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ABSTRACT:

Tests were conducted for an air-water flow through two sudden contractions aboard the NASA DC-9 low gravity aircraft.

Flow rate, residual accelerations, void fraction, film thickness, and pressure drop data were recorded and flow

visualization at 250 images per second were recorded. Some preliminary results based on the flow visualization data are

presented for bubbly, slug and annular flow.

INTRODUCTION:

Studies of gas-liquid flows have been conducted by the nuclear and petroleum industries for many years. The influence of

gravity on gas-liquid flows has been demonstrated many times by simply changing the orientation of the flow direction

with respect to gravity. Changes in the flow regime, as well as the liquid film thickness and void fraction, have been
documented for changing the angle between the gravity vector and the flow direction for as little as 0.25 I

Gas-liquid flows in reduced gravity have many space-based applications 2, and also have been studied for many years with
the earliest studies by Evans 3. More recent studies by Dukler, et. al:, Colin et. al. s, Huckerby and Rezkallah 6, Kamp et

al. 7, Bousman and Dukler s, Bousman and McQuillen 9, Hill and Best l°, Colin and Fabre _ , Colin et al) 2, have focused on

flow within straight cylindrical conduit. These studies have been conducted on aircraft flying low gravity trajectories and
have revealed that the flow patterns, or flow regimes, are axi-symmetric because of the greater impact of surface tension

forces in the slower flows and the lack of stratification caused by the reduced influence of buoyancy forces.

These studies have found that for gas-liquid flows in a reduced gravity environment, there are three flow regimes:
Bubbly, slug, and annular. Bubbly flow consists of small gas bubbles suspended within a continous liquid phase. Slug flow

consists of cylindrical-shaped bubbles with a spherical nose surrounded peripherally by a thin liquid film and separated by

liquid slugs. The liquid slugs and thin liquid film may or may not contain smaller gas bubbles. The annular flow regime

consists of a thin liquid film on the wall that surrounds a gas core. Waves of liquid are transported across the thin liquid

film and may generate liquid droplets which are suspended within the gas core and eventually deposited back into the

liquid film.

Similar flow regimes exist for vertical upflow and downflow in a normal gravity, and these flow regimes are also
axi-symmetric. However, the presence of gravity induces density-driven shear forces that affects the behavior of the flow

and the phenomena being observed. This is apparent when comparing the bubbly to slug flow transition for vertical flow

in normal gravity with microgravity conditions because the lack of density driven shear permits bubble coalescence to
occur much easier. It should also be noted that for the slug and annular flow regimes, the liquid film in normal gravity

vertical upflow will reverse its direction, rising with passage of a liquid slug or roll wave and then slowing, stopping and
falling between slugs or waves. For vertical downflow, the liquid film may slow, but never stops. For slug and annular

flow in microgravity, the liquid film will slow and sometimes completely stop between slugs and roll waves depending on

the frequency of the slugs and roll waves.

Most studies have focused on flow through straight conduit; however, there have been several normal gravity studies of

flow through fittings that result in changes in the conduit geometry. Usually, these studies of flow through fittings have
centered on determining the pressure drop through the fitting. Techniques to predict the pressure drop are usually

compared against either a homogenous model or empirical models based on experimental data. To determine the pressure
drop, the homogenous model uses the single phase correlations with an averaged gas and liquid density and a liquid

viscosity. Tests were conducted aboard the NASA Lewis Research Center's DC-9 Microgravity Aircraft using the DC-

9/KC-135 Two Phase Flow Rig to examine the behavior of gas-liquid flows through a sudden contraction.

EXPERIMENTAL HARDWARE AND TESTING:
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AninstrumentedPlexiglastestsectionwasinstalledintheDC-9/KC-135rigdescribedbyMcQuillen,et.al_3.A Plexiglas
testsection,illustratedinFigure1, consistingof fourmeasurementlocationswasintegratedintotherig. Twoofthese
locationsconsistedofonlypressuretaps,whiletheothertwolocationsconsistedofpressuretapsandconductivityprobes
Theconductivityprobeswereusedasliquidfilmthicknessprobesandvoidfractionprobes,similartothosedescribedby
Bousman(1995).

