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Abstract

In a microgravity environment vapor bubbles generated at a boiling surface tend to remain

near it for a long time. This affects the boiling heat transfer and in particular promotes

an early transition to the highly inefficient film boiling, regime. This paper describes the

physical basis underlying attempts to remove the bubbles by means of pressure radiation
forces.

1 Introduction

At normal gravity, the effectiveness of boiling as a heat transfer mechanism relies in no small measure on the

rapid removal of vapor bubbles from the heated surface. This process has a two-fold benefit, as it both aids in

removing latent heat and in promoting microconvective motion near the surface. On the basis of this remark,
one would be led to believe that boiling at reduced gravity would be very inefficient. Somewhat surprisingly, at

small to moderate heat fluxes, this statement is only partly true as shown by several experiments (Siegel 1967;

Clark 1968; Zell et al. 1989; Oka et al. 1992, and others). Two major differences between micro- and normal-

gravity boiling are however evident: (i) The bubble shape, size, and general dynamics is radically different;

(ii) The critical heat flux is reduced severalfold at low gravity. As first shown by Siegel and Keshock (1964),
a major heat removal mechanism in low gravity is the fact that a detaching bubble does not go far from the

heated surface so that subsequent bubbles feed into it until the bubble leaves. At this point another bubble

grows, detaches, is fed by smaller ones, and the cycle repeats. This process compounds with vigorous surface

instabilities (Ervin et al. 1992) to produce a substantial heat transfer.
While the hovering of large bubbles near the nucleation site is beneficial at low to moderate heat fluxes, it

is also at the root of the observed reduction in critical heat flux, where the heating surface is surrounded by

a vapor blanket (Oka et ah 1992; Chung 1994). In order to increase the critical heat flux at low gravity it
is therefore desirable to remove bubbles from the heated surface providing a substitute for buoyancy. Electric

fields have been used for this purpose (Chung 1994), but it is too early to judge their effectiveness. The same

author, Merte, and ourselves are also planning to use acoustic techniques.

The purpose of the present paper is to review the physical framework in which these acoustic bubble-removal

techniques may be expected to operate.
The action of acoustic radiation forces on gas - rather than vapor - bubbles is well known (see e.g. Crum

and Eller 1970; Crum and Nordling 1972; Crum 1971, 1975; Agrest and Kuzetsov 1972, 1973; Weiser and

Apfel 1982; Barmatz and Collas 1985; Trinh and Hsu 1986; Holt and Crum 1992; Lee and Wang 1993a). For

example, radiation forces are a major factor in acoustic cavitation where they promote violent translational
motion and spatial reorganization of the gas that evolves from the liquid in an intense sound field. These and

other aspects of pressure radiation forces have been extensively studied both experimentally and theoretically

(see e.g. Yosioka and Kawasima 1955; Eller 1968; Foster et al. 1968; Wu and Du 1990; Lhfsted and Putterman

1991; Lee and Wang 1993). In particular, Dr. E. Trinh (JPL) has carried out experiments on the Space Shuttle
USML-1 demonstrating the action of these forces on drops and gas bubbles (Marston et al. 1993).

Gas bubbles are attracted or repelled by the pressure antinodes according as to whether they are driven

below or above their resonance frequency. Furthermore, in the linear regime, neighboring bubbles repel each

other when one is driven above and one below the natural frequency while they attract otherwise.

The resonance frequencies of bubbles thus play a major role for gas bubbles. While the situation may be

expected to be similar for vapor bubbles, comparatively less work has been carried out on these systems. At
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first sight, it may even come as an unexpected fact that a resonance frequency - that presupposes a restoring
force - exists at all. To compound the surprise, it appears that two linear resonances exist in the case of vapor

bubbles (Finch and Neppiras 1973; Khabeev 1976; Hsieh 1979; Marston and Greene 1978; Marston1979; Nagiev
and Khabeev 1979). The effect of this secondary resonance on pressure radiation forces is unknown.

2 Vapor bubble resonances

In a certain sense, the process that provides vapor bubbles with stiffness is very different from that at work in

the case of bubbles containing a permanent gas. In the latter case, it is the compression and expansion of the

gas that provides a restoring force opposing the deformation. For a vapor bubble, on the other hand, the vapor

pressure essentially follows the saturation line and it rises and falls in response to the heating and cooling of
the bubble wall due to latent heat effects.

