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SUMMARY

Both self-excited and forced disturbances often lead to severe rotor vibrations in a

magnetic bearing systems with long slender shafts. This problem has been studied using

the H °° method, and stability with good robustness can be achieved for the linearized

model of a magnetic bearing when small transient disturbances are applied. In this paper,

the H °° control method for self-excited and forced disturbances is first reviewed. It is

then applied to the control of a magnetic bearing rotor system. In modelling the system,
the shaft is first discretized into 18 finite elements and then three levels of condensation

are applied. This leads to a system with three masses and three compliant elements which

can be described by six state variable coordinates. Simulation of the restdtant system

design has been performed at speeds up to 10,000 rpm. Disturbances in terms of different

initial displacements, initial impulses, and external periodic inputs have been imposed.

The simulation results show that good stability can be achieved under these different

transient disturbances using the proposed controller while at the same time reducing the

sensitivity to external periodic disturbances.

1. INTRODUCTION

Magnetic bearings, because of their absence of physical contact with the bearing

journal are well suited for high speed rotating machines (ref. 1). Additional advantages of

magnetic bearings are the absence of mechanical wear and the need for lubrication. A

system of magnetic bearings with a long slender shaft can often have severe vibrations

due to rotor unbalance or self excited instabilities; especially when the shaft rotates at

high speed. In the case of forced vibrations, such as due to unbalanced mass, the shaft
will deflect from its axis of rotation as a result of these forces. Self excited rotor

instability will also lead to severe rotor vibrations. The control task is, therefore, to

restore the bearing journals to the central axes of the magnetic IMarings within a short

period of time after a transient disturbance, to minimise rotor vibration, and to exhibit
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low sensitivity to external periodicdisturbances. Thus the design of a controller for a

magnetic bearing system poses a significant challenge. While PID controllers have been

used extensively with magnetic bearings they do not easily satisfy the robust performance

requirements of these systems. The application of LQG methods for bearing control also

have their limitations as they are unable to adequately treat systems with plant uncertainty

(ref. 2 ). So H'* control design methods (refs. 3 and 5 ) have attracted attention for

designing the control systems of magnetic bearings, because H'* control theory includes

frequency shaping techniques as used for conventional PID controllers as well as the

optimisation methods used in modern LQG control design methods.

The present work concerns the application of the H'* control method to a magnetic

bearing system as shown in Figure 1. The beam is supported horizontally by two

magnetic bearings. The rotor is attached to the shaft midway between the two bearings. In

applying H" control, the system is considered to be a mixed sensitivity control problem,

where the weighting functions are selected to assure a robust controller design. An

algorithm for arriving at suitable weighting functions using the MATLAB software

package for the controller design, is described and is applied to the above system. The

designed system has been simulated for speeds up to 10,000 rpm. The results show the

proposed magnetic bearing controller using this design method works well when the

bearing system is subjected to various transient disturbances while at the same time it

reduces the sensitivity of the system to external periodic disturbances.

2. MATHEMATICAL MODEL OF THE MAGNETIC BEARING SYSTEM

The magnetic bearing suspension system being considered has a flexible shaft as

shown in Fig. 1. The shaft is supported at its left and right ends by the magnetic bearings

IMogne tlc Rotor MQgnetlc

Beorlng M I BeQrlng I_

P7-71 V7-Z1

Figure 1. The rotor of the system.

M ! and M 2 with the rotor being positioned on the shaft midway between the two

magnetic bearings. The displacements of the bearing journals are defined to be x !, and x 3.

The flexible shaft in this study is assumed to have a length L=600 mm and a diameter

D=10 mm. In this system the bearing forces are generated by electro-magnet coils and the

shaft position is detected by a displacement sensor. The sensor signals are fed through the

controllers in to the power amplifiers which finally supply the excitation currents to the

electro-magnet coils.
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In the system model, the rotor flywheel structure was divided into 18 elements. The
finite element method was used to calculate the mass and stiffness of the shaft. Three

levels of condensation were applied to the 18 finite elements which led to a mathematical

model of the shaft having 6 coordinates{x} = {xl, x2, x3, -_t, .r2, _3}as shown in Fig. 1. The

shaft mass and shaft stiffness were calculated to be

M
S

0.6067
= -0.1465

0.0451

-0.1465 0.0451] [ 0.0454 -0.0943 0.0472 ]
2.2674 -0.14651 and K s =/-0.0943 0.1943 -0.09421
-0.1465 o.6o67J L 0.0472 -0.0942 0.0466 j

respectively. The equations of motion for the simulation of the magnetic bearing system

are given in Appendix I.

