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ABSTRACT

The Flexure-Beam Micromirror Device (FBMD) is a phase-

only piston style spatial light modulator demonstrating properties

which can be used for phase adaptive-corrective optics. This paper

presents a complete study of a square FBMD, from advanced

model development through final device testing and model
verification. The model relates the electrical and mechanical

properties of the device by equating the electrostatic force of a

parallel-plate capacitor with the counteracting spring force of the

device's support flexures. The capacitor solution is derived via the
Schwartz-Christoffel transformation such that the final solution

accounts for non-ideal electric fields. This complete model

describes the behavior of any piston-style device, given its design

geometry and material properties. It includes operational
parameters such as drive frequency and temperature, as well as

fringing effects, mirror surface deformations, and cross-talk from
neighboring devices. The steps taken to develop this model can be

applied to other micromirrors, such as the Cantilever and Torsion-
Beam designs, to produce an advanced model for any given device.

The micromirror devices studied in this paper were

commercially fabricated in a surface micromachining process. A

microscope-based laser interferometer is used to test the device in

which a beam reflected from the device modulates a fixed reference

beam. The mirror displacement is determined from the relative

phase which generates a continuous set of data for each selected

position on the mirror surface. Plots of this data describe the
localized deflection as a function of drive voltage.

INTRODUCTION

A growing trend in optical processing and related fields is the

implementation of micromirror-based spatial light modulators

(SLMs) for various optical applications [1]. The Flexure-Beam

Micromirror Device (FBMD) is a phase-only piston style SLM

demonstrating properties which can be used for phase adaptive

optics. High optical efficiency and individual micromirror

addressability make large arrays of devices well suited to phase-

front modulation applications [2,3]. For example, Fig. 1 shows an

array of devices used to discretely lengthen or shorten the optical

path of incoming light to correct for phase-front aberrations. Other

designs of micromirrors, such as the Cantilever or Torsion-Beam

devices, have become increasingly favorable for applications in

which a redirection of incoming light is desired.

The micromirrors studied in this paper were commercially

fabricated using a standard polysilicon micromachining process. In

this paper, ideal models are developed for all three designs.

Additionally, an advanced model is developed for the FBMD

which accounts for surface deformations, fringing losses, and

cross-talk from neighboring devices as well as operating conditions

such as temperature and drive frequency. The steps taken in this

process can be applied to other designs of micromirrors in order to
create advanced models for any given device. The model is

verified with a microscope-based laser interferometer used to study

the behavior of the micromirror devices.

The FBMD, shown in Fig. 2(a), is a 60x60 p.m square mirror

with flexures attached at the comers spanning two sides of the

mirror. The actuation of the device is electrostatic such that a

voltage is applied to an address electrode beneath the mirror

creating a potential difference between this electrode and the mirror

which is grounded. This creates a downward electrostatic force on

the mirror which is counteracted by an upward spring force of the

flexures. Figure 2(b) represents the actuation and characteristic

behavior of the device illustrating these forces.

COORDINATE SYSTEM AND VARIABLES

A convenient characteristic of most micromirror devices is the

symmetry designed about the center of the device. Most

micromirror devices are designed in the shape of squares or other

polygons that share similar symmetric traits. Therefore, a simple

Cartesian coordinate system can be assigned to analyze the

behavior of micromirror devices which makes use of this

symmetry. As shown in Fig. 3(a), the x and y axes lie in the plane

of the top of the address electrode and intersect at the center of the
device. The z axis defines the vertical dimension within the device.

The mirror widths along the x and y axes w x and w. respectively
are shown such that the coordinates used to describe a position

along the mirror surface range from negative to positive values of

half the width. This coordinate system will help simplify the

solutions of symmetric physical properties such as the electric field

intensity which is uniform only at the center of the device.

In order to describe the mechanical behavior of micromirror

devices, a set of variables must be defined that fully accounts for

the physical geometry and motion of the mirrors and flexures.

These variables are graphically defined using a simple micromirror

device consisting of two flexures supporting the device at opposite

ends of the mirror. The flexures and support posts are shown

separated from the mirror for the purpose of clarification between

the resting and actuated positions of the device.

The flexure variables shown in Fig. 3(b) are comprised of the

initial deflection due to gravity, dg, the actuated deflection at the

end of the flexures, dj; the resting separation distance between the

mirror and address electrode, z o, the actuated separation distance at

the end of the flexures, zj; and the spacer thickness, t s, used in the
fabrication of the device. The mirror variables shown in Fig. 3(a)

are a function of position along the surface of the mirror and

include the vertical separation distance between the mirror and

address electrode, Zm(X,y), and the surface distribution of mirror

position relative to the ideal uniform deflection, Az(x,y). This

includes mirror surface deformations and tilting of the mirror due

to cross-talk or variances in the spring constants of each flexure.



Theinitialdeflectionduetogravitycanbefoundusingthe
combinedmassof themirror,M, and the characteristic spring
constant of the device, k, such that

Mg
d, =T (l)

where g is the acceleration constant due to gravity. If the spring

constants of each flexure are known to be unequal, this deflection

can be found for each flexure using its portion of the total weight of

the mirror. For the purpose of simplicity, however, it is assumed

that each flexure of a given device is identical.

As shown in Fig. 3(b), the resting position of the device at the

end of the flexures, zo, is given by:

Zo =ts-dg =df+zf (2)

which describes the vertical separation distance between the
address electrode and the mirror at the end of the flexures when no

address potential is applied. Likewise, as shown in Fig. 3(a), the

separation of the mirror and address electrode is given as

Z=(x, y) = Z o -- d¢ - A z(x, y) (3)

= zf - A z(x, y)

The most important relationship defines the relative deflection as a
function of position along the mirror surface, d(x.y), such that

d(x, y) = d/+ A z(x, y) ( 4 )

which describes the deflection observed for a given voltage at any

point (x,y) along the surface of the mirror. Ultimately, this is the
independent variable used to characterize a micromirror device

such that this deflection is plotted against the address voltage.

ELECTROSTATIC ACTUATION

In order to compute the electrostatic force on the mirror, it must

first be determined by which means this force will be calculated.

