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ABSTRACT

The transition from convective to absolute instability is observed in the 2.2 second drop tower of the

NASA Lewis Research Center. In convective instability the disturbance grows spatially as it is convected

downstream. In absolute instability the disturbance propagates both downstream and upstream, and manifests

itself as an expanding sphere. The transition Reynolds numbers are determined for two different Weber
numbers by use of Glycerin and a Silicone oil. Preliminary comparisons with theory are made.

INTRODUCTION

The capillary instability of an infinitely long inviscidjet in vacuum with respect to temporally growing

disturbances was investigated by Rayleigh (ref. 1). The instability of a viscous liquid jet with respect to

spatially growing disturbances was investigated by Leib and Goldstein (ref. 2). They demonstrated that the
disturbance in the jet may grow spatially as it is convected downstream or grow both in the upstream and

downstream directions depending on the flow parameters. The former is called convective instability and the
latter is called absolute instability. They determined the critical Weber number below which the flow is

absolutely unstable as a function of Reynolds number. Lin and Lian (ref. 3) showed that the critical Weber

number may be increased for a given Reynolds number by increasing the density of the ambient gas which was

neglected by previous workers. The effect of gas viscosity was investigated by Lin and Lian (ref. 4). In the
above referenced theories, gravity is neglected. Therefore, the good comparison of experiments on earth with

theoretical results (ref. 5) may be fortuitous. Moreover the phenomenon of the jet absolute instability has never
been observed. The observation of jet instability in the NASA Lewis drop tower facility allows us to elucidate

the phenomenon of absolute instability. The comparison of experiments with theory is still in a preliminary

stage, however.

THEORY

The linear stability analysis of the jet instability results in the characteristic equation (ref.6)

O(k,o_).,4 (k,o_) :S(k,_)

where D is the coefficient matrix, k is the complex wavenumber vector, to is the complex frequency and S is

the Laplace-Fourier transform of the source vector arising from the initial condition. The eigenvector A in the

physical space may be obtained from the inverse Laplace-Fourier transform (ref. 6)

A(r,T)f Ld_)exp(O_) f F dk exp(ik_)D -IS,
2n (2n) 2
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where r is the position vector, z is time, k is the complex wavenumber assumed to be two-dimensional, and

the subscripts L and F denote suitably chosen integration paths in the Laplace and Fourier space respectively.
The singularities of the integrand are given by

D(k,to)=0,

which isthecharacteristicequationfortheunforcednaturaldisturbances.When thesingularityisa saddle

pointintheFourierspacethejetmay become absolutelyunstable,and theaxisymmetricdisturbancegrow
asymptoticallyas(ref.6).

LimA -exp( ikoy)exp( too_)/z i/2

when ko and too denote respectively the location of the saddle point in the Fourier space and the branch point

in the Laplace space, and y denote any point along the jet axis. When the singularity of the integrand is a
simple zero of D=0, the jet may become convectively unstable. Then the disturbance which is convected

downstream with the group velocity V_ behave asymptotically as (ref. 6)

LimA(V z,_=)- l----exp[k. (to),V z],
z _ _ g '/T am s g

where k_mis the maximum of ki for to,=0, and to, is the corresponding frequency of oscillation.

EXPERIMENTS

A series of experiments to investigate the transition between absolute and convective instability in a

liquid jet were performed at the 2.2 second drop tower at NASA Lewis Research Center. A preliminary round

often tests, performed with Glycerin, showed that it was possible to identify the transition with the existing
drop rig. A second round of eighteen tests, performed with Dow Corning 200 Series 1000 cSt Silicone Oil,
were completed with additional sensors to identify the transition point more accurately.

To investigate absolute and convective instabilities in liquid jets, one needs to be able to produce a

liquid jet, induce a disturbance, photograph it, and record important flow parameters. Hence, the experimental

drop rig consists of four main systems: a pressure delivery system to drive the liquid jet, a piezoceramic forcing
system, a high speed photographic system, and a sensory and data acquisition system. From the preliminary

round of tests it was found that the forcing system was not necessary for testing absolute instability as the
vibrations from the start of the drop were sufficient to introduce a disturbance into the liquid jet. Compressed
helium gas, controlled by a pressure regulator, was used to pressurize and drive the test fluid at a constant rate

through the system to the solenoid valve and one millimeter nozzle. A high speed Milliken DBM-45 16mm

motion picture camera was used in conjunction with a Quadtec ! 538-A strobe light, synchronized at 200
frames per second, to photograph the jet. Pressure, velocity, and temperature in the second round of tests were

measured by a Setra model C206 pressure transducer, AWCO model ZHM-01 flowmeter, and Omega type

T thermocouple and model TX903 transmitter. These three channels of analog data were recorded by a 12-bit
tattletail digital data acquisition system, whose sampling rate was controlled by the flowmeter.