For the simulations, it is necessary to simulate the system dynamics using a set of

first order differential equations. In this study, the magnetic bearing system is modelled

using the state-space model of the continuous-time, equation (1)

._ =A x +B u
g g g g g

Yt_ =C xg g (1)

where{xs} = {xl, x2, x3, xt, x2, x3}are the displacements and velocities of the flywheel and

shaft, and u s = {ut, u2, u3} are the output currents of the power amplifiers. The coefficient

matrices for Ag, Bg, C_ are

[ 03×3 13×3] [ 03×3 ]

As =[-Ms-I(Ks+ K x) 03×3] B =LM,-IK i]

[i ooooC = 0 1 0 0 0
g 0 0 1 0 0

From the above parameter matrices, the matrices A s and Bg can be shown to be

0000lOi]01oAg= -.895 0.179-0.06 0 0- 0.033 .029
L-01064 0.172-0.10 _ 00

0 0

o o
o o o

Bg = -0.9299 0.0565 0.0555
/-0.0565 - 0.251 - 0.0565
L 0.0555 - 0.056 - 0.9299

with (Ax, Bg) being controllable, and (Ag, Cg) being observable. The system transfer

function is G(s)=Cg(sI-Ag) -t Bg.
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If external periodic disturbances are applied to the magnetic bearing system, the

system equations of motion are shown in Appendix II. In this case the state-space model

for the system is

k =Ax +Bu +B F
g g g g g Ig d

y=C xg g (2)

where
r 03x3 ]

B,g = LM.+_,]

Plant uncertainty, air gap growth with high speed shaft rotation, shaft parameter

estimation errors and the effect of eddy-currents in the electromagnets will all affect the

coefficient matrices in the above equations, and thus will influence the magnetic bearing

control system stability and periodic disturbance robustness.

3. CONTROLLER DESIGN

H- optimal control design offers a robust performance by addressing disturbances and

plant uncertainty. The H**optimal controller takes into consideration the plant uncertainty

bandwidth, and disturbance attenuation, and achieves the best system performance (ref.

4). The design will be carried out using the computer package ROBUST CONTROL

TOOLBOX with MATLAB (ref. 6).

3.1 Mixed-Sensitivity Robust Control

The augmented plant and controller diagram is shown in Fig. 2. The transfer function

S from u_ to e is termed the sensitivity function and the transfer function T from u2 to Y2 is

called the complementary function, also F is the controller for the system. The functions
S and T are defined as

-I

S = (I + GF) T = I - S = GF(I + GF) -I

In the case of the mixed sensitivity problem, the cost function is shown to be

<i%<s)r( )lL

where H_ denotes the H-infinity norm. Ws(s ) is the frequency weighting function used

for robustness stabilisation at high frequencies and Wt(s) is used for sensitivity reduction

at low frequencies. Both of these matrices need to be selected according to the
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requirements of system performance, plant uncertainty bandwidth, and the input and

output disturbances of the plant. The augmented plant P(s) of the plant G(s) with the

weighting functions Wt(s) and W3(s) is shown in Fig. 2, where u I is the disturbance input

at the input of the plant, u is the control input vector, Ylt and Yt2 are the closed-loop

system output vectors, and Y2 is the measured output vector. The state vector x of the

plant G(s) is not shown on this diagram.

Augmented Pton± P(s)

E_Y.

Oon±rolter

Figure 2. Closed-loop control diagram.

3.2 H- Method Design

The magnetic bearing system is subject to different types of disturbances as discussed

above. For the disturbances which act on the plant at low frequencies, the performance

can be calculated using the sensitivity function S. This can be specified using the

performance weighting function Wt(s) so that

L
Wt(s) is taken as a low pass filter in order to choose the bandwidth of the closed loop and

to reduce the output deviation at low frequencies by introducing a quasi-integral action in

the controller. A weighting function Wt(s) satisfying these requirements is given by

Wl(s)_ _($'I'|04)[! l l] T

10 2 (S + tO0)

where 7 is an adjustable parameter which can be set by the designer. Initially it is useful

to take 7= 1 and then to increase it according to the system performance requirements. It

has been found that 7=2.86 is the most appropriate value for this design.

As the magnetic beating system has air gap growth at high speeds this causes the

bearing characteristics to change. To make the stability of the magnetic bearings more

robust at high frequencies, the stability robustness can be specified using the uncertainty

weighting function W3(s) so that
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The weighting function Wj(s) is taken as a high pass filter in order to reduce the control

effect at high frequencies. An uncertainty weighting function W3(s) satisfying these needs

is

S2 [l 1 1]r
1o5

The H- optimal controller design can be analysed using the Robust-Control Toolbox in

MATLAB. With the weighting functions Wt(s) and W3(s), an augmented plant can be

formed which is shown in Fig. 3, and then we can use MATLAB to calculate the state-

space realisation of the augmented plant as follows

J¢ = Ax + Btu ! + B2u 2

y, = C2x + Dllu I + Di2u 2

Y2 = C2x + D2]u I + D22u _

Au_r_tl P_nt Pl@

Figure 3. H °° feedback diagram.

External periodic disturbances, different initial condition disturbances, and transient

disturbances will be applied to the input u t after the controller has been obtained.