More specifically, it must be decided whether the charge

distribution, which is not uniform over the mirror surface, will be

considered. The charge distribution will change with the position

of the mirror surface and will also be altered by any mirror surface
deformations or discontinuities such as etch holes. This leads to a

complicated solution when integrating across the mirror. As an

alternative, since both the charge distribution of the mirror and the

applied electrode voltage are related to the electric field within the

device, it is possible to express the potential energy, _, of the

electric charge distribution solely in terms of this field such that

= ! Icrv =l leoe2dv (5>
2A 2v

where _ is the surface charge distribution on the mirror, V is the

voltage between the mirror and electrode, A is the area of the

mirror, e o is the free space dielectric constant and E is the electric

field intensity at any point in the volume v within the device [4].

By assigning a relative electric energy density of t/_oE2 to each

point in space within the device, the physical effect of the charge

distribution on the mirror surface is preserved. From this approach

it is easy to see that the non-uniform charge distribution on the

mirror surface and the fringing effects of electric fields around the

edges of the mirror are complementary descriptions of the same
electrical phenomenon.

With the ability to express the energy of the device in terms of
the electric field, the electrostatic force on the mirror surface is

determined by a method known as virtual work [4]. This theory

states that the change in the electrical energy of a capacitor is equal

to the sum of the mechanical work done by displacing the plates

and the change in the electrical energy of the source. The total

electrostatic force of an ideal capacitor was determined to be

F = e°E---_A (6)

2

which represents the total force on the surface of the mirror as a

function of electric field. It also demonstrates that the force per

unit area on the mirror surface is equal to the electrical energy

density per unit volume within the micromirror device [4].

This relationship holds for non-uniform electric fields as well.

The fringing electric field around the perimeter of the device alters

the force per area on the mirror as a function of position on the

mirror surface. The total electrostatic force acting on the mirror is

F= _f f (x, y)dxdy = _-_ ff E2(x, y)dxdy (7)

The fringing electric field will diminish the force per unit area

around the edges of the mirror and will produce a total electrostatic

force that is slightly less than the ideal force calculated by

neglecting fringing effects.

IDEAL FLEXURE-BEAM MODEL

Since the electric field is symmetric about the center of the

device and the mirror and electrode are assumed to be rigid, the

electric field lines along the outer edges of the cell shall be

assumed uniform as well. Therefore, the induced electric field is

initially assumed to be uniform and orthogonal to both the mirror

and electrode at all points along both surfaces. This neglects

deformations of the mirror surface during operation as well as

fringing effects of the electric field around the edges of the device.

The total electrostatic force of the Flexure-Beam device, Fro, is

found by the method of virtual work and reduces to:

FrB = _O E2B A (8)
2

where Era is the ideal electric field, eo is the free space dielectric
constant, and A is the surface area of the mirror. The uniform

separation distance between the address electrode and mirror, z m, is

given in Eq. (3) in which &z(x,y) = 0 such that:

Z,, = Zo - (:If (9)

where z o is the resting separation when no electrode voltage is

applied and df is the vertical displacement of the mirror at any
point along thesurface.

The total force is found by substituting Eq. (9) into the

expression for the ideal electric field, Era, in Eq. (8) which yields

the magnitude of the downward force applied on the mirror:

• V A (1o)
FEB = ZO

The restoring force produced by a spring displaced a distance, dr,
from its equilibrium position is given by Hooke's Law:

where k is the characteristic spring constant distinct to a particular

spring system. This constant is distinct to each spring and can be



measuredexperimentally or determined using mechanical analysis.

It is obvious that the linear response of the restoring force is valid

only for a limited range of displacement distances. Forces greater
than some critical force applied to the mirror must be avoided to

ensure that the flexures do not deform and that the restoring force

exhibits a linear response.

It is expected that the flexures will deform linearly. Therefore,
balancing the upward restoring force of the micromirror flexures

against the downward force of the parallel plate capacitor:

I YFF,_= Fs, eo V , A = kd/ (12)
2 _ -ds

produces an equality that can be solved to determine the necessary

voltage, V, to vertically displace the mirror a desired distance, d.t;
from the resting position:

(13)

In this ideal model, the deflection along the mirror surface is
assumed to be uniform. In a more realistic model, surface

deformations invalidate this assumption and other non-ideal effects

of geometry and device operation must be included as well.

As described above, the characteristic spring constant, k, can be

experimentally determined for a specific micromirror device.

However, mechanical analysis of the geometry and material

properties comprising the flexures can approximate this value. As

a result, the behavior of a Flexure-Beam Micromirror Device can

be obtained without the need for experimental observations.

IDEAL CANTILEVER MODEL

The Cantilever micromirror device can be modeled using the

same ideal conditions assumed for the Flexure-Beam micromirror

device. Unlike the FBMD, however, the deflection is not uniform

along the surface of the mirror, but a function of position along one

dimension since the device tilts away from the support post.

Assuming no surface deformations, the deflection becomes a linear

function of position. Figure 4(a) illustrates the motion of the
device and defines the dimension variables. It is known that the

flexures will deflect according to Hooke's Law given in Eq. (11),

but another aspect of the Cantilever device is the additional

bending of the flexure which determines the angle of deflection, 0,
at which the mirror is tilted.

As the mirror deflects downward, the force distribution along

the surface of the mirror is no longer uniform since the end of the

mirror is closer to the address electrode than elsewhere along the

mirror. As a result, the total electrostatic force applied to the

device will change according to the vertical deflection of the

flexure, d: and the angle of deflection, 0. To account for this
behavior, two spring constants are introduced such that

Fs = kid/, 0 = k2d / (14)

where k I describes the vertical deflection at the end of the flexure

and k 2 describes the angle of mirror deflection. Both constants are

directly related to the amount of electrostatic force acting on the

device since they determine the position of the mirror.

The electrostatic force acting on the mirror is found by

integrating the linear force distribution across the surface of the

mirror. Since this force distribution is uniform in the y dimension,

the force is only dependent on the integral over the x domain.

Likewise, the separation distance between the mirror and address

electrode, Zm, and the vertical deflection distance of the mirror, d,
are functions ofx and are defined as

z.(x) = Zo - d/ - xsin(0) (15)

d(x) = d/ + xsin(0) (16)

The total electrostatic force for a Cantilever micromirror device,

F C, is found to be [5]

>"(_ =.
V 2

Fc e ° V2 J dx eoA ( 17)
_-----Wy 2 X2 o z,.( ) 2z/z,

where the vertical separation distances at the flexure end of the

mirror and tip of the device, zf and zt respectively, are shown in

Fig. 4(a) and are defined as

zs = zo - ell, z, = z/ - wx sin(0) (18)

Using the deflection relationships of Eqs. (14) and (16), the angle

of deflection, 0, becomes

0 = k_d s. = k2[d- x sin(0)] (19)

Since the length of the micromirror device is significantly larger

than the separation distance between the mirror and address

electrode, the angle produced by the actuation of the device is

sufficiently small to allow for an approximation such that

k2d ( 20 )

0 = sin(0) = (k2x + 1)

Equating the electrostatic force in Eq. (17) with the restoring spring

force of Eq. (14) yields the ideal characteristic model of the

Cantilever micromirror device:

2k t [d - x sin(O)]z/z,
V= (21)

eoA

where the address potential, V, is required to deflect a device some

distance, d, at some position, x, along the surface of the mirror.

