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ABSTRACT

Experimental and theoretical techniques to study non-isothermal transport processes in
the constrained vapor bubble thermosyphon (CVBT) were developed using a pentane/quartz

system. The transport processes can be evaluated by measuring the liquid film profile, which
gives the pressure field, and the temperature field. The axi'al variation in the capillary pressure
was measured using an image-analyzing interferometer that is based on computer-enhanced

video microscopy of the naturally occurring interference fringes. Thermoelectric coolers were
used to control the temperature level in the condensation region and, therefore, the length of

the approximately "adiabatic" surface region which is a function of the temperature difference
between the CVBT surface and the surroundings. High values for the axial thermal conductance

in the "adiabatic" surface region were demonstrated under certain conditions.

INTRODUCTION

In order to study the details of transport processes in heat pipes, we report on our

investigation of a larger version of Cotter's micro heat pipe (1) in the form of a 3 x 3 x 40 mm

fused quartz cell of square cross-section. In this case, the capillary driving force in a portion of
the cell is of the same order of magnitude as the gravity force unlike a micro heat pipe for which

the capillary force is sometimes much larger than the gravity force. Hence, we call this cell a
Constrained Vapor Bubble Thermosyphon (CVBT). From a fundamental point of view, the CVBT

conveniently permits the study of interfacial transport concepts. In particular, we are
concerned with the experimental study of the generic CVBT presented in Fig. 1 for a micro-

gravity environment. For a completely wetting system, the liquid will coat all the walls of the
chamber. For a finite contact angle system, some of the walls will have only a small amount of

adsorbed vapor that changes the surface properties at the solid-vapor interface. Liquid will fill a

portion of the corners in both cases. If temperature at End (2) is higher than End (1) because of
an external heat source, energy flows from End (2) to End (1) by conduction in the walls and by

a combined evaporation, vapor flow, and condensation mechanism. Heat applied to End (2)

vaporizes the liquid in this region and the vapor is forced to move to End (1) where it condenses,
releasing the latent heat of vaporization in the process. The curvature of the liquid-vapor
interface changes continually along the cell because of viscous losses, and the

vaporization/condensation process. This capillary pressure difference between the evaporator
and the condenser regions causes the working fluid to flow back to End(2) from End(l) along the

right-angled corner regions. These corner regions act as liquid arteries and hence replace the
wicking structure of a conventional heat pipe. Herein, we present the results of our initial

ground-based non-isothermal studies which are a prologue to micro-gravity studies.

In order for the CVBT to operate, the maximum available capillary pumping head must be

greater than the total pressure drop in the CVBT in a gravitational field. This pressure drop is
made up of three components: The pressure drop AP/ required to return the liquid from the

condenser to the evaporator; The pressure drop APv necessary to cause the vapor to flow from
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the evaporator to the condenser ; The gravitational head APg which may be zero, positive or
negative.

(aPc) ___AP,+6Pv + AP̀ (l)

where the difference between the augmented Young-Laplace equations at locations (2) and (1) is

(2)

The first term accounts for the change in the capillary force and FI is the disjoining

pressure. A discussion concerning the use of this equation for the shape dependent stress field

is given by DasGupta, et al. (2). In general, the performance of the CVBT is based on the

chemical potential profile, which is a function of the temperature and pressure profiles. The

pressure profile is connected to the film thickness profile by the augmented Young-Laplace

equation, Eq. (2). Therefore, we need to measure the temperature and thickness profiles.

EXPERIMENTAL PROCEDURE AND OBSERVATIONS

The CVBT experimental setup consists mainly of the quartz cell, a resistance heater, and

four miniature (5 x 5 x 2.4mm) thermoelectric coolers. The heater was a hollow cylinder of

Garrolite approximately 60 mm long on which high-resistivity nichrome wire was tightly wound.

A 4.76 mm diameter, stainless steel rod of 85 mm length was inserted into the heater in such a

way that 25 mm of the rod projected out of one end of the heater. The contact resistance

between the heater and the stainless steel rod was reduced by using a layer of thermally
conductive paste between the contact surfaces. The projecting end of the stainless steel rod was

then attached to the cell using high thermal conductivity silver epoxy. The heater and the

projected portion of the rod were thoroughly insulated to minimize heat loss. This arrangement

enables us to estimate the heat input into the cell by measuring the temperature profile of the

stainless steel rod. A simple fin equation can then be fitted to the temperature data to yield the

rate of heat transport from the end of the rod to the cell. The whole assembly was mounted on

the mechanical stage of a high-power light microscope. This enables the movement of the

assembly on the stage so that any part of the cell could be viewed under the microscope, and

the liquid film thickness profile measured at that location. The pentane (99.9% purity) working

fluid used in the vapor bubble thermosyphon experiments was de-aerated and stripped of higher
boiling substances by a single vacuum distillation step.

