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ABSTRACT

The structure formation and dynamics of dilute, monodisperse ferrofiuid emulsions in an external
magnetic field have been investigated using dynamic light scattering techniques. In the absence of the
magnetic field, the emulsion particles are randomly distributed and behave like hard spheres in Brownian
motion. An applied magnetic field induces a magnetic dipole moment in each particle. Dipolar interaction
between particles align them into chains where correlation function shows two decay processes. The short-time
decay shows the motion of straight chains as a whole where the apparent chain length increases with the
applied magnetic field and the particle volume fraction. Good scaling results are obtained showing that the
apparent chain length grows with time following a power law with exponent of 0.6 and depends on the applied
field, particle volume fraction and diffusion constant of the particles. The long-time decay in the correlation
function shows oscillation when the chains reach a certain length with time and stiffness with threshold field.
This result shows that chains not only fluctuate but move in a periodic motion with a frequency of 364 Hz at X
= 15. It may suggest the existence of phonons. This work is the first step in the understanding of the structure
formation especially chain coarsening mechanism of MR fluids at higher volume fractions.

INTRODUCTION

Magnetorheological (MR) fluids are suspensions of magnetizable particles of roughly a micrometer in

diameter in a non-magnetizable liquid. Without magnetic field, the particles are hard-sphere like and are in

Brownian motion. An applied magnetic field induces a magnetic dipole moment in each particle. Dipolar

interaction between particles align them into chains which may further coalesce to other larger structures. This

microscopic structural transition changes viscosity dramatically and reversibly upon the removal of the field,
leading to many potential applications from active shock absorbers and clutch controls for cars to seismic

damage controls for bridges and buildings (Ref. 1). The key to these novel theological properties are the

structures induced by the applied magnetic field. While the goal of the research is to understand the

mechanism of the structure formation of MR fluids, this work focuses on the initial stage of the structural
transition: dynamic properties of chain formation in a dilute model MR fluid.

The dipolar interaction is anisotropic. It is attractive if the two dipoles is aligned within 550 relative to

the applied field direction and it is repulsive if they are aligned outside this angle. When two dipoles are

aligned head to tail with the field, the attractive force is the strongest. Thus if exposed to a magnetic field, the

first reaction of randomly distributed dipoles is to form many separated chains. The chains then aggregates to

form columns or worm-like wall structures depending on the volume fraction of the particles, the field strength
and rate that was applied, and the sample geometry (Ref. 2-3). Theoretical calculation has shown that two-

straight chains have a very short-range interaction which is typically two-particle diameters for our ferrofiuid

emulsion and the field applied (<400 G) (Ref. 4-5). However, we still observed the aggregation of chains to
columns under this situation. A chain-fluctuation model for the chain-coarsening mechanism has been

proposed by Halsey recently (Ref. 6). No one has quantitatively measured and studied the chain fluctuation.

In this paper we present the first measurement of chain formation and chain fluctuation with dynamic
light scattering technique. We chose dilute MR fluids and weak applied fields to focus on the chain dynamics
where no coarsening of the chains into columns occurs.

EXPERIMENTS

A ferrofluid emulsion (Ref. 7) was used as a model MR fluid. It consists of small ferrofluid droplets
dispersed in water. The droplets are stabilized against irreversible aggregation and coalescence by the
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surfaetant sodium dodecyl sulfate (SDS). The ferroflutd itself is a suspension of iron oxide grains in kerosene
where the grains have an average diameter of 90/_. Each of these grains possess a permanent dipole moment.

Yet, there is no net dipole moment of the whole droplet since thermal motion keeps the orientation of the

grains random. Only when an external magnetic field is applied, the grains orient and thus induce a dipole

moment in each droplet which depends on the strength of the applied field. The distribution of droplet sizes
in an emulsion is generally very broad. We obtained a monodisperse emulsion by applying the fractionated

crystallization scheme which is described elsewhere (Ref. 8). Two particle sizes were used in the experiments
with radius a: 233 + 17 nm and 80 + 24 nm measured by dynamic light scattering. The sample was diluted to

a volume fraction in the range of _ - 10-4-10 -6 to avoid multiple light scattering and chain coarsening.
We used an air-cooled Argon-ion laser at a wavelength of 514.5 nm and a He-Ne laser at 632.8 nm for

our light scattering experiments. A lens was used to focus the laser beam into a cylindrical glass tube of 20

mm outer diameter which contained about 10 ml of the sample. This sample cell was surrounded by an index-
match bath to reduce reflections and to keep the temperature of the sample constant. A Helmholtz coil with

the sample in its center provided a homogeneous magnetic field. After passing the detector optics, the
scattered light was detected by a photo-multiplier tube at different scattering angles in a plane normal to the

field direction. The photon counts were then sent to a digital correlator (BI-9000AT) for processing, from

which the averaged scattered light intensity ! and the homodyne intensity autocorrelation function <I(_)I(0)>

were obtained. Using the Siegert relation (Ref. 9) we converted the intensity autocorrelation function into the
normalized field autocorrelation function g(l)(q,'c) = <E(lr)E(O)>/<IE(O)I2> from which the diffusion
coefficients were derived as described below.