Similar to the FBMD model, the spring constants of the Cantilever

device can be found from mechanical analysis of the deflection and

bending properties of the material comprising the flexure.

IDEAL TORSION-BEAM MODEL

The Torsion-Beam model is similar to the Cantilever model

with the exception that only the rotational constant need be

considered. The operation of the device is shown in Fig. 4(b)
which illustrates that the ideal motion of the mirror does not

include a deflection at the flexures. Therefore, the torque produced

by an electrode on one side of the device, r, is directly related to

the angle of rotation of the mirror surface, O, such that:

,c = kO = F'_ (22)

where F is the total electrostatic force produced by the electrode

and X" is the centroid position at which it is located given by [5]

w_ 1 w_r

Fr = ff(x) dx, x =-- ixS(x ) dr. (23,

xA Fr



where xA is the lateral position at which the edge of the address

electrode is located and the ideal force distribution,fix), is given as:

e oWyV 2

f(z)- 2Z2m(x) . z,_(x)=Zo-XSin(O) (24)

Using the following angle approximation for rotation

d
0 -- sin(0) = -- ( 25 )

x

where d is the desired deflection at some position x and solving for

the address potential, V, in Eq. (24) yields the ideal model:

V= ( 26 )

---_ +. zo _. Zo

- zo--ff Zo

which produces singularities at the center of the mirror, x = 0, since

ideally no deflection can occur at that position [5]. Likewise, a

limiting factor must be used so that the model does not predict a

desired deflection past the point where the tip of the mirror would

touch the substrate and prevent further rotation. The counterweight

of the opposite side of the mirror is incorporated into the model by

fitting the curve, via the spring constant, k, to the empirical data.

SPRING CONSTANTS

The flexures are modeled as simple springs in which the

restoring force in the upward direction is linearly related to the

vertical deflection of the mirror by a spring constant that can be

determined from the geometry and material properties of the

flexures. Furthermore, the mirror and flexures of the device

comprise an undamped harmonic oscillator when the device is

actuated with a periodic voltage at low frequencies. As a result, the

restoring force of the flexures is not only a function of geometry

and material properties, but also of temperature and driving

frequency. At higher frequencies, however, squeeze film damping

may become increasingly significant as the mirror must force air

out of the volume of the device during operation.

To analyze the behavior of the flexures, another beam is rigidly

supported on one end and free-floating on the other. A force, F,

acts in the downward direction at the end of the beam where the

maximum deflection, d, from the horizontal is known. The relation

between force and deflection produces the cross sectional spring
constant, kc,, such that

d- FL3 I = 1 wt3, k. Ewt3
3el' 3 - /.,3 (27)

where L, w, t, and E are the length, width, thickness, and modulus

of elasticity for the beam, respectively [6].
In addition to standard beam theory, the spring constant of the

flexures must account for their layout such that a corner will

produce a flexure that is more resistant to deflection than one of the

same length that is straight. Therefore, a torsional spring constant

must be added. As shown in Fig. 2(a), the square FBMD has

flexures which span half the perimeter of the device and have

several turns in their layout. The torsional spring constant must be

evaluated for each corner of the flexure where Lt and L2 are the

lengths of the primary and secondary portions of the flexure under

consideration respectively. The torsional angle through which the

primary flexure is rotated by the secondary flexure, _, is given as:

E
G=-- (28)

2(1 + v)

(29)

and F2 is the force observed at the end of the secondary portion of

the flexure, d2 is the deflection at the same position, 0 is the planar

angle between the two portions, and G is the shear modulus of the

flexure material. The approximation of ¢ is valid since the

deflection observed by the primary portion of theflexure, dr, is

much smaller than the lengths of both portions of the flexures [7].

Solving for the relationship between force and deflection yields the

torsional spring constant for a given portion of the flexure:

KE
k,

2(_ + L2)_(1 + v)sin(0)
(30)

There is also a stress term that can be added, k,, given as:

ks _ O'(1 - v)wt ( 31 )
2L

where o and v are the stress and Poisson ratio of the flexure

material, respectively [8]. The system spring constant, k, is found

by summing these constants per flexure, k¢, and multiplying by N,

the number of flexures for a given device:

k:N(k/):n[k.+k,+ks] (32)

This constant is a function of temperature since the elastic modulus

decreases as temperature increases and the thermal expansion of the

flexures will slightly alter their geometry. This constant will be

used to extract the elastic modulus as a function of temperature.

SCHWARTZ-CHRISTOFFEL TRANSFORMATION

The electrostatic force of the device is developed using a

conformal mapping technique known as the Schwartz-Christoffel

transformation. In any map of an electric field, the electric flux and

equipotential lines are orthogonal to each other and form

curvilinear squares between points of intersection. The sides of

these squares will be perfectly linear for uniform electric fields and

curved for any non-uniform field. As shown in Fig. 5, the electric

field is taken from an original complex plane y = x + iz which

describes some polygon and transformed to a complex plane W,

where W is an analytic function of y. This transformation preserves

the orthogonal nature of the flux and equipotential lines and alters

the sides of the curvilinear squares thus mapping the electric field

to the W plane. It provides the means to determine the functional

relationship between the two planes such that any electric field can

be mapped about any geometry given the initial polygon [9].

The fringing electric field is analyzed using a parallel plate

capacitor whose plates extend to infinity along the y axis and for

negative x values. This symmetry approach is valid since the

fringing effects of the device are localized at the outer edges of the

mirror. Transforming a finite plate capacitor results in a solution

with several elliptic integrals which is virtually unusable for further
calculations [9]. The Schwartz-Christoffel transformation is a

widely-accepted tool for such analysis which describes the initial

polygon in terms of the exterior angles about which its perimeter



traversesandthe points at which the angle is located. The

conformal mapping equation is given in as:

r=ro+aI(w-bo)°'(w-b,)°'...(w-b.)='aw (33)

where _'o and A are constants determined by boundary conditions, b

is the value of each point mapped into the W plane, and n is the

number of points mapped into finite values. The quantity

exponents, ct = 0/re - 1, are functions of the external angle, 0, of the

transformed polygon at each mapped point in the _/plane [9,10].