Fromthemixertothecontraction,thetestsectiondiameterwas2.54cm.Twodifferentsizetestsectionsandcontractions
werefabricatedandtest:1.27and1.90cm.Thecontractionconsistedof threePlexiglasblocksthatwerefabricated.
Thefirstblockwastheinletpiecewhichintowhicha2.54cmdiameterholewasdrilledfortheflow.Atoneendofthe
block,aholewasdrilledandtappedtoaccommodateastraightthreadfitting.TheinletPlexiglastubingwasfedthrough
thefittingintotheblock.Theremainingtwoblocksweresimilarinconstructionexceptthattheeachoftheblocks
accommodatedano-ringforsealingagainsttheblockwiththe2.54cmdiameterholeandthattheholediameterswere
either1.27or190cm

TheNACHSV-500highspeedvideosystemwasusedtorecordimagesofthecontraction,bothupstreamanddownstream
atthecontraction.Thedualcameraoptionforthevideos'ystemwasutilized,withthesecondcamerafocusingonthe
internalsofthegas-liquidsystem

TestswereconductedaboardtheNASADC-9ReducedGravityAircraft.Airwasusedasthegasphase,andeitherwater
orawater-surfactantmixturewasusedastheliquidphase.Flowwasinitiatedduringthelowgravityportionofthe
trajectoryandthetestdurationwasfrom15to20seconds.

RESULTS:

Currently, only the flow rate and video data have been reviewed. From the video data, observations were made about the

behavior of the flow as it passed through the contraction.

As bubbly flow entered the contraction, there was no significant amount of coalescence among finely dispersed bubbles.
Larger spherical bubbles would become Taylor bubbles as their diameters were confined by the contraction. If one

considers the critical void fraction transition criteria first proposed by Dukler (1988) and assumes no slip,
ULs 1 - a

or that proposed by Colin (1991) which was based on a drift-flux approach,

(As 1 - Coot

U_s Coa

Where ULS and Uos are the superficial liquid and gas velocities, Co is the slip ratio and a is the critical void fraction.

Even though the superficial velocities are increasing as the flow progresses from the larger to the smaller diameter tubes,
the ratio does not change. If there are large bubbles in the inlet, the transition occurs not because of coalescence in the

contraction, but because of squeezing these large spherical bubbles, see Figure 2, that had probably coalesced from finer

bubbles significantly upstream of the contraction.

For slug flow conditions, there were several interesting observations First, at higher liquid flow rates, there was the

generation of waves in the Taylor bubble as it passed through the contraction. For the 1.27 cm. diameter contraction, a

significant amount of liquid bridging occurred. This liquid bridging, or snapoff as defined by Roof 14 , iS unstable and

would collapse downstream. At lower liquid flow rates, the bridging would not occur. Apparently, this bridging may be a
mechanism for the thin liquid films around the Taylor bubbles to reach some suitable thickness as the Taylor bubble

moves through the contraction.

The axisymmetric shape of the Taylor bubble tails as they passed through the contraction would typically become non-

axisymmetric as it would slosh from side to side. The wobbling was responsible for axial bubble coalescence if there was

a bubble, either spherical or Taylor, that was very closely trailing the wobbling tail. This coalescence would only occur if

the trailing bubble was separated by a very thin fluid layer from the leading bubble prior to entering the contraction. It is

questionable about whether it is the wobbling tail itself that is responsible for the axial coalescence, or if it is that the
trailing bubble is actually traveling faster through the contraction than the leading bubble.
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Withinthe field of view of the camera, long liquid slugs would not totally breakdown into the roll waves as the slugs

passed through the contraction. As the liquid slugs become thinner at higher gas flow rates, there was some penetration
of the gas bubble into the liquid slug, however, the field of view was very limited. Zhao and Rezkallah 1s proposed a flow

regime transition criteria based upon critical gas phase Weber Numbers which are defined as

p_U2s D
Weos -

o

Where ro is the gas phase density and s is the surface tension. A critical Weber Number of 1 was used for the transition
between either bubbly or slug flow regime and frothy slug-annular, and a critical Weber Number of 20 was used for the

transition between frothy slug-annular and annular flow. By substituting mass flow rate for the superficial velocity, the

Weber Number can be redefined as

Weas = 16th2_____L

pD3 cr

As can be seen, there is a significant diameter effect on the necessary flow rate to attain a critical Weber Number.