The temperature profiles of both the rod and the quartz cell were measured using closely

spaced micro-scale (40 AWG) Chromel-Alumel thermocouple beads. These were attached to the

side of the cell and the rod using conductive silver epoxy and the beads were then coated with

regular epoxy to reduce the error in the measured temperature due to the effect of the

surroundings. The coolers were firmly pressed against the edges of end (1) of the cell. A thin

coating of thermally conductive paste ensures good thermal contact between the cell and the

coolers. It should be pointed out that, although the coolers were primarily designed to help

retain the bubble within the cell by maintaining a constant low temperature at the cooler end,

they were found to have an additional important function. We found that the length of the

adiabatic region could be changed by using the coolers to lower the temperature in the middle

portion of the cell to a value close to that of the surroundings. A drawing of a corner of the

CVBT, where the thickness profile was measured, is presented in Fig. 2. Details of this film

thickness measurement, known as Image Analyzing Interferometry (IAI) are elaborated elsewhere
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(DasGupta, 1995). The cell had roughly 40 to 50% of liquid by volume while the remaining

volume was occupied by pentane vapor. We established the vapor bubble at the heater end by

slightly tilting the setup in such a way that liquid flowed out of the heated end.

Prior to the experiments, the CVBT cell and the connecting tubes were thoroughly cleaned
in an ultrasonic bath and dried in an oven. The cell alone was rinsed for 1 minute with a dilute

(1%) solution of Hydrofluoric acid to remove a thin layer of quartz along with the contaminants

adhering to the surface. This proved quite effective although it rendered the inner surface of the

cell considerably rougher than it was before. A final rinse with de-ionized water was performed

and the cell was blow dried in a stream of ultra-clean, dry nitrogen. The cell was attached to

the liquid feeder/vacuum assembly by means of heat shrink Teflon tubing. The whole assembly
was evacuated and a sufficient amount of pentane was distilled into the cell from the holding

Squibb funnel. The pressure inside the system was continuously monitored using an Omega

Pressure transducer/Digital meter combination, to ensure the lack of contamination by air.

EXPERIMENTAL RESULTS AND DISCUSSION

Figure 3 shows a plot of the temperature difference between the surface of the CVBT and

the room, 0 versus the axial distance, x, for a CVBT and the corresponding dry quartz cell. The

electrical power input to the heater was 1.5 W in both cases. The difference between the two

profiles is not dramatic because the coolers at the end of the CVBT remained off during the

course of these experiments. Data presented below for different heater and cooler power settings

indicate that a flat temperature profile in the middle of the CVBT could be obtained for a

particular combination of these power settings.

The stainless steel rod was designed to evaluate the heat input into both the CVBT and the

dry cell. The measured steel rod temperatures were fitted to the following fin solution equation,
with the overall effective heat transfer coefficient U between the steel rod and the environment

evaluated as a variable parameter.

0

01, sinh ml _

(0,,/01, )sinh mx + sinh m(/_- x) (3)

where 0Is and 0b are the temperature differences between the CVBT and the room at the

beginning and at the thermocouple location just before the end of the stainless steel rod. For

the purposes of this analysis, the temperature differential at the end of the steel rod (at the
interface between the rod and the cell) was omitted since this reading might not be accurate, ls

is the distance between the first and the last measured points used for calculation, which in this

case is 20 mm, and m is defined by the following equation.

UP (4)
D1 2 =_

kA,

where P, k, and Ac are the perimeter, the thermal conductivity and the cross-sectional area of

the stainless steel rod, respectively. Least squares method was used to obtain U from the best fit

of the data. Then, the heat going out from the end of the steel rod, Qout, was calculated from

the fin equation.