The electric field of a parallel plate capacitor originally drawn

in the "/plane is shown in Fig. 5(a) where the points being mapped

into the W plane are labeled A through D and are enclosed by the

polygon drawn around the upper and lower plates of the capacitor.

Figure 5(b) represents the mapping of these points in the W plane

showing the finite values of points B, C, and D. The constant

electric flux lines are mapped into W circularly about point C

which produces the relationship:

W = qs+i* = In(w), w : exp(---_-- )

where W and • represent electric flux and potential respectively, V

is the potential applied to the capacitor and w represents the W

plane in polar form. Evaluating the exponents at each mapped

point, ct B = ctD = 1 and cxC = -1, the transformation becomes:

w 2- 1 ])':ro+A S -- dw:)'o+A[ lw:-ln(w) (35)
w

Applying the boundary conditions at points B and D in both planes,

the constants of the transformation are _'o = -Vz4 and A = -(Zm?_)

which produces the final relationship:

z.,[iTr l( [2Jri W]']]l_ expt.__ __oij} (36,

This can be solved for the real and imaginary parts to produce the

parameterized solution in two dimensions for the edge of a parallel

plate capacitor. Doing so yields

z,- [ut+l_eV, cos(40>] (37)
x=2s r

z,. [ 40 _ e_' sin(40)] (38)
Z=2g

where zm is the vertical position of the mirror above the address

electrode. The index parameters _ and _ are normalized functions

of flux and potential respectively, such that

2sr_
= ----, --oo _< _ _< oo (39)

V
and

2 sr_
40- , 0< 40<2sr

V
( 4o )

where • is the potential variable, W is the electric flux variable,

and V is the potential applied between the mirror and electrode.

The result of Eqs. (37) and (38) is plotted in Fig. 6(a) which

demonstrates that the fringing effects are only present at the edges

of the mirror. Moving toward the center of the device, away from

the edges of the mirror, the electric field and equipotential lines

approach ideal uniformity. The fringing effects are only considered

for field lines on the underside of the mirror ('at _< 0) since

neighboring micromirror devices prevent the extended fringing that

would produce field lines emanating from the top of the mirror and

underneath the electrode. Micromirror devices standing alone may

experience a larger fringing loss than devices positioned within an

array due to the existence of these extending electric field lines.

For devices standing alone, the electrostatic force along the

electric field lines outside the device acts in the opposite direction

as those within the device. Although the arc lengths of these lines

are much larger and thus the electric intensity much weaker, the net

electrostatic force of these lines should not be neglected.

Integrating this solution along the top of the mirror produces some

non-zero force in the upward direction that counters the actuation

of the device. The net electrostatic force acting on devices standing

alone is somewhat less than that on devices within an array.

ELECTRIC FIELD INTENSITY

To find the electric field intensity as a function of position

along the mirror surface, the length of the arc traced along a
constant electric flux value must be determined. Recognizing that

differential change in the .potential function, dcp, will result in

differential change in position, dx and dz, the relation is found to be

d_=4dx2+dz2= _ +l,.-'d--_J d40 (41)

where al is the differential change in the arc length. Using the

parameterized solution of x and z to find the derivatives with

respect to the potential function, (p, and integrating yields

_ 4e _,

_2_ l+e_, 1-msin2 t)'i+e_'X2l- rr ( )J'[ O_ dO, m- (42)
0

which is simply an elliptic integral of the second kind where the

need for m _<1 is valid for all values of _. Therefore, the elliptic

integral series solution is

" 2k-1 m"

t=z,,(l+e v' I- _ _ (43)

which is somewhat difficult to use for real-time modeling due to

the recursive multiplication and the need for a large number of

terms to converge to a solution [5,11].

As an alternative to the elliptic integral series solution, two

approximations were developed that are far more efficient and

simpler to employ. First, the numerical integration of Eq. (43)

produces a series solution that converges much more quickly and

requires significantly fewer terms to maintain a certain degree of

accuracy. Another approximation is a curve-fitting approach which

produces a closed-form solution in the form of an exponentially

increasing function. For all calculations, however, the arc lengths

were evaluated by finding the converging limit of Eq. (43) with at

least N = 500 terms in order to minimize error propagation.

With the address electrode at some potential, V, and the mirror

grounded, the field intensity at a position, x, along the mirror is

--, x= _t+l-e _' ÷ (44)
2

which parametrically represents the electric field intensity as a

function of position over half the mirror (0 _ x < ½w x) where wx is

the width of the mirror in the x direction.



To project this solution into the y domain as well. algebraic

averaging was used such that the net electric field intensity at some

position along the surface of the mirror is the average of that given
by the x and y coordinates.

where the x and y coordinates are evaluated as:

x= _L,+l-e _'x 4 2

z.[ ]w,Y='2"-_ _Y +l--eV" +T (47)

The normalized magnitude of the electric field along the surface of

the mirror is shown in Fig. 6(b) as a function of x and y over one

quarter of the mirror surface. At the center of the mirror, no

fringing effects exist and the ideal uniform electric field is shown.

At the edges, however, the fringing effects are quite significant. At

the comers of the mirror and address electrode, the electric field

intensity is reduced to 78.7% of the ideal magnitude. The solution

in one dimension, given in Eq. (44), is the cross section along the

diagonal of the solution in two dimensions.

To determine the total electrostatic force acting on the mirror in

the downward direction, as given in Eq. (7), the square of the

electric field intensity in Eq. (45) must be numerically integrated

across the mirror surface using the flux parameter, _. It is obvious

that the total force will be less than the ideal force calculated using

an ideal uniform electric field. The total force becomes

FFB E° -I- 2
=-_ E,,y aydx

e oWy ¥ ¥-2:
- 4 fE_dx + e.of 'E,,Eydydx (48)

o o

+ eowx
4 fE_dy

o

Each of these integrals must be numerically integrated individually

due to their distinct integrands. In order to do so, the

corresponding parameter, _, is divided into N segments which are

used to evaluate discrete samples of the electric field intensity and

position. The definite integral is evaluated as the sum of the area of

rectangles formed in this process. For example, the following

integral is numerically integrated such that

¥ 1 A,

SEx dx "" "-_i_l[(Xi--Xi_l)(E i .+El_l) ] (49)
0 "=

where the height of the rectangle is defined as the average of the

values of the electric field intensity at each side of the rectangle.

