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SCIENCE OBJECTIVES

The scientific objective is to study the relation between the morphology and the growth kinetics of domains

during phase separation. We know from previous experiments performed near the critical point of pure fluids

and binary liquids that there are two simple growth laws at late times. The "fast" growth appears when the
volumes of the phases are nearly equal and the droplet pattern is interconnected. In this case the size of the

droplets grows linearly in time. The "slow" growth appears when the pattern of droplets embedded in the
majority phase is disconnected. In this case the size of the droplets increases in proportion to time to the power
1/3. The volume fraction of the minority phase is a good candidate to determine this change of behavior. All

previous attempts to vary the volume fraction in a single experimental cell have failed because of the extreme

experimental difficulties.

RELEVANCE OF THE SCIENCE AND POTENTIAL APPLICATIONS

Phase separation in liquid mixtures and pure fluids is a common process that occurs in many areas of

natural science, engineering, and industry. Engineering applications are especially important in heat and mass

transfer processes that occur in many industries. Phase separation is also ubiquitous in materials processing,

e.g., metallic alloys, polymer alloys 1, and flat panel displays. A clearer understanding of the exact physics of

phase separation is desirable for improving industrial efficiency and in developing new products. Phase
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separation is also an important fundamental scientific problem in which low gravity facilities are needed to

improve understanding. A particularly important feature in the phase separation process, especially in

applications, is the growth and morphology of domains (e.g., liquid droplets) after the process has been

started. The connection between the morphology of the domains and the growth laws is still unclear. Only a
few experimental results are available where density or concentration has been systematically varied r3. In the

region of the critical point, it has been found very easy to continuously vary the physical parameters that

control phase separation ( c.f., Figure 1). In addition, the critical slowing down of dynamics processes that

occurs near the critical point enables a detailed investigation of the mechanisms involved in the separation

process. Results from phase separation experiments done near the critical point can be described by scaled
master curves 1 that are universal, i.e., curves that are valid for allfluids within two scale factors.

Binary liquids near a critical point of miscibility belong to the same universality class as pure fluids for

static properties ( c.f., the three dimensional Ising Model*). However, their dynamic behavior can be markedly
different, especiaUy in a gravitational field. This difference can be seen from the order parameter M (M is a

generic variable that describes or controls a phase transition). M is th_ concentration difference M = c-co for

liquid mixtures where c is the concentration and cc is the critical concentration where phase separation occurs.

At co the osmotic compressibility diverges and the mutual diffusion coefficient goes to zero. When M is
changed to induce phase separation, sedimentation usually occurs because one phase is more dense than the

other. In pure fluids, M is the density difference p-po (p is the density , I_ is the critical density). At the
critical point in pure fluids the isothermal compressibility diverges and the thermal diffusivity goes to zero.

Because pure fluids have a very large isothermal compressibility, they are very sensitive to the earth's

gravitational field (acceleration go)3. Experiments are complicated by the very high compressibility of the fluid
that induces density gradients even in the one-phase region. Convective flows, often turbulent, are also
observed.

During phase separation, pure fluids and binary liquids are always sensitive to gravitational fields, through

convection and/or sedimentation. Attempts have been made to avoid convection by preparing density-matched
liquid mixtures, e.g., by adding a small amount of deuterated cyclohexane in a cyclohexane-methanol mixture 6.

These attempts show that it is impossible to avoid long-term sedimentation because density-matching can never

be perfect. In a pure fluid near the critical point the thermal diffusivity becomes very small and the

compressibility become very large. These two properties leads to a heat transport mechanism that becomes

very fast, the so-called "piston effect." This effect allows thermalization of a fluid to be limited only by the

thermal response of the thermostat 7. Previous experiments with density-matched binary liquids and pure fluid

CO2 under reduced gravity have shown 8 that when M=0 (at M=0 the volume fraction of the minority phase
is qb= 1/2 where dp=ratio of the minority phase volume/total volume), an interconnected pattern of domains

that coalesces continuously is formed. The characteristic wavelength I_, at late times, grows linearly with time
t. When expressed in the scaled units the corresponding wave number is K_*=2n_/Lm (_ is the correlation
length for fluctuations of M that, at temperature Tf, is given by _ = _o(l-Tf/To) v, where _o is the correlation

length amplitude, To is the critical temperature, and v = 0.63 is a universal exponent). The corresponding time

is t*=t/k (k is the relaxation time for fluctuations of M given by k=6r_rl_3/kBTt, where kB is the Boltzmann

constant and r I is the shear viscosity). Using these scaled variables the results obtained in all liquid mixtures

and in CO2 during the gravity-free experiment can be placed on the same master curve 8 strongly supporting
universality.

When the volume fraction is very small (_ < 0.03), and the gravity effects are negligible, the droplets do

not coalesce. In this region they grow slowly by a diffusion mechanism. Experiments 9 show that the initial

growth follows a power law in time with exponent lh or 1/3, depending on the initial supersaturation.