Slug-annular and annular flow through the contraction resulted in significant roll wave generation in the contraction,
particularly when slugs, or large liquid waves, entered the contraction. The roll wave generation in the contraction would
continue until the time that there was either no or very little liquid motion in the annular film upstream of the contraction.

Preliminary estimates of the liquid film motion, which were made by measuring entrained bubble velocities within the

liquid film were less than 40 cm/s. Typical roll wave velocities range from 2 to 5 m/s.

While it is not uncommon to observe liquid film rupture and drainage in microgravity both in straight conduit and the

contractions, occasionally a gas phase vena contracta was observed. In the first instance, this dryout actually occurred in a

finely-dispersed bubbly flow. Gas bubbles would become entrained in the vena contracta increasing the size of the dryout.
Periodically the dryout would "shed" a gas bubble and thus decrease the size. In the second case, as Taylor bubbles

passed through the contraction, a gas pocket would be trapped within the vena contracta, see Figure 3. Large spherical

bubbles or Taylor bubbles would dislodge the dryout.

FUTURE PLANS:

Analysis of the void fraction and liquid film thickness data both upstream and downstream of the contraction needs to be

completed. It is hoped that by examining this data with respect to previously collected straight tube data for 127 and 190
cm tube diameters, that a model can be developed with regards to the flow development as it flows down the test section
In addition, the evolution of liquid slugs and roll waves as they pass through the contraction needs further analysis.

It appears that the transition from bubble to slug flow does not occur because of coalescence but by squeezing the bubbles.

Additional tests in the bubbly flow regime, particularly near the transition to the slug flow regime will verify this.

Additional studies are planned for flow through sudden expansions. Some preliminary work was conducted in the NASA

LeRC 2.2 second Drop Tower with slug flow entering an expansion of a 0.95 to 1.27 cm tube (3:4 Diameter Ratio) and a
0.95 to 2.54 cm tube (3:8 Diameter Ratio). Significantly different behaviors were observed. For the 0.95 to 1.27 cm. tube

expansion, as slug flow entered the expansion, the cylindrical bubbles would shrink in the axial direction and expand

radially. For the most part, the mechanism for transitioning from slug to bubbly flow was that cylindrical bubbles would

shrink enough axially not to be considered a cylindrical bubble. Because of the relatively low flow rates, these cylindrical
bubbles that became large spherical bubbles were not sheared into smaller bubbles. Figure 4 is an illustration of slug flow

entering an expansion with this diameter ratio.

For the initial tests conducted with the 0.95 to 2.54 cm tube expansion, the two phase flow was initiated in normal gravity.

The test section on this drop test rig was aligned horizontally. Most of the wall of the expanded area was dry. In normal

gravity, as the two phase flow entered the expanded area, the liquid would project out into the area and fall onto the
bottom of the test section and flow out. There were not much, if any, gas bubbles entrained in the liquid film flowing

along the bottom of the test section. The flow regime in the expanded region during the normal gravity startup was

stratified.
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Uponthereleaseofthetestrigandthestartof the free-fall or microgravity period, the flow resembled that depicted in
Figure 5 and _as of a two phase jet. The flow did not expanded radially to fill the available flow area as it had done for

the 3:4 diameter ratio expansion. Similar to the small diameter expansion ratio, the cylindrical bubbles would shrink

axially and expand radially as they entered the expanded region However, the liquid for the most part did not wet the

walls of the expansion. The gas in the large bubbles were separated from the gas in the expanded area by a thin liquid
film.