The remaining integrals are evaluated using the converging limit of

the series solution generated by this technique.

The range of parameter values must be chosen to correspond to

the range of integration over position. In order to do so, a

relationship must be developed between the index parameter, _,

and the center of the mirror, x = 0. Moving away from the edges of

the device, the index parameter becomes increasingly negative.

Therefore, Eq. (37) can be reduced and solved for the index

parameter at the center of the device, _o, such that

=-IwxTc+Lz,n 1] (50)

The index parameter at y = 0 is determined using the same

technique. Since it is known that the value of the index parameter

at the edge of the device is zero, the resulting range in the index

parameter can be used to describe the desired range of integration

with respect to position over the surface of the mirror.

ELECTRIC FIELD FRINGING LOSSES

The parametric numerical integration was performed for

numerous values of device dimensions, w x and Wy, and mirror
separation distance, zm, such that an analytic equ,valent of this

approach could be determined. It was found that the fringing
losses are b_t described as a fractional loss in the ideal force:

165.4[ w,,wy J

This approximation function is shown in Fig. 7 along with the

results of numerical integration. It is obvious that as the mirror

area increases, the effects of fringing decrease, thus smaller devices

are more affected by such losses to the extent that the ideal solution

can not be used. It should be noted that Eq. (51) is valid for other

device geometries such that the quantity in brackets is the ratio of

the length of the perimeter to the area of the mirror.

Another reduction in the magnitude of the ideal force of a

capacitor is the unused area in the surface of the mirror devoted to

etch holes. The fractional loss is simply a ratio of the total etch
hole area to the ideal area of the device. When this is added to the

fringing loss, Afn., the total loss, Af, describes the reduction of the
ideal electrostatic force of the device due to such non-ideal

characteristics. The net electrostatic force acting on the surface of
the mirror in the downward direction becomes

/ 1F=-_[I-Af] _S _x,y)" dxdy (52)
Zra

where Zm(X,y ) represents the vertical separation distance between

the electrode and mirror at any given position within the device and
will not be uniform due to mirror surface deformations.

CROSS-TALK INTERFERENCE

Another characteristic of the electric field within a device is the

interference produced by the electric field lines of neighboring
devices. This could alter the electrostatic force on the mirror in

two ways. First, the fringing field lines of one device can be

distorted by partially conforming to those of another which would

change the amount of fringing losses as calculated above.

However, since the flexures and support posts between each device

are grounded with the mirrors and a gap exists between these

geometric features, the electric field fringing loss at the edge of an

individual mirror is still dominated by the fringing effects within
the device itself.

The second cross-talk effect would be the added force on the

mirror supplied along additional field lines emanating from the

electrode of a neighboring device. This interference is only present

when the primary device is not actuated since the creation of an

much stronger electric field within the primary device would



preventtheinterferencefield.AsshowninFig.8,themirrorofa
primarydeviceexperiencesasmallforcealongtheelectricfield
linesfromthefirstoffourneighboringdevicethatareactuated.If
theaddresspotentialoftheprimarydevice,Vp, is approximately

zero, the net cross-talk force supplied along the electric field lines

is simply the integral of the linear force distribution along the
surface of the mirror. This distribution is determined by the

address potential of the neighboring device, V1, the length of each

electric field line, L, and the angle of the force vector, 0. The

length of the electric field lines is given by

L(x)= +zo x+x + +z:

where x s is the separation distance between each device as shown

in Fig. 8 which al_o shows Ax as the horizontal distance between

the neighboring address electrode and any point along the surface

of the primary mirror. The linear force distribution is found to be

Eo ( VI _2 Eo Wy VI2 Zo (54)

:,(x)= co,(0 =T 3
which is not a function of position in the y direction. Since this

distribution is not symmetric about the center of the device, the

side of the mirror nearest the neighboring device will experience a

greater force than the opposite side of the mirror. In order to

determine the amount of force at both ends of the device, the

centroid position, 21 , and the total force due to cross-talk, F 1, must

be found and are defined as [5]

"g 1 "g

It is important to note that the centroid position, X'l, is not a

function of address potential of the neighboring device, V1, due to

the common symmetrical design of the devices within the array.

Figure 9 illustrates the linear force distribution of the cross-talk
interference for a single neighboring device and illustrates the total

force at the centroid position. In one dimension, shown in Fig. 9,

the resulting force observed by the flexures supporting each end of

the device, Fa and Fb, determines the deflection at each end which
will not be equal. The end of the device nearest the actuated

neighbor will deflect more than the other. The force at each flexure

is proportional to F 1 such that

where

w_ +xl, bx =Wx-x
ax = -2-" 2 1

(56)

(57)

These forces are directly related to the deflection at each end by the

spring constant of the flexure.

Expanding this analysis into two dimensions, it is known that

the y centroid falls on the x axis due to the device symmetry. The

total force due to cross talk from the first device, F 1, is localized at

(x,y) = (21,0) and produces a net downward force at each of

the four comers of the device. For a square device, the other three

neighbors produce similar forces located at the same position,

given in Eq. (55), relative to each mirror. The centroid positions of

all four neighbors are shown in Fig. 10(a) as circles numbered

according to the corresponding device. The total force due to cross

talk, FCT, is centered at the final centroid position, (XcT,Ycr),

which is determined by the forces of the surrounding devices:

1 4 1 4
_-cr = _"_2 F, ycr = -- "_ y,,F,, (58)

where n is the index of the neighboring devices and Fcr is simply

the sum of their forces. Similar to the analysis in one dimension,

given in Eq. (56), the force observed at each comer of the device is

proportional to the total force, FCT, as a function of position

relative to the centroid, (XcT,Ycr)" Figure 10(b) illustrates the

final effect of cross-talk which shows the uneven tilting of the

mirror in response to the location of the final centroid. In this

example, the first and fourth devices are actuated more than the
second and third devices which determines the position of the

centroid and results in a tilting of the mirror.