To find the transition point in each round of tests, a trial and error procedure was used. Although the
transitional Reynolds and Weber numbers can be obtained from theory and used to determine starting

velocities and pressures, determining whether or not the instability will be visible in the test section during the
2.2 seconds ofmicrogravity is not as trivial. Consequently, the first few tests were conducted over a broad

range of pressures to get a general idea of our operating range, followed by a second set of tests to pinpoint
the transition from absolute to convective instability.
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Analysisofour 16mm films was performed with the TRACKER software and digital object tracking

system atNASA Lewis Research Center. This tracking system included a Mekel 16mm film transport system,

a Kodak Megaplus digitizing camera, a Matrox Image series framegrabber, two high resolution monitors, and
a Pentium PC, among other devices for other input media. Representative images at one g and microgravity

were also digitized and archived for future study.

The classification of a test as absolute or convective was determined by observing the microgravity

images. In all tests, the basic state is a quiescent liquid jet at one g, the disturbance is the vibration introduced
at the start of the drop, and the perturbed state is the result which exists in microgravity. In convective

instability, the disturbance would be rapidly convected downstream, leaving behind a quiescent, constant

diameter jet, as shown in Figure 1. In absolute instability, the disturbance would cause the liquid jet to

bifurcate into an upstream and downstream section. The upstream section would snap back towards the nozzle
and achieve a new dynamic equilibrium which resembled an expanding sphere, as shown in Figure 2. The

sphere remains connected to the nozzle by a neck, which grows in diameter in the downstream axial direction.
The downstream portion would either disappear from view or float back and coalesce with the upstream

portion. At the transition, the jet breaks into two parts, but the neck grows significantly in length and can be

observed as a jet whose diameter increases in the downstream direction, as shown in Figure 3.

Absolute and convective instability can also be qualitatively thought of as a balance between surface

tension and inertial forces. Looking at a balance of forces in the axial flow direction for absolute instability,
the inertial force acts in the downstream direction while the net force of surface tension acts in the upstream

direction. In absolute instability, surface tension is stronger, enabling the disturbance to break the jet into two

and containing the upstream section so that it remains local to the nozzle. Fluid particles exit the nozzle and
decelerate as they enter the expanding sphere, increasing the size of this section. In the transitional case, the

downstream inertial force has grown such that it balances with the upstream surface tension force. The surface

tension force is still able to break the jet into two parts, but the increased inertial force has lengthened the neck
between the nozzle and the sphere, signifying that the transition is about to occur, much like an elastic metal

in a uniaxial tension test at its yield stress undergoing plastic deformation just before failure. For convective

instability, the inertial force completely overpowers the surface tension force. The upstream surface tension

force is effectively reduced to zero so that surface tension now acts solely to maintain the diameter of the jet.
Fluid particles travel freely downstream as if they were still contained by the walls of the nozzle.

Figure 4 shows the experimental versus theoretical transition points. Glycerin with surface tension

63.3 dynes/cm, viscosity 1182 cSt, specific gravity 1.26 and Dow Coming 200 Series Silicone oil with surface

tension 21.2 dynes/cm, viscosity 1000 cSt, and specific gravity 0.972 were used as test fluids. Due to the
limited dimension of the test section and short test time of 2.2 seconds, some uncertainty as to the precise

transition point remains. More refinement of our experiments is being planned.

CONCLUDING REMARKS

The transition from convective to absolute instability in a liquid jet is demonstrated experimentally

for the first time. The comparison between theory and experiments is far from complete.
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Figure I. Convective Instability, (Re=0.233, We=0.215)
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Figure 2. Absolute Instability, (Re-0.070, We: 2.365)
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Figure 3. Transition Regm_c, (Re 0.158. We 0.466)
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