Sets of CVBT experiments and corresponding dry cell experiments (same Q in both cases)

were run at different heater power inputs. Using the same Q, a fin solution was obtained for a

hypothetical solid quartz rod of similar length and cross-sectional area. The results for these
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three cases are compared in Fig. 4 for Q=0.1 W. As seen from this figure, the dry cell data can

also be modeled as a fin with an appropriate value for the heat transfer coefficient, h. It is

obvious that, for Q=0.1 W, the CVBT has the lowest resistance. The local heat flux was calculated

as follows: First, the heat transfer coefficient, h was calculated by fitting the dry cell data to a fin

equation. Then, the local axial heat flux at different locations in the CVBT were calculated using
the following equation:

q(x) -

x

Q -; PhOdx
0

A (5)

where Q is the heat input to the CVBT, P the perimeter of the CVBT and A the cross-sectional

area of the CVBT. Assuming that the value of the heat transfer coefficient between the surface of

the CVBT and the room, h, is equal to the value obtained with the dry cell at approximately the

same temperature, the surface heat flux was obtained. The integration was performed
numerically with the cubic spline fit data. We found that, in this case, the heat rate from the

CVBT obtained through integration of the temperature of the CVBT equaled the heat input Q to

within 1%. The temperature profile of the CVBT in Fig. 4 was fitted as a smoothed cubic spline
and the local slopes of the profile d0/dx were obtained numerically. Therefore, the local

effective thermal conductivity can be obtained using the equation below:

_ q(x)
(6)

The local effective thermal conductivity distribution in the CVBT, with coolers off for

Q=0.1 W is shown in Fig. 5. As seen, the local heat flux decreases along the cell. But the effective

thermal conductivity goes through a maximum value in the middle of the cell where the slope
of the temperature profile becomes very small. For this portion of the CVBT, the effective

thermal conductivity is comparable to that of the stainless steel rod. The results presented next

demonstrate that the performance can be dramatically improved by using the thermoelectric

coolers. Experiments with the coolers on at the end of the CVBT were also conducted. A

comparison of two cases, one with the coolers on and the other with the coolers off, is presented
in Fig. 6. We find that, for the same power input to the heater, a CVBT with coolers to remove

the heat from the end performs much better (higher keff) than the one with only natural

convection to remove the heat. Also, the CVBT with the coolers on has a long distinct horizontal

temperature region and a smaller base temperature. It is obvious that the efficiency of the CVBT

reaches the maximum in this region. In essence, we were able to expand the "adiabatic" length
by lowering 0.

If the vapor pressure gradient is negligible, the liquid pressure gradient is due to the
curvature gradient.

dP_ dK

dP, crl dx (7)

As mentioned earlier, the liquid film thickness measurements were carried out. A plot of the

curvature distribution of CVBT(coolers off) for Q=0.1 W is shown in Fig. 7. This figure shows that

the curvature decreases from the high temperature region to the low temperature region.

Although, the analysis and data are incomplete, a rough calculation shows that this curvature

gradient gives the correct order of magnitude for Q.
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CONCLUSIONS

Based on the experiments and subsequent analysis of the data gathered we reach the

following conclusions:

1. Experimental and theoretical techniques to study non-isothermal transport processes in
the constrained vapor bubble thermosyphon(CVBT) were developed.

2. The transport processes can be evaluated by measuring the liquid film profile using an

image-analyzing interferometer, which gives the pressure field, and the temperature field.

3. Thermoelectric coolers can be used to control the temperature level in the condensation

region and, therefore, the length of the approximately "adiabatic" surface region.

4. High values for the axial thermal conductance in'the "adiabatic" surface region were
demonstrated under certain conditions.

ACKNOWLEDGMENT

This material is based on work supported by the National Aeronautics and Space Administration

under grant # NAG3-1399. Any opinions, findings, and conclusions or recommendations

expressed in this publication are those of the authors and do not necessarily reflect the view of
NASA.

REFERENCES

I .

2.

Cotter, T. P., 1984, "Principles and Prospects of Micro Heat Pipes", Proc 5th Int Heat Pipe

Conf, Tsukuba, Japan, pp. 328-335.
DasGupta, S., Plawsky, J. L., and Wayner, P. C., Jr., 1995, "Interfacial Force Field
Characterization in a Constrained Vapor Bubble Thermosyphon", AIChE Journal, 41(9), pp.

2140-2149.

(_l

T2=.TI
P_ • Pvl • Ptl > Pta< P_

Figure 1. Constrained Vapor Bubble Thermosyphon Concept.
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Figure 7. Curvature distribution in

CVBT for data given in Figure 4

(Q=0.1 W, coolers off).
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