The deflection of the mirror due to cross talk is a function of

position across the mirror surface and can be obtained by

developing an equation of the plane formed by joining the four

comers. The function AZCT represents this deflection such that

--- +-- -- +D_,- 59)Azcr(X,y)=_D___+Dx( x "_ Dy( y "_ ( xy "_
2 _w, fl 2 Lwy] (w, wy] (

and the deflection coefficients are given as

D,.,. = d a + d B + d c + do,

D. = d n + d c-da -dD, (60)

Oy = d a + d e- dc - do,

D_, = d n + d o - da - dc

where dA, dB, d C, and dD are the deflections at comers A, B, C,

and D respectively. The amount of the cross-talk deflection, AZCT,

increases as the distance between devices, x s, decreases. Therefore,

arrays containing micromirror devices in close proximity to each

other may be significantly affected by neighboring devices.

To determine the effect of proximity, the maximum deflection

of a primary device due to cross-talk, d,,,ax, was found by fully

actuating all neighboring devices. This analysis was completed for

a variety of device separation distances, x s, and primary mirror

surface areas of a square mirror and was found to be:

4d2x(Z_o-_d2n)2I( xs +w)Z_n-X'Lmax (61)
d_

Zow L_n L_L
where d2, is the 2n modulation deflection for any arbitrary

wavelength, w is the width of the square mirror, and L,,,/,, and L,,_

are the minimum and maximum arc lengths between devices,

respectively, shown in Fig. 8 and defined as:

2 (62)L._. = + Zo-

Lmax = _/ ( x s + w x) 2 + Z2 (63)

This result is shown if Fig. 11 which illustrates that the effect of

cross-talk is dramatically reduced as devices are placed further

apart. However, devices in close proximity to each other were

found to be susceptible to this interference. Since the actuation of

the primary device dominates over the cross-talk interference from

neighboring devices, the effects of cross-talk can be removed by

setting a resting bias for the micromirrors so that their resting

position is at some small deflection.



MIRROR SURFACE DEFORMATION

Another major factor in the behavior of the device is the

deformation of the mirror surface during actuation. This behavior

is compared to the deformation of a rigid beam supported on each

end by ball supports such that the free-floating flexures allow the

edges of the mirror to angle upwards as the center of the mirror

deflects downward. The maximum deflection, 5, of the beam under

a uniform force per unit length, q, is given by

_= 5qL 4 F 1
384EI' q = _, i=__wt 3 (64)12

where L, w, t, and E are the length, width, thickness, and modulus

of elasticity of the beam, respectively [6].

Although the edges of the beam are allowed to angle upward,

the angles produced by very sm_ll deflections at the center of the

beam compared to its length, 5 << L, are negligible. Therefore, the

deformation is modeled as a beam rigidly supported at the ends and

is represented as one period of a cosine wave having an amplitude

equ'll,i to half the maximum deflection at the center of the beam, 8.

Figure 12(a) represents this beam deflection. For a micromirror

device of area A, the maximum surface deformation including an

initial deformation due to gravity reduces to

FA _[eo(V12A+ Mg

S-(6.4-_t3 [_2 _,zm)

A
(65)

(6.4)Et 3

where M is the combined mass of the mirror and g is the

acceleration constant due to gravity. Using the above beam

analysis, the deformation of the mirror surface becomes

Zm(X,y)=zf-S[I+I(cos(2Z_X)+COS(2ZrYlI] (66)2[, _,wx) _,WyJ)J

where zfis the vertical position of the flexures at the comers of the

mirror. Figure 12(b) shows a surface plot of this function which

depicts the maximum deflection along the surface (zf- 28) to be at
the center of the mirror (x = y = 0). It should be noted that the

elastic modulus for the mirror surface will be difficult to predict for

devices with several layers of structural, adhesive, and reflective

material. Likewise, the peak deflection coefficient, 8, does not

include the effects of stress which can significantly alter the

deformation behavior of larger devices.
For micromirror devices with the flexures attached at some

point along the edge of the mirror, the solution in F_,q. (66) is

simply rotated and scaled down to fit within the dimensions of the

mirror. The rotated coordinates of the solution are found to be

x'=s_[xcos(Ox)-ysin(O,) ] (67)

y'=s,[xsirl(O_)-ycos(Oy) ] (68)

where the scale factors, sx and Sy, and rotation angles, 0_,and 0y, are

determined by the geometry of the device and the position at which
the flexures are attached. The scale factors must be included in

order to generate a solution with areas of zero deformation at the

flexures. If neglected, these areas would appear outside the
geometry of the device and the model becomes discontinuous at the

position of the flexures along the mirror.

The rotated coordinates given in Eqs. (67) and (68) are used in

Eq. (66) to produce the contour plot shown in Fig. 13(b) in which

the original solution is shown within the dashed lines. The surface
of the rectangular mirror where the flexures are attached has no

deformation and is shown as white while deeper deformations are

shown darker relative to their depth. This contour illustrates the

effects of deformations at the comers of the mirror which are free

to deform without rigid support by the flexures. In both solutions,

the peak deformation is given as zf-28 although the peak
deformation of the rotated solution will be slightly less than the

original solution shown in Fig. 13(a) since the center of the mirror

is much closer to the flexures. Therefore, the deflection coefficient,

_5, must be reduced. The surface deformation of any rectangular

Flexure-Beam device can be represented with this solution.

FREQUENCY RESPONSE

Since the mirror is an oscillator, the spring constant directly
determines the resonant frequency of the mirror given its mass.

The time response of any harmonic oscillator can be found by

solving a differential equation relating Newton's second law and

Hooke's law to a sinusoidal drivinli force [12]. The solution is

cos(ox)
_ , COo = (69)z(t ) - M_/(co F° 09z)2 _ 4092flz

where z(t) is the deflection of the oscillator in time, Fo and to are

the amplitude and frequency of the driving force, respectively, too

is the resonant frequency of the oscillator, k is the spring constant

in Eq. (32), M is the combined mass of the mirror as determined

from the densities and geometries of the materials comprising it,

and _ is the damping parameter of the device. The device

experiences a squeeze-film damping effect by displacing the air

within the device as it deflects. The peak deflection response of an

oscillator is found by obtaining the maximum deflection of Eq. (69)

as a function of frequency. The combined restoring force of the

flexures simplifies to a frequency-dependent spring force given by

F_ =d/_/[k-M(2_f)2]2-4M2fl2(2zcf) 2 (70)

where dfis the vertical deflection of the mirror at the flexures andf
is the operating frequency of the device. For low operating

frequencies, (2nf<< too), the force reduces to the static spring force

of F, = k d/given by Hooke's Law.