3.3. The Closed-Loop Transfer Function T(s)

The model reduction algorithm (ref. 6 ) in the Robust Control Toolbox in MATLAB

was applied to the H'* feedback system to find a reduced 6 state variable model that

satisfied the "robustness criterion". Fig. 3 shows a standard H- optimal control system,

which has an augmented plant P(s) and a feedback controller F(s). The stabilising

feedback control law u2=F(s)y2(s) was found so that the H** norm of the closed-loop
transfer function matrix

Ty,u, = Pll (s) + PI2 (s)(l - F(s)P22 (s)) -I F(s)P21 (s)

is small. The H** control problem thus reduces to finding F(s) so as to satisfy the

inequality I1 ,.,11<, Thoclo   -loopfrequency responses of the bearing system

represented by the singular value of Ty,u, is shown in Fig. 4. With the selected controller

F(s), the system has good performance for frequencies up to 1000 rad/sec, which

corresponds to speeds of 10,000 rpm.
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Figure 4. Closed-loop frequency response (Singular value of Tr,, , ).

4. SIMULATION RESULTS

4.1 Simulation Results for Self-Excited Disturbances

In this section we evaluate the stability of the designed control system by studying the

transient time response for impulse disturbances and non zero initial conditions. These

disturbances have been applied to the augmented plant, and the simulated responses

computed using the Robust-Control Toolbox in MATLAB, are shown in Figs. 5 and 6.

From the simulation results for an impulse input, we can see that it takes 0.025 seconds to

restore the shaft to its rest position while for non-zero initial conditions the settling time

is approximately 0.02 seconds. From these time response plots it will also be noted that

the performance of the bearing control is very well damped.

4.2 Simulation Results for External Periodic Disturbances

In this section we examine the operation of the H- magnetic bearing control systems

while the rotor experiences external periodic disturbances. A number of cases of periodic

disturbances using unbalance eccentricities have been simulated as shown in Table 1.
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Figure 5. System response for impulse disturbance input.
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Figure 6. System response for different non-zero initial conditions.

In Fig. 7 we show the simulated results for case 1 only as the remaining cases are

similar. It can be seen that for initial journal displacements of x1=-0.2 mm and x3=+0.2

mm, when rotating at speed of 10 and 20 rad/sec, it returns to its steady state condition in

about 0.06 secs, so that it thereafter rotates about its geometric axis. However when

rotating at speeds of 40 and 70 rad/sec it can be seen from Fig. 8 that the shaft begins to

rotate about its principal inertial axis. The trade off between the sensitivity to transient

and external periodic disturbances is determined by the choice of the performance

weighting function Wl(s).
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Table 1.

Line Unbalanced Eccentricity ttr (ram) Rotor Speed Range

mass (kg) t_ (rad/sec)
11131

2

3

4

I.tr=1-0.009, -0.003, 0.005 }

l.tr= {-0.0009,-0.0003, .0005}

I.tr= {-0.009, -0.003, 0.005 }

_tr={-0.0009,-0.0003, .0005 }

1.22

1.16

1.52

10,20,40,70

10,20,40,70

10,20,40

10,20,40

0.4

E
E 0.2

S o

_-0.2
i5

-0A
0

0.4

I'--- xl, --x_l

I I I
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g o
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Figure 7. System responses with external periodic disturbance.
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Figure 8. System responses with external periodic disturbance.
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5. CONCLUSIONS

We have designed a H- controller for a magnetic bearing system operating at speeds

up to 10,000 rpm. In our study we have considered the plant to have an unstructured

multiplicative uncertainty. In the case where the system has external periodic

disturbances it can be seen that it has low sensitivity to these disturbances when operation is

at speeds above 40 rad/sec. Also using the designed controller, the rotor can be suspended

in a stable manner, and has good robustness to self-excited disturbances.
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APPENDIX I: BEARING SYSTEM EQUATION OF MOTION - SELF

DISTURBANCES

The equations of the motion of the magnetic bearing system can be shown to be

[M s 11£} + ([K s ] + [K x ]){x} = Kii

In this, the units of displacement x, mass of the shaft M s and stiffness of the shaft K., have

the units of millimetre, kilogram, and newton/millimetre, respectively. The bearing

actuator current sensitivity (Ki=23.06 N/A), and the bearing actuator static stiffness

(Kx= 171.00 N/mm), and i is the power amplifier output current.
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APPENDIX If: BEARING SYSTEM EQUATION OF MOTION - PERIODIC

DISTURBANCES

The equations of the motion for the magnetic bearing system having external periodic

disturbances can be shown to be

[M]IJ/} +([K l+[Kxl)lx} = Kii+ Fa

where F,t = M Ix_2e/_ is the external periodic disturbance force produced by an

unbalance mass attached to the rotor and M is the mass of the shaft and rotor. In the

expression for Fa the rotor angular velocity is denoted by to while Ix is the eccentricity of

the unbalance mass. In the simulations representative values for Ix have been chosen.
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