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The objective of our study is to model the non-linear behavior of a near-critical liquid

following a rapid change of the temperature and/or other thermodynamic parameters (pressure,

external electric or gravitational field). The thermodynamic critical point is manifested by large,

strongly correlated fluctuations of the order parameter (particle density in liquid-gas systems,

concentration in binary solutions _-3)in the critical range of scales. The largest critical length scale

is the correlation radius rc. According to the scaling theory, rc increases as r_=r0c'* when the non-

dimensional distance c=(T-Tc)/T_ to the critical point decreases. Here, T_ is the critical temperature,

and the critical exponent tx is --2/3. The relaxation time _c(rc) of fluctuations on the correlation radius

length scale may be estimated near Tc as "l;(rc)='l;0E'_3v÷z),where the microscopic time % is about 10 "t3

sec, and the numerical value of the related critical exponent is approximately 3v+z=2.

The normal gravity alters the nature of correlated long-range fluctuations when one reaches

e-10 5, and correspondingly "_(rc)-10 3 seconds; this time is short when compared to the typical

experimental time. In microgravity conditions, one may study a statistically homogeneous critical

liquid which is orders of magnitude closer to T_ than that in a ground-based experiment. Recently,

the ZENO experimend has set a benchmark e-107-10 "s, r_-l-10 lam, and "_(rc)-10t-103 s. This

achievement manifests a qualitative change of the physical situation: that close to the critical point,

the life-time of long-range fluctuations exceeds the typical experimental time-scale of seconds and

minutes, and one is able to experimentally study the nonequilibrium, transient and steady, states of

the material. On the other hand, in microgravity experiments conducted very close to the critical

point a speeded-up equilibration may result in a long-living non-equilibrium state in some parts of

the liquid. A theoretical model for the kinetics of those states is then needed to interpret the

experimental data.
Close to the critical point, a rapid, relatively small temperature change 8T<<T_ may perturb

the thermodynamic equilibrium on many length scales. The critical fluctuations have a hierarchical

structure, and the relaxation involves many length and time scales. Due to fragility of the near-

critical equilibrium, the response of the system to such a perturbation is nonlinear one, and non-

linearity plays the main role in the relaxation kinetics.

Above the critical point, in the one-phase region, we consider the relaxation of the liquid

following a sudden temperature change that simultaneously violates the equilibrium on many scales.

Below T c, a non-equilibrium state may include a distribution of small scale phase droplets (clusters

of one phase in the matrix of the other one); we consider the relaxation of such a droplet following

a temperature change that has made the phase of the matrix stable.
The transient near-critical states created by a rapid temperature change differ in important

details from those studied in the equilibrium scaling theory and the dynamic renormalization group

(DRG). The application of the DRG to the new situation assumes an extension of scaling

hypothesis. We give physical arguments in favor of the proposed scenario of the hierarchical

relaxation. The theory predicts new scaling laws for the large-time dependence of the temperature

and for statistical characteristics of long-range fluctuations. These predictions may be tested by light
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scatteringexperimentsand by direct visualizationtechniques. An experimentaltest of the

predictions will check the suggested scenario and the enhanced scaling hypothesis.

The following physical situations are considered.

1. A step away from the critical point where a large range of critical fluctuations disappears.

2. A step towards the critical point where a new range of strongly interacting fluctuations appear.

3. A phase droplet (nucleus) in a matrix of the other phase under varying conditions of the matrix
stability.

4. The nucleation of FCC (face centered cubic) clusters following a deep quench of a computer-

generated "liquid".