TEMPERATURE DEPENDENCE

The temperature effects are analyzed by considering the

coefficients of thermal expansion for the materials comprising the

flexures and mirrors. The length, width and thickness of the device

components will increase with temperature which alters such

factors as the spring constant of the flexures or the total

electrostatic force on the mirror. Consider the length of the

flexures as a function of temperature, T, in which

L = lo[l + ot(T- To) ] (71)

where lo is any length at temperature T O and cx is the coefficient of

thermal expansion for the flexure material [13]. The temperature

dependence of the entire device can then be predicted by applying

this analysis to all dimensions of length in the final model.

Additionally, the elastic modulus is a function of temperature

where the device becomes more flexible as temperature rises. To

find this relationship, the resonant frequency is obtained at various

temperatures and Eqs. (32) and (69) are used to extract the spring

constant and the elastic modulus as a function of temperature.



ADVANCED FLEXURE-BEAM MODEL

To develop the characteristic model for the device, the

electrostatic force given in Eq. (52) is set equal to the spring force

in Eq. (70) and solved for the address potential, V, such that

Eo[1-A/] -2xz,,, ( , y) dxdy

Recognizing that _ is a function of V as given in Eq. (62), this

creates a circular reference when calculating the voltage required to

deflect the device a desired distance. Therefore, the spring force is

used to replace the electrostatic force given in this equation since

these forces are ideally equal. .The temperature and surface

deformation effects then can be added such that:

tanI(Zo -d-Az(x,Y)-6)21 (73)

where

F_ =(d-Az(x,y))_/[ko - M(2nf)2_ -4M2fl2(2n[) 2 , (74)

k

=

[[ko(d-Az(x,y))+ Mg]w,,w, ] ....

S=[ _ .._1 + au _T_ To)] (76,

and where et F and et M are the coefficients of linear expansion for

the flexures and mirror respectively, d is the desired deflection

distance at some location (x,y) on the mirror, and z o is the resting

height of the flexures. This height is related to the initial spacer

thickness such that the initial deflection due to gravity is a result of

the weight of the mirror related by the spring constant of the

flexures. This model is valid as long the desired mirror deflection

is greater than the surface deformation at that point.

FABRICATION

The mirror arrays were commercially fabricated by the

Microelectronics Corporation of North Carolina (MCNC) using the

ARPA-sponsored Multi-User MEMS Process (MUMPS). This

fabrication process has three structural layers of polysilicon and

silicon dioxide as the sacrificial material. The first polysilicon

layer, Poly-0, is non-releasable and is used for address electrodes

and local wiring while the second and third layers, Poly-I and

Poly-2 respectively, can be released to form mechanical devices.

The MUMPS process allows a layer of metal to be deposited only

on the top of the Poly-2 layer. The metal is deposited as the last

layer of the fabrication process since the metal is non-refractory

and the polysilicon layers are annealed at 1100oc to reduce stress.

These active layers are built up over a silicon nitride layer which
insulates them from the conductive silicon substrate.

This process is illustrated using a simple device consisting of a

metallized mirror, one flexure, and one support post. Note that this

design does not use Poly-1. Figure 14(a) shows a cross-section of

this design prior to metallization. After fabrication, the sacrificial

layers must be etched away to release the mechanical layers.

Figure 14(b) shows the released structure after the metal has been

deposited and the sacrificial material has been removed.

The unreleased die are delivered from MCNC in a protective

photoresist which is stripped off in a three minute acetone bath.

The die are then rinsed in deionized water for two minutes. The

actual release etch is a two minute dip in concentrated (49%)

hydrofluoric acid. The die are then rinsed for five minutes in

gently stirred deionized water. After the rinse, they are soaked for

five minutes in 2-propanol, then baked dry in a 150°F oven for five

minutes. The propanol displaces the water, and when it evaporates

its lower surface tension prevents the pull-down and destruction of

the released polysilicon structures.

EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 15 in which a

microscope-based laser interferometer is used to modulate a fixed
reference beam with the beam reflected from the device. An

incident laser beam is split into a reference and object beam and

each is allowed to travel some distance before they are joined

together at an aperture to create an interference pattern. A photo-

detector placed behind this aperture produces a current which is

linearly related to the intensity of the interference pattern. Along

the path of the object beam, the path length increases by twice the

vertical displacement of the device under test. Therefore, by using

a periodic drive signal and knowing the exact wavelength of the

incident laser beam, a continuous sample of the detector current

yields an accurate measurement of the displacement of the

micromirror surface. Comparing this displacement with the input

signal yields the response characteristics of the device [14].

The microscope allows the object beam to be finely focused

onto the surface of the mirror such that the spot size is

approximately 4 I.tm in diameter. Since the translation stage

supporting the device can be moved in increments of 0.1 lam, the

displacement at any location on the mirror can be measured and

compared to measurements taken elsewhere throughout the mirror

surface. The result is a mapping of the surface deformations or

tilting of the mirror as a function of applied potential. A system

precision of 2 nm was measured using multiple characterization

curves for a single location on one micromirror device.

An additional setup was used to measure the frequency

response of the devices studied. A device under test is placed in a

temperature-controlled evacuation chamber at 20 mTorr of

pressure. A spectrum analyzer is used to measure the mechanical

energy of the device using the principle of virtual work. A peak in

the mechanical energy is observed at the resonant frequency of the

device. The output, however, is relative only to the mechanical

energy of the device and does not represent deflection. This

procedure can produce accurate evaluations of the spring constant

of a device given its resonant frequency and mirror mass.

PROCEDURES AND RESULTS

The ideal models were verified by characterizing the devices

and fitting the curve to the data using the spring constant. Data

was taken for the FBMD and the Cantilever devices, but not for the

Torsion-Beam device because the model was developed after the

test chip was sent to fabrication with no Torsion-Beam devices.

The model and experimental data for the Cantilever device is

shown in Fig. 16 and the Torsion-Beam model is shown in Fig. 17

which illustrates the behavior at several positions along the surface

of the mirror. The slight error shown at the center of the Cantilever

device in Fig. 16 can be partially attributed to the uncertainty in

positioning the 4 lam laser spot. The ideal model of the FBMD is

not shown. It was determined that a spring constant of 2.6 N/m

accurately fit the curve to the experimental data.