For both the contractions and the expansions, tests in vertical upflow and downfiow in normal gravity are planned.
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Figurre 2: Bubble to Slug Flow
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Figure 3: Wall Dryout Downstream at Contraction After Taylor Bubble Passage
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Figure 4: Microgravity Slug Flow through a 3:4 Diameter Ratio Expansion
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Figure 5: Microgravity Slug Flow through a 3:8 Diameter Ratio Expansion

i01



REFERENCES:

I0

II

|2

13

14

15

Barnea, D. "A Unified Model for Predicting Flow-Pattern Transitions for the Whole Range of Pipe Inclinations,"
International Journal of Multiphase Flow, Vot. 13, No. 1, pp. 1-12, 1987.

Swanson, Theodore D., Juhasz, A1, Long, W. Russ, and Ottenstein, Laura, "Workshop on Two-Phase Fluid
Behavior in a Space Environment," NASA Conference Publication 3043, 1989.

Evans, David G., "Visual Study of Swirling and Nouswirling Two-Phase Two Component Flow at 1 and 0
Gravity," NASA Technical Memorandum X-725, August 1963.

Dukler, A. E., Fabre, J. A, McQuillen, J. B., and Vernon, R. W., "Gas-Liquid Flow at Microgravity Conditions:

Flow Patterns and Their Transitions," International Journal of Multiphase Flow, Vol. 14, No. 4, pp 389-400,
1988.

Colin, C., Fabre, J., and Dukler, A. E., "Gas Liquid Flow at Microgravity Conditions I. Dispersed Bubble and
Slug Flow," International Journal of Multiphase Flow, Vol. 17, No. 4, pp. 533-544, 1991.

Huckerby, CS. and Rezkallah, K.S. "Flow Pattern Observations in Two-phase Gas Liquid Flow in a Straight
Tube under Normal and Microgravity Conditions," Proceedings of the .Vational Heat Transfer Conference, San

Diego, CA July 1992, American Institute of Chemical Engineers (1992)

Kamp, A., Colin, C, Fabre, J., "Bubbly flow in a pipe: influence of gravity upon void and velocity distributions",
Proceeding of the 3rd World Conference on Experimental Heat Transfer, Fluid Mechanics and
Thermodynamics, Honolulu, USA, 1418-1424, October 1993.

Bousman, W. S. and A. E. Dukler, "Studies of Gas-Liquid Flow in Microgravity: Void Fraction, Pressure Drop
and Flow Patterns," Proceeding of the 1993 ASME Winter Meeting, New Orleans, LA., Fluid,_[echanics in
Microgravity Session, AMD-Vol. 174/FED-Vol. 175, December 1993.

Bousman, W. S. and McQuillen, J. B., "Characterization of Annular Two-Phase Gas-Liquid Flows in

Microgravity," Second Microgravity Fluid Physics Conference, Cleveland, Ohio, NASA CP 3276, June 21-23,
1994.

Hill, Wayne S. and Best, Frederick R., "Microgravity Two-Phase Flow Experiment and Test Results," SAE

Technical Paper Series 911556, presented at the 21 st International Conference on Environmental System in San
Francisco, California, July 15-18, 1991.

Colin, C., Fabre, J. "Gas-liquid pipe flow under microgravity conditions: influence of tube diameter on flow
patterns and pressure drops," Adv. Space Res, 1995.

Colin, C. Fabre, J., McQuillen, J. "Bubble and Slug Flow at Microgravity Conditions," Chem. Engng. Comm.,
Vols. 141-142, pp 155-173, 1996.

McQuillen, J. B., Neumann, E. S, and Shoemaker, J. M., "Two-Phase Flow Research Using The Dc-9/Kc-135

Apparatus" NASA Technical _14emorandum 107175, May 1996.

Roof, J. G. "Snapoff of Oil Droplets in Water-Wet Pores," Society of Petroleum Engineers Journal, Vol. 10, No.
1, pg 85, March 1970.

Zhao, L. and Rezkallah, K. S., "Gas-Liquid Flow Patterns at Microgravity Conditions, "International Journal of
Multiphase Flow, Vol. 19, pp. 751-763, 1993.

102