An alternative argument can be made, however, according to which the stiffnesses of gas and vapor bubbles
are very similar. Indeed, they both depend on diffusive processes in the liquid, in the former case of mass,

and of heat in the latter one. In this view, the critical difference is merely a consequence of the fact that the

diffusivity for mass is typically two orders of magnitude smaller than that of heat.

An estimate of the order of magnitude of the fundamental resonance of a vapor bubble can be readily found

by the following argument. Consider a vapor bubble the radius R of which decreases by an amount AR. This

tends to cause the condensation of an amount of vapor (density Pv):

Amy = 47rR2pv AR. (1)

If the process occurs with a frequency w, the latent heat LAmv liberated by the condensation increases the

temperature of a shell of liquid of thickness --- V/-_/w, where DL is the liquid thermal diffusivity, by an amount

47rR2 _F_LpLcLAT = LAmv , (2)

with PL the liquid density and CL the specific heat. This heating of the bubble surface increases the saturation

pressure by an amount Ap = (dpv/dT)AT, where the derivative is taken along the saturation line. A force

tending to resist compression is generated in this way:

F = 4_rR2Ap = -kAR (3)

where the following expression for "stiffness parameter" k follows from the previous argument:

k = 41rR2. f --_-- Lpv dpv _ 4rcR2/--w-(Lpv) 2.
V DL CLPL dT VDL CLPL "

(4)

The Clausius-Clapeyron relation has been used in the second step. The added mass for a sphere in radial motion

is given by 1VIA = 47r1:13pL, and therefore (4) enables one to estimate the resonance frequency Wo of the vapor
bubble by Wo = V/'k'/MA or

= (Lpv)2ncLp " (5)

If w # wo, this relation gives the position of the pole of the response function of AR(t) when the bubble is

driven at the frequency w. By setting w = w0, on the other hand, we find the natural frequency of the bubble
as

L4p_

w_n 2 _- 11.8 p3L4T2kL , (6)

where kL is the liquid thermal conductivity and a numerical constant has been introduced to account for the

approximate nature of the derivation. With this adjustment, the previous argument gives results in reasonable
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Figure h Graph of the resonance frequencies of vapor bubbles in water at 100 *C as a function of bubble radius
R. The dashed lines show the results given by the simplified arguments.

agreement with the more detailed ones of Marston (1979) as shown by the upper pair of lines in Fig. 1 for the
case of water at 100 ° and 1 atm.

For comparison, it may be recalled that the natural frequency of a gas bubble in adiabatic oscillation at a

pressure Poo is given by

JoR2 = 37Poo , (7)
PL

where 7 is the ratio of specific heats of the gas. This expression - and in particular its dependence on the bubble

size - is very different from (6).

Figure 1 shows another remarkable fact, namely that in water, at 100 o and 1 atm, bubbles larger than about

30 pm possess two resonance frequencies. While the higher one is that predicted by the previous argument, the
other one is much lower. The mechanics of this second resonance - that is one of the distinctive features of this

system - can be described in physical terms as follows. At low frequency, inertia and damping effects are small

and can be ignored. The main effects are the restoring force previously described and the surface tension force

where a is the surface tension coefficient. These two forces tend to oppose each other and, in suitable conditions,

they can balance. This circumstance leads to an oscillating system forced by the sound field, but with a very

small restoring force. The oscillation amplitude is then evidently large, and this is the second resonance.

Proceeding as before, equating (3) and (8), and again adjusting a numerical constant, we find

(2aCLPLT_ 24 = 2.94DL ] (9)
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This result is compared with the precise one of Marston (1979) in Fig. 1 (lower pair of lines).

3 Pressure radiation

In a sound field, an inhomogeneity whose response to the pressure perturbation is different from that of the

surrounding fluid is subject to a pressure-radiation force (King 1934; Yosioka and Kawasima 1955; Gor'kov

1962; Nyborg 1967; Barmatz and Collas 1985; Trinh and Hsu 1986; Wu and Du 1990; L6fsted and Putterman

1991).