Thefrequencyresponseof thesquareFBMDwasanalyzed
usinga complextransferfunctionderivedfromtheFourier
transformofEq.(69)suchthatthephaseresponseofthedeviceis
preserved.Asshownin Fig.18,whichshowsthistheoretical
behaviorandmechanicaldataofthedeviceinarbitraryunits,there
is aslightmiscalculationof 40Hzbetweenthepredictedand
observedresonantfrequency.Thisisduetothevalueusedforthe
massofthemirrorinwhichthemassoftheflexureswasneglected.

Theoretically,thedampingcoefficient,13,canbefoundasa
functionof devicearea,A, mirror separation distance, z,,,, and

atmospheric pressure by finding the resonant frequency of several

devices at various pressures. However, for this particular FBMD,

the resonant frequency could not be achieved above I00 mTorr of

pressure which indicates that the squeeze-film damping effects on

Flexure-Beam devices is quite significant. Devices with lower

resonant frequencies and other geometries may not be as affected.

The resonant frequency of the square FBMD was found at

various temperatures at 20 reTort of pressure. The resulting spring

constant of each sample, from Eq. (69), was then used to extract the

elastic modulus, from Eq. (32), as a function of temperature. This

function is shown in Fig. 19 which demonstrates a linear behavior.

This function for thin-film polysilicon was found to be

E=( -0.03225 )T+( 172.3931 ) GPa (77)

where T is the Kelvin temperature. The range of temperature could

not be expanded due to the limits of the experimental setup. At

colder temperatures, condensation from the humidity in the air

prevented an accurate characterization of the device.

Tests were conducted to verify the cross-talk and mirror surface

deformations. The cross-talk testing involved generating a

behavior curve for a device at normal operation and then another

curve while its surrounding devices were fully actuated. No

significant changes in the behavior were observed which stands to

verify the assumption that such cross-talk effects are negligible for

this device due to the 18 jam separation distance within the array.

The peak surface deformation in the center of the device was

predicted to be 5 nm and measured to be 7 nm. The predicted

value is based on the modulus of elasticity for polysilicon extracted

from other devices (168 GPa) and is also affected by the stress of

the mirror which is comprised of three material layers. As a result,

this exact value of deformation is somewhat difficult to predict.

In order to verify the advanced Flexure-Beam model, the

square FBMD was driven by a 250 Hz signal ranging from zero to

approximately 16 volts while the laser spot was positioned at the

corner of the mirror. Comparing the input signal with the resulting

phase curve, the device behavior is plotted in Fig. 20 which shows

that the device created a 2_x phase change in a _. = 632.8 nm HeNe

laser, dr= 316.4 nm, with an address potential of 15.25 volts.

The theoretical behavior of the device, shown as a dashed line,

is calculated using design dimensions and the modulus of elasticity,

E=168 GPa, determined from a separately fabricated device. The

actual modulus of elasticity of a thin film material depends on the

fabrication process, and the modulus can vary significantly. Unless

the modulus is determined exactly for the device being modeled,

the value for bulk silicon, or a value determined from another thin

film polysilicon device, must be used as a starting point in the

model. Given this uncertainty in the value of the modulus of

elasticity, the model will produce a representative behavior for the

device. However, by altering only the modulus of elasticity, the

representative curve can be shifted to match the observed data.

CONCLUSION

As Fig. 20 illustrates, the characteristic model in Eq. (73)

closely predicts the actual behavior of the device presented in this

paper. It has also been found to model other devices of various

geometries and materials with similar accuracy. The ideal models

were found to closely describe the behavior of a large portion of the

devices tested once the model was fit to the data by the spring

constant. The material analysis performed in the advanced model

seems to remove the need to empirically determine this constant.

Micromirror devices can be commercially fabricated in a

variety of surface micromachining processes due to their simple,

robust design. The ideal models presented in this paper can be

used to describe the behavior of a large majority of devices based

on their design and motion. For very large or very small devices,

the advanced model may be required to characterize the device.
These thresholds at which the advanced model should be used is

defined by the size of the device and its fabrication process which

incorporates other variables such as stress and thickness of various

layers. An advanced model was developed for any rectangular

piston-style Flexure-Beam Micromirror Des, ice. An advanced

model for other micromirror designs can be developed by following

the same steps for a particular geometry and fabrication process.
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Figure 2. Micrograph and representation of the square Flexure-Beam Micromirror Device.

V

+

,ip J_

v

zf
df

f

(a) Mirror Variables and Coordinate System (b) Flexure Variables in Actuated and Resting Position

Figure 3. Graphical identification of micromirror device dimension variables and coordinate system.
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Figure 4. Side view of the Cantilever and Torsion-Beam micromirror deflection with assigned variables.
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Figure 6. Electric field fringing analysis of a parallel-plate capacitor using the Schwartz-Christoffel transformation.
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Figure 7. Plot of fringing loss approximation function with respect to mirror area along with numerical integration results.
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Figure 9. Cross talk linear force distribution along primary micromirror device and resulting forces at each end.
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Figure 10. Cross-talk interference of adjacent devices and resulting mirror surface tilt of the primary mirror surface.
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Figure 11. Plot of maximum deflection of primary mirror surface due to cross-talk versus micromirror area.
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(a) Beam Deformation (b) Mirror Surface Deformation

Figure 12. Use of beam deflection analysis along one dimension to represent mirror surface deformation along two dimensions.

(a) Flexures Attached at Comers (b) Flexures Attached Along Sides

Figure 13. Plot of surface deformation function fora rectangular Flexure-Beam device with two flexure locations.
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Figure 14. Graphical illustration of the MUMPS fabrication process using a simple Cantilever micromirror device.
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l_gure 15. Experimental setup of the microscope-based laser interferometer.
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Figure 16. Characteristic behavior curves for two locations on the Cantilever micromirror device.

I

20

350

," 300

E
¢

250

¢
0

'_ 2O0
U
M

u

lOO

qw
"5 50

W x=wy=501am x=25pm ,// / /

k = 600 pN / m x = 20 pm

z o=2.5pm x=15pm

x A= 5 lam x= 10pm

x=5pm

I t I t I

0 5 10 15 20 25 30

Address Potential ( Volts )

Figure 17. Characteristic behavior of a Torsion-Beam Micromirror Device at various positions along the surface.
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Figure 18. Theoretical and_mpirical frequency response of the square Flexure-Beam Micromirror Device.
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Figure 19. Elastic modulus as a function of temperature extracted from the square Flexure-Beam Micromirror Device.
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Figure 20. Theoretical and empirical characteristic behavior of the square Flexure-Beam Micromirror Device.
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