Experiments also show that the late stages of growth are always characterized by a 1/3 power law exponent
("slow" growth) as described by Lifshitz and Slyosov 1°. Off-critical systems at a large volume fraction have

been studied in a liquid mixture by Wong and Knobler 2. For 4) > 0.10 a "slow" growth characterized by a 1/3

growth law exponent is reported at early times and a faster growth at late times. The growth exponent varies
from i/3 to 1 as a function of 4) ("fast" growth).

If densities of liquid mixture components are close together, gravity effects are expected to be weak in
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phaseseparationexperiments.Densitymatchinginabinaryfluidmixturehasbeenusedin recentworld.In
thisexperimentthe temperature quenches were done in the presence of a controlled concentration gradient.

This made it possible, in a single experiment, to determine both the coexistence curve and the boundary

between the "fast" growth zone and the "slow" growth zone. Due to intrinsic experimental difficulties,
however, the errors of the experimental results were large and difficult to estimate. The experiment was also

performed using a gradient whose influence is also difficult to estimate. Based on these results it was only

possible to state that the threshold between "fast" and "slow" growth has a value of 4_that is between 0.3 and
0.4.

RESEARCH APPROACH

In order for this experiment to succeed it is necessary to perform very shallow quenches in a pure fluid

very slightly off-critical and in a mierogravity environment. Although in principle density-matched liquid
mixtures on earth or under mierogravity could be used for this experiment, they suffer from extremely slow

evolution for such shallow quenches. This is not so with pure fluids whose viscosity is nearly 30 times smaller

than liquid mixtures. In addition, a precise determination of the concentration of density-matched liquid

mixtures is extremely difficult. This is not so with pure fluids whose volume fraction dependence can be

accurately determined on earth (temperature variation of the meniscus height). In this experiment we will use
two or more off-critical samples ((P-Pc)/P, less than 1%) of SI_ to determine the critical threshold of the

volume fraction where morphology and growth change. This will be done during a flight experiment using the

ESA's Critical Point Facility (CPF).
A typical phase separation experiment consists of quenching a sample from an initial state (density Po,

initial temperature TO where it is homogeneous to another state (Po,'1_). In this later state the homogeneous
fluid is not stable and the process of phase separation starts. The main part of this experiment consists of a

systematic variation of the quench depth, 8T=T_x-Tr, where T,x is the liquid-gas phase transition temperature

as shown in Figure 1. The starting point (Po, T._ of each quench will be the same. To know the quench depth

accurately, it is necessary to first determine T,_ with a precision of better than 50 #K. After each quench, the

system has to be heated 1K above T_ to be homogenized again. The equilibrium volume fraction _ of the

minority phase is a key parameter for this experiment. _ is controlled by controlling the quench depth, ST.

This is possible because of the relation _ = 1/2{ 1-(1 + ST/AT) "_} where I3 =0.325 is a universal exponent and
AT = T,-T_ is calculated from the coexistence curve expression p - g = + B( -T/'I_ )13where B is a system

dependent 4 constant.
The phase separation experiments require a very precise temperature control (temperature stability better

than 50/_K per hour) with negligible temperature gradients in the cell. Temperature quenches of step size 0.1

mK will be typical with an overshoot of less than 10% of the quench depth. This experiment will also require

direct real time visualization of the sample with ground-based control. These are needed for the determination

of the transition temperature and for adjusting the experimental protocol.

The experiment will also require the following optical diagnostics:
- small angle light scattering for determining the coexistence point temperature, T,_, and the early stages of

phase separation
- direct observation of the cell for the determination of T,_, the study of the pattern morphology, and for the

determination of the growth laws

- interferometry for estimating the temperature gradient in the cell unit.

SCIENCE RESULTS

Although this project has just begun, there are previous results from other experiments that are relevant.
In the IMLI mission using the CPF a sample of density matched binary fluid and a sample of pure fluid were

flown. The density matched binary fluid was an off-critical sample of methanol and partially deuterated
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cyclohexaneat concentrationc = cc- 0.01. The pure fluid was an off-critical sample of sulfur hexafluoride

at (p-po)/pc =0.036. In these experiments the samples were subjected to various quench depths. All the data
obtained in liquid mixtures and in pure SF 6 during the gravity-free experiments, when expressed in the soled

units K_* = 2rt_/L,, and t* = t/t _ fit remarkably well to the same master curve (Kin* --- It *'°) giving clear
evidence for the universality of phase separation in fluids and liquid mixtures 1'. Moreover, the crossover

between slow and fast growth at _=0.1 reported by Wong and Knobler could not be observed when gravity
effects were suppressed. It is likely that this discrepancy can be attributed to gravity effects that are difficult
to see directly.