For the caseofa bubble the component ofthisforcedue tothe monopole (volume pulsation)ismuch stronger

than that due to the dipole(translationaloscillation)and isapproximately given by (Eller1968; Wu and Du

1990;LSftsedand Putterman 1991;Lee and Wang 1993)

F = - < V_Tp >, (10)
t

where the angle brackets denote the average over one period of the sound, V is the bubble volume, and the

gradient of the total pressure Vp is evaluated at the position occupied by the bubble. In a linear approximation,
if we write

p = po-p'(x) cos v = Vo[1 cos( t+ ¢)], (11)

we find
1

F = _V06cos CVp'. (12)

In a standing wave, for a bubble driven below resonance, cos ¢ _> 0 and the force is in the direction of the

pressure antinode, while the converse occurs above resonance.

The physical basis for this phenomenon is readily explained as follows. A bubble, being lighter than the

host liquid, is subject to a buoyancy force in a direction opposite that of the local pressure gradient. Consider a

bubble driven below resonance, that expands during the low-pressure phase of the wave and compresses during

the high pressure phase. When it is in the expanded state, the acoustic pressure is negative and the bubble

migrates toward the pressure minimum, i.e. the acoustic antinode. When the bubble is compressed, the acoustic
pressure is positive and the bubble is driven towards the pressure node. Since, however, the force is proportional

to the bubble volume, the migration during the antinode in the expanded state is stronger than the one in the
opposite direction during the high-pressure phase, and the net effect is a drift toward the pressure antinode. A

similar argument applied to a bubble driven above resonance shows that the drift is toward the pressure node
in this case.

One can appeal to this intuitive argument to deduce the bubble behavior near the secondary resonance.

Below this frequency, the pressure stiffness force (which increases with frequency, see Eq. 4) is smaller than the

surface tension force, which implies that the bubble compresses during the expansion half-cycle of the sound

and will therefore be driven toward a pressure node.

These considerations are based on linear theory. A rigorous analysis of pressure forces in the case of nonlinear

oscillations is not available. On the basis of an approximate model, we have found that, for gas bubbles, the force

can have a sign opposite to that expected on the basis of the linear theory in the neighborhood of a nonlinear

resonance (O_uz and Prosperetti 1990). Whether this is indeed so, and whether the result also applies to vapor
bubbles, is at present unkonwn.

4 Acoustic forces in boiling

The physical principles described in the previous sections indicate that it may be possible to enhance the removal

of boiling bubbles from boiling surfaces under microgravity conditions by acoustic methods. A likely sequence

of events may be the following.

Consider a standing sound wave in the presence of a heated boundary on which boiling takes place. Acous-

tically this boundary will behave nearly rigidly and therefore it will give rise to a pressure antinode in its
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neighborhood. Consider then a growing vapor bubble. Initially it is small and its resonance frequency corre-

spondingly high (Eq. 6), above that of the sound field. The pressure radiation force tends therefore to keep
the bubble near the wall. When the bubble grows past the size such that it is resonant at the driving sound

frequency, however, the radiation force changes sign and the bubble will tend to be pushed away from the
wall toward a node of the sound field. Since the closest node will be at a distance of the order of 1/4 of the

wavelength from the wall, frequencies between 2 and 20 kHz, in water, would tend to remove the bubble at
distances between ~ 2 and 20 cm from the wall. This is far enough that even a low-speed flow will be sufficient

to carry the bubble away.
The previous chain of events can be influenced - positively or adversely - by acoustic streaming that could

be a significant factor at the higher frequencies. Such flows have been extensively analyzed by Nyborg and other

researchers (Nyborg 1965, Zarembo 1971, Lighthill 1978; Qi 1993), although Rayleigh - once again - was an

early investigator of the phenomenon (Rayleigh 1898).
Another factor, the importance of which it is difficult to quantify a priori, is the effect of the "image" bubble.

If the wall is acoustically rigid, the image bubble pulsates in phase with the real bubble and would tend therefore

to attract it working against the primary pressure force of the sound field.
These considerations are based on a somewhat idealized model of the actual phenomena. The entire situation

could be considerably more complex due to nonlinear effects, bubble distortion, and gas diffusion.
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