plot a histogram to determine peak periods for each type of request.

3. Collect the measurements needed to characterize the workload during the peak period

(e.g., measure file sizes, inter-arrival times for requests).

4. Cluster the measurements obtained into a small number of groups or clusters using a

clustering algorithm (see next section).

The process described above can be quite laborious and time consuming. The purpose of

the tool described in this paper is to automate the whole process for mass storage

systems. The next section discusses in detail the algorithms used to perform clustering

analysis and the criteria used to determine the number of clusters to use in workload

characterization.

3. Clustering Algorithms

During the process of workload characterization of a mass storage system, logs of the

requests which arrive at the system to be processed are analyzed. The objective of

clustering is to classify the individual requests into a relatively small number of classes

which impose on the average a load on the system similar to that of the actual workload.

This classification is made based on a measure of similarity or proximity between the

requests. A log with n data points consisting of d components each can be described as a

set of vectors _, = (x,. t,...,x,,d) for i=l,...,n, where xj, k is the k-th feature of the i-th data

point in the log. The proximity between data points is described most commonly in terms

of an n x n matrix, called the proximity matrix where entry d,j = d(i,j) is a distance

metric (or dissimilarity measure) between the i-th and j-th data point. The three most

)-_commonly used distance metrics are: the Euclidean distance d(i,j)= _-"_=l(xi.k -x/. k ,

d

the Manhattan distance d(i,j) = _k-_ x_.k - xj.k , and the _la distance

d(i, j) = ma.xisks a xi, k - x j. k .

A number of approaches have been proposed in the literature for clustering data and those

clustering approaches are themselves classified using various characteristics. A

clustering algorithm is exclusive or nonexclusive based on whether the data points are

allowed to belong to only one or more than one cluster, respectively. An exclusive

clustering algorithm is intrinsic or extrinsic based on whether the classification is done

based on only the proximity matrix or based on the proximity matrix and category labels

assigned to the data points. In extrinsic clustering the objective is to determine the

discriminant surface which separates the points based on their categories. An exclusive,

intrinsic clustering algorithm is hierarchical or partitional based on whether the resulting

256

classification is a nestedsequenceof partitions or a single partitioning. Finally, an
exclusive,intrinsicalgorithmis agglomerative or divisive based on whether the algorithm

proceeds by gradually merging clusters into larger and larger classes or by subdividing

larger clusters into smaller ones.

The specific algorithm used in our tool can now be described using the above

terminology as an exclusive, intrinsic, partitional, agglomerative algorithm. The problem

of exclusive, intrinsic, partitional clustering can be stated as given n points and a desired

fixed number of clusters K, select the partition of those points into clusters such that

points in one cluster are more similar to points in their cluster than to points in the other

clusters. The number S (n, K) of ways to partition n points into K clusters is given by:

1_.i=1 \1/

Therefore, an exhaustive evaluation of all possible partitions is not feasible. The centroid

of cluster Ck is given by:

The within-cluster variation e k for cluster C k is the average distance of all points in the

cluster to its centroid. Thus,

e k = _ _-]d(Y'rhk)
I kl_Ck

and the tightness E r of a particular clustering is defined as the average of the within-

cluster variation normalized by the maximum value of all within-cluster variations.

Hence,

EK -"

1 K

K Zek

Kmax{e.} k:,
j=l J

Note that both e k and E r are numbers between 0 and I. The closer to zero the value of

the tightness, the better the clustering quality is. Typically, an iterative algorithm is used

to minimize the global metric E x . One disadvantage of iterative algorithms is that

occasionally they terminate at a local minimum rather than at the desired global

257

minimum. In practice,one can get more confidence at the quality of the solution by

repeating the algorithm with various different starting partitions and ensuring that the

algorithm terminates at the same solution. The K-means algorithm is one such

agglomerative, iterative algorithm. It is defined as follows:

1. Start with an initial assignment of points to K clusters.

2. Compute the centroid t_k of each cluster C k for k=- 1, ...,K.

3. For each point _ in the collection do:

j = minl_k_ K {d(_,t_ k) /* find the cluster closest to point ._ */

let i be such that _ e C,

if i _ j then

Cj = Cj u {£}./* add _ to the j-the cluster if not already there */

C_ = C, - {_} /* remove ._ from the i-th cluster */

end if

4. Recompute the centroid t_j of each cluster Cj for j = 1,.., K.

5. Repeat steps 2 through 4 until no point changes its cluster assignment during a

complete pass or a maximum number of passes is performed.

A number of variations exist for the K-means algorithm based on how the initial cluster

centroids are selected and on whether the cluster is recomputed after each re-assignment

of a point or after an entire pass through the points has completed as described above

[4,5,6,7]. The version of the algorithm used in our tool is the one proposed by Forgy[8].

4. Architecture of the Tool

Figure 3 shows the architecture of the workload characterization tool. Modules are

shown in ovals and internal databases are shown in parallel solid lines. The figure also

shows the Hierarchical Mass Storage System (HMSS) log and a file containing a

description of the log format as the two input files to the tool. Users interact with the tool

through a Graphical User Interface (GUI). Through this interface they can request the

tool to open a specific log, generate histograms for peak period analysis, do workload

characterization through clustering, and view file access statistics and the results of the

workload characterization process.