We start with a I_angevin-type description of the system. The atomic scale fluctuations are

assumed to play the role of a "thermal bath" for the larger scale degrees of freedom. At times t>'%

one characterizes this "thermal bath" by a time-dependent temperature T(t). The time "_chof the rapid

temperature change 6T is large when compared to %, but small when compared to the relaxation

time on large scales r>>r0: "_(r)>'Cch>"%. On the macroscopic time-scales, one considers a sharp

temperature step at t=0. The mathematical model is as follows. To study the fluctuations of the

order parameter (particle density in the liquid-gas system), one represents the order parameter field

_(r,t) in the form l-s

ka

_(r.O = _ _e-_" ; (1)
hO

the variable cut-off length _.=l/k x is introduced in (1) following the Wilson-Kadanoff

renormalization group (RG) method 23. The probability W_.x(_)D_(r ) to find the equilibrium system

in an element Dqb of the configuration space defines the effective Hamiltonian H A _.2.

Fx-Hx(d_))D_ Ha
W_q.x(_)D_ = exp( kbT_ . , Fx = -kbTclnfexp(-_bT)DCb,

H (.it)

HA = -F - kt'Tcln(*cmEexP(- k'_), F,.,, = F-F x.

(2)

In the definition (2), H (m_c)is the microscopic Hamiltonian of the system, I% is the Boltzmann

constant, F is the equilibrium free energy of the system, Fx and F,_s are the singular and the regular
parts of the free energy respectively:. The sum in (2) is over all states of the system with _(r) a

given function. The field _(r) defined by (1) represents only a small fraction of the degrees of

freedom of the system, most of which belong to small length scales r<L The effective Hamiltonian

Hx(_,e) is defined as an average over these small scale degrees of freedom. Up to a regular function

of e, Hx(_,e) is the free energy of the system in the equilibrium state with a given configuration of

the large scale field t_(r).

The fluctuations of the conserved order parameter _(r,t) are described by the Langevin

equation of the form

04) 8Hx
- arx(--rT-. +fx.,_). (3)

at

Here,v is the (conserving) kinetic coefficient. The extraneous random force f_,,(r,t) models the
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interaction of the order parameter with small-scale degrees of freedom of the system. The kinetic

coefficient 1"x and the effective Hamiltonian H Aare dependent on the cut-off length _. as described

by the dynamic renormalization group (DRG). An essential condition of applicability of the method

is the thermal equilibrium at length-scales R<_.; the thermodynamic equilibrium at scales larger than

,_ is not required by the renormalization group method, the relaxation on these scales is described

by the equations of the theory. In the course of relaxation, the fluctuations on scales R>X are non-

equilibrium and exchange energy with smaller scales. One has to study separately a step towards

the critical point (r¢,_.>>r¢,_.) in which a new range of strongly interacting fluctuations appear, and

a step away from the critical point (rc.n.<<rcj .) where a large range of critical fluctuations disappears.

Here and below, the subscripts _. and _. label the characteristics of the final and the initial (t<0) states

of the system.

For a large temperature change away from the critical point, L.n.<<r¢,_., Most important

changes in the fluctuation picture are expected in the range of scales r¢.n.<r<L,_.. In systems

characterized by a conserved order parameter, the relaxation on small length-scales takes less time

than on the large ones. At a given time t, the fluctuations on length-scales r<_._(t) have approached

the new equilibrium state while the larger scale fluctuations are still non-equilibrium. Here, 3.eq(t)

is the equilibration length increasing with increasing time. At large t>z(r¢.n.), _.,q(t) exceeds the

correlation radius r¢,n. of the final equilibrium state. We apply the DRG to find the effective

Hamiltonian on large scales r>r¢.n., t>x(r¢,n,) in the form

H;,. = _H k , H,_ - t It'd=. (4)

Here, Xn.---X(en.)-en. v_2.'_ is the susceptibility of the system in the final state (the isothermal

compressibility for the liquid-gas system). The free field form of the resulting Hamiltonian means

that at t>'_(r¢._.) the temperature shift switches off the interaction in the range of scales r>r¢,n.. The

relaxation of the long-range configuration to the final equilibrium state follows the laws of the free

field kinetics. For the time-dependent average M_(t)=<[qbk(t)t2> one obtains

2/
-I

Mk(t) =(M£i n-MtcSut)e q +Mklin ,

l (5)

The diffusion coefficient Dn, is scale-independent at the length scales X>>L.n,. We have also studied

the shape relaxation of probability distribution function of long-range fluctuations.