1. Chain Formation

RESULTS
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Fig. 1. Normalized field autocorrelation function gO)(q,r)
without magnetic field (H = 0) and after saturation (H = 31 G,
k = 9.4, t=ll0 min.). Here particle radius a=233 nm,

Scattering angle 0 = 90°, and volume fraction ¢ = 7.65 x 10"5.

Fig. 2. Short-time self diffusion coefficient during chain
formation at H = 31 G for the same conditions as in Fig. 1.
The constant levels are calculated diffusion coefficients for a
chain consisting of N particles.

Fig. 1 shows the comparison of the normalized field autocorrelation function g(1)(q,'c) at applied
magnetic field H = 0 G and H = 31 G for $ = 7.7 x 10-5 , a = 233 nm and scattering angle 0 = 900 . The

correlation function with applied magnetic field was measured after the chain formation had stopped which
means after the scattered intensity l(t) had saturated. The differences between the two correlation functions is

clearly shown in Fig. 1. The correlation function at zero field can essentially be described by a single
exponential. Due to the high dilution the emulsion behaves like a system of non-interacting particles. The

small deviation from an exponential function is caused by the small size polydispersity of the droplets. In

contrast, g(l)(q,z) with applied magnetic field decays generally slower and shows two distinct decay times at
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H=31G. At this field, the dipolar interaction energy between two dipoles in contact is 9.4 time of the thermal

energy, i.e. the coupling constant A = 9.4. The main decay time at this earlier time is of the same order of

magnitude as the zero-field decay time. Compared to this short-time decay the long-time decay is about two

orders of magnitude slower.
In the following we focus only on the short-time behavior of gO)(q,_). The short-time dynamics is

usually described in terms of the first cumulant F_(q) (Ref. 10):

rl(q) = - d-_ In g(l)(q, _')[r=O (1).

The first cumulant defines an apparent diffusion coefficient through:

F1 (q) = q2Dapp(q) (2).

Therefore, Dapp(q) can be obtained from Fig. 1 using Eqs. 1 and 2. In general Dapp(q) contains both self and
collective diffusion. However, there are two arguments that in our experiment Dapp(q) is solely determined by
the self diffusion of the particles. First, since the threshold distance, which is a measure of the magnetic

interaction range, is about two-particle diameters (2a) and the dilution is so high that the initial distance di

between neighboring particles are about 20 x 2a, after saturation we have essentially a system of non-

interacting chains. Without interaction there are no correlations between different chains. Thus, Dapp(q)

Dself( _ Second, it has been pointed out by several authors (Ref. 10-11) that for q >> qmax,reduces to - app ,_l.J.

self _
Dapp(q) reduces to Dap _ (,_j even in interacting colloidal suspensions. Here, qmax =2_am= with d,nax the

nearest neighbor distance between chains and q=2_/lq is the scattering wavevector employed in our experiment

where lq = 273 nm~ 2a. Since dmax >> lq, the above mentioned condition q >> qmax is well fulfilled.
self _x

Figure 2 shows Dap _ (t/) during the chain formation for the same sample as the one used in Fig. 1.

The magnetic field was switched on at time 0 and kept constant at 31 G. The time to measure a correlation

function was two minutes. The first and the last point in Fig. 2 correspond to the two correlation functions

presented in Fig. 1. The diffusion coefficient of a chain of particles decreases with increasing number of
particles in the chain. Thus, Fig. 2 directly reflects the chain formation. Due to our scattering geometry where

the scattering wavevector is normal to the field direction, we are sensitive only to the motion of the chains

perpendicular to their axes. Using the Stokes Einstein relation and the appropriate friction coefficient Fclhain

(Ref. 12), we can calculate the diffusion coefficient DcZhain normal to the field direction:

± kBT F± 4N
D?hain - F_T_. chain = 3 In 2 N + ? -I- Fspherechain (3).

Here, Fsphere is the Stokes friction coefficient of a single particle, N is the number of particles in the

chain, and for )'± a value of - 0.418 was reported (Ref. 13). The calculated values for N = 2 to 6 are

presented in Fig. 2 as constant levels. Comparing the diffusion coefficients calculated from Eq. 3 with the

extrapolated values from measurements based on Eq. 1-2, we can estimate the apparent number of particles in

an average chain. We find that at saturation the chain consists of approximately six particles. Here we do not

expect one single chain length but a distribution of chain lengths to be induced by the applied field.

Therefore the diffusion coefficient we measure is actually an averaged diffusion coefficient corresponding to

an average chain length. The estimate for the number of particles in a chain from Eq. 3 is based on straight
chains in the sample. Therefore, we call it apparent chain length. In reality, dynamic light scattering is
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sensitive to all kinds of motion. Thus if there are bending modes or chain fluctuations as we will show later,

they will affect /_p_ (q) to some degree.

2. Influence of Applied Field and Volume Fraction on Short-Time Dynamics

If we increase the field strength, the interaction range between particles will increase. This leads to the

formation of longer chain lengths. Therefore, the measured diffusion