The Filter process reads the log descriptor and reads the HMSS log and stores the

information in a Measurements DB. This feature of the tool allows it to be used to

characterize workloads for virtually any HMSS provided one can specify the log format

using the log descriptor. Once the information is entered into the DB it can be used as

input to the Histogram Generator and Clustering Engine modules. The Histogram

Generator plots a histogram of system activity for a selected day and time and a selected

type of request (get or put). The Clustering Engine reads the data points from the

Measurements DB, runs a K-means clustering algorithm, and saves the data into a

258

WorkloadDB. This modulealsogeneratestightnessmeasuresto illustratethe quality of
theclusteringgenerated.TheReport Generator module reads the workload model from

the Workload DB and generates a workload description in the format expected by

Pythia--a tool for performance prediction of mass storage systems developed by the

authors [3]. The Report Generator also stores that information in a format needed by the

Results Manager for presentation of file access statistics and workload model

characteristics to the users of the workload characterization tool.

Measurements Workload Pythia Workload Results
DB DB DB DB

Figure 3 - Architecture of the e Tool.

5. Using the Tool

This section describes the operation of the tool by going through a sample session of

workload characterization. Figure 4 shows the main screen of the tool. The menu bar has

three options. The File menu provides options for opening a log of data, saving the

results of the workload characterization, and quitting from the tool. The View menu

provides options for generating a histogram, viewing the tightness measure as a function

of the number of clusters, and generating a workload characterization. Finally, the Help

menu provides help on the use of the tool. The Data Range window describes the range

of the data values contained in the currently selected log file. Initially, the range will be

empty, but as soon as a log file is opened from the File menu option, the entries will be

filled automatically to describe the range. The user may change the range under

consideration at any time.

259

Figure 4 - Main Screen of the Tool

The next step after opening a log file is to view a histogram of the data so that the peak

period for this workload can be detected. This is done by selecting the Histogram menu

option from the View menu. Figure 5 shows the window that comes up for selecting

which workload (get or put) should be considered in the histogram. Figure 6 shows a

sample histogram for get requests. The results shown are for the first day in the data

range when the histogram computation was executed. The user may modify the data

range and run the histogram again. Pressing the "Previous Day" button, loads the data for

the previous date and displays the histogram, and pressing the "Next Day"button loads

the data for the next date. Pressing "OK" closes the histogram window. Browsing

through the histograms for a number of days allows one to select the peak period during

the day.

Figure 5 - Histogram Configuration Window

Figure 6 - Histogram Window

260

Oncethepeakperiodhasbeenselected,the datarangecanbemodifiedandtheusercan
then selectthe "Tightness"option from the View menu. Figure 7 showsthe window
which appearsfor this option Again,it allowstheuserto selectthe typeof workloadto
be analyzedand alsothe rangeof clustersto beevaluated.Figure 8 showsthe sample
plot for a clusterrangeof two throughtenfor get requests.This plot is very helpful in
determiningthe most appropriatevalue for the numberof clusters. It allows one to
visually selecta local minimumfor thetightnessmeasurewhichcompromisesbetweena
fairly accurateworkloadwith assmallanumberof clustersaspossible.

Figure 7 - Tightness Configuration Window

i; Ni!i i!!i!I

Figure 8 - Tightness Variation Plot

The final step in the workload characterization is to determine the cluster centroids, and

cluster sizes, for a given number of clusters. This is done by selecting the "Workload"

option from the View menu. The Workload Configuration window comes up, shown in

261

figure 9, whichallows one to select the workload type, and number of clusters. Once the

workload has been computed the Workload window pops-up which describes the

workload parameters as shown in figure 10. The workload window includes information

such as the name of the log file, the number of clusters selected, and for each cluster,

describes the centroid, the number of points from the log which belong to the cluster, and

the frequency.

Figure 9 - Workload Configuration Window

Figure 10- Workload Window

6. Concluding Remarks

This paper described the design and operation of a tool for automating the workload

characterization of mass storage system workloads. The tool is based on a variation of

the K-means clustering algorithm. In addition to characterization of the workload, the

tool allows one to determine the peak-period of system usage by providing a browsing

capability through histograms of workload requests, and also simplifies the task of

selecting the number of clusters present in the workload by plotting a measure of the

accuracy of the clustering as a function of the number of clusters.

262

Bibliography

[1] Daniel A. Menasc6, Odysseas I. Pentakalos, and Yelena Yesha, "An Analytic Model

of Hierarchical Mass Storage Systems with Network-Attached Storage Devices," Proc.

of the ACM SIGMETRICS'96 Conference Philadelphia, PA, May 23-26 1996.

[2] Odysseas I. Pentakalos, Daniel A. Menasc6, Milt Halem, and Yelena Yesha, "An

Approximate Performance Model of a Unitree Mass Storage System," 14th IEEE

Symposium on Mass Storage Systems, Monterey, California, September 1995, pp. 210--

224.

[3] Odysseas I. Pentakalos, Daniel A. Menasc6, and Yelena Yesha, "An Object-Oriented

Performance Analyzer of Hierarchical Mass Storage Systems," submitted to the 1996

Computer Measurement Group Conference, San Diego, CA, December 1996.

[4] Michael R. Anderberg, Cluster Analysis for Applications, Academic Press, New

York, NY, 1973.

[5] Anil K. Jain and Richard C. Dubes, Algorithms for Clustering Data, Prentice Hall,

Englewood Cliffs, N J, 1988.

[6] Leonard Kaufman and Peter J. Rousseeuw, Finding Groups in Data, John Wiley &

Sons, Inc., New York, NY, 1990.

[7] Daniel A. Menasc6, Virgilio A. F. Almeida, and Larry W. Dowdy, Capacity Planning

and Performance Modeling: from mainframes to client-server systems, " Prentice-Hail,

Englewood Cliffs, N J, 1994.

[8] E. Forgy, "Cluster Analysis of multivariate data: efficiency versus interpretability of

classifications", Biometrics, 21,768, 1965.

263