A rapid temperature increase requires more energy than a gradual heating. At large times,

the excess energy is gradually released; in a system adiabatically insulated at t>'_(rn°), the energy

release raises the temperature of the system. The scaling law for the large-time temperature "tail"

has the form

_.(t)_¢li. _ ¢_.[.c(rc_)lt] C, (. = (l+rl)/2. (6)

Here, r1=0.033 is the critical exponent of the order parameter.
Let us now consider a step toward the critical point: cm>>er, o. In contrast to the above case,
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the harmonics _k in the range rc.m<l/k<rc.nn strongly correlate in the final state, and the problem

cannot be reduced to that of a single harmonic. The suggested scenario is sequential equilibration:

at a given time t, the fluctuations on small scales up to a time-dependent equilibration length scale

_._(t) will equilibrate while the harmonics qbk with k<l/_..a will retain the initial magnitudes. These

magnitudes are small compared to the final ones, and may be neglected. The statistics and the

kinetics of the fluctuations on scales r<_.0q(t) yield then the equilibrium scaling relations 2.3,4:on a

scale _.<_.,_(t) the relaxation time is z(_.)-_.2/D(_.)~_) ÷av, where z is the critical exponent for the

viscosity 2'4. The time dependence of _._ is controlled by the condition that l:(r)<t for r<_.,_(t), and

z(r)>t for r>_.,_(t). The scale _.,q(t) has then the equilibration time "_(_._q(t))-t; this relation gives the

scaling law for _._q(t).

v
_'¢q(t)=rin[t/'¢(rin)] p, P=_. (7)

3v+z

The theoretical values (see ref. 5) v=0.630 and z=0.063 give p=0.32.

The sequential "cooling" of large scale fluctuations is accompanied by release of heat Q(t).

The heat released on the scale _'eq is transferred to smaller scales and through the small scale "heat

bath" to the thermostat that maintains the temperature T(t). In a system that is adiabatically

insulated during relaxation, the heat transferred from the large scales to the smaller ones will result

in an increase in the temperature T(t). A rapid cooling results then in a temperature minimum. The

scaling law for the large time "tail" in reduced temperature is

e(t) _" el['c(rc,,n)lt] _ , (:i/(3v+Z). (8)

The critical exponent (.=l/(3v+z) differs from (. given by (6). Using the approximate theoretical

values for the critical exponents (see ref.5), one obtains for the liquid-gas and for the binary mixtures

critical points ( +--0.517 and ( =0.512. Both exponents are surprisingly close to each other and to
the mean-field value 1/2.

Below the critical temperature, there are two phases of the material, one of which is

metastable except for the phase transition line. A non-equilibrium state may include droplets of one

phase in the matrix of the other one. In the literature, this was studied for the case of a metastable

matrix state, when the droplet is a nucleus of the new, stable, phase. We have considered a more

general case when the embedding matrix may be metastable or stable. In the vicinity of a phase

equilibrium line limited by the spinodals, the non-linearity of the equations for the two-phase system

results in a finite width of the interface separating the droplet from the matrix. On both sides of the

binodal, the droplet may be characterized by a critical radius; when the matrix is in the stable phase,

the critical radius becomes negative. The nucleus then is always subcritical and decays with time.

By changing the thermodynamic stability of the matrix, one is able to control the growth and decay

of the nucleus. Outside the part of the thermodynamic plane separated by the spinodals of both

phases, the relaxation of the droplet leads to the broadening of the boundary. Asymptotically, the

profile of the order parameter tends to a Gaussian one, with the width R(t) growing according to the
diffusion law R2-t.

The growth of small nuclei of the cubic central faced crystalline phase following a deep

temperature quench to the liquid state spinodal was observed in a computer-generated "liquid". To

discriminate clusters having the FCC local order, the statistical theory of pattern recognition was
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applied. The method proposed allows one to compare nucleation kinetics in real and in simulated

systems.
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