We have found that density-matched liquid mixtures could not be used on earth to study the crossover in
morphology. This is because the range of interest is 0.01 in concentration around co. The determination of such

a small concentration difference is extremely difficult to achieve. It is also necessary to perform shallow

quenches to produce small volume fractions. These experimental conditions lead to very slow evolution.

Typically, in partially deuterated cyclohexane-methanol at c-co=0.005, for a quench depth of 100/_K, the time

to obtain droplets of =30/zm is of order 3 hours. This time is much too long in comparison to the stability of
the experiment conditions that can be obtained.

To avoid these difficulties an experiment with an off-critical fluid (SFt,) was carried out in the IML2

mission. The density difference (P-Pc) was measured on earth by studying the temperature dependence of the
meniscus between the liquid and gas phases. This precise method gave (p-po)/po = 0.0050. Under

microgravity, a determination of the transition temperature T_x with a precision of 50/zK was first done. Fast

growth, with interconnected patterns, occurred for quench depths of 300/_K and 1000/zK. This contrasts with
the slow growth observed for quench depths of 50 #K and 100/_K. This shows that the volume fraction

(related to quench depth as shown above) is the correct parameter for studying the connection between

morphology and growth. The presence of a density gradient in the cell, however, (related to the very large

compressibility of the fluid near its critical point) complicated the interpretation of the data. This was especially
true for estimating the crossover volume fraction. To avoid density gradients during the determination of T_x,

it is necessary to use considerable time during the approach. These experiments were hampered by the short

time allowed. The Tcx determination can only be done on earth to within a few mK because of the gravity-
induced gradients present (the fuid is compressed under its own weight).

Another attempt to suppress gravity effects has been considered by Tanaka _2who studied phase separation
with oligomer mixtures between closely spaced plates. During the late stages of growth, when the sizes of the

domains were of the order of the thickness of the liquid mixture layer, he also observed two different kinetics

of growth. However, in this case the phase separation is controlled by the wetting phenomena from the plates
and cannot reveal many interesting bulk effects.

Although the experimental results are few, phase separation has been the object of great theoretical interest

over the last several decades. The work by Siggia 13has initiated many attempts to explain the two growth laws
by considering hydrodynamic arguments. Recently, several groups _418have done large scale direct numerical

simulations by using different approaches to solve coupled equations involving diffusion and hydrodynamics.

Some of these simulations have recovered a t _growth law 14'_5.Others were unable to reach the late stages of

separation but did calculate the transient values of the growth exponent (between 1/3 and 1). In spite of these

efforts, the physical mechanism for the linear growth has not been clarified. To our knowledge, the simulations

have never shown the two asymptotic growth laws: the exponents are either larger than I/3 when accounting
for hydrodynamics or 1/3 for pure diffusion. Thus the simulations still do not explain the transition from one

regime to the other. Recently, a new theoretical approach has been suggested by some of us that explains the

existence of the two different regimes and their relation to the pattern morphology. One purpose of the present
project is to check the predictions of this model.

RESEARCH PLANS

From two space shuttle missions in the ESA's Critical Point Facility several important results have already
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beenoblained.In the IML1 experiment the universality of phase separation in fluids and liquid mixtures has
been shown. The IML2 experiment yielded preliminary results in a 0.5% off-critical sulfur hexafloride cell

where a transition between disconnected-slow growth and the interconnected fast growth was observed. This

has been obtained in a single cell, showing that the volume fraction is a crucial parameter. Nevertheless, the

presence of a density gradient in the cell, related to the very large compressibility of the fluid near its critical

point, complicated the interpretation of the data and prevented any precise determination of the volume fraction

threshold, estimated to be within 30-40%.
To understand why morphology and growth undergo such a dramatic change at this "critical" value of the

volume fraction, it is necessary to reproduce and refine the experiments. Systematic variations of the

temperature quench depths must be made and significant reductions in density gradients in the cell must be
achieved. Because these experiments are done exlremely close to the critical point, a microgravity environment

is essential.
The specific plan will be to operate two or more cells of sulfur hexafloride in the Critical Point Facility

(CPF) under microgravity. The ground-based program consists of preparation and testing of the sample cells,

improvement of the sample cell to minimize temperature gradients in the fluid, and numerical simulation of

the phenomena including hydrodynamics.
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Figure 1.-Morphology and growth. A phase diagram (schematic) of SF6 that shows the critical point Pc,
the cdlical temperature To (45.55 °C), the critical density Pc (0.737 g/cm_), and the coexistence curve CXC.

When the supercriticai fluid (point A, density off-critical by +0.5%) is quenched below CXC, droplets of
vapor (volume Vt) and liquid (volume V 2) nucleate and grow. The experiments in IML2 show that the curve

VI/V2=50% separates a region of "slow" growth ( A -_ B quench 50 t_K below CXC) where the droplets are

disconnected and grow as (time) _r3,from a region of "fast" growth (A -_ C quench 3 mK below CXC), where
the droplets are interconnected and grow as (time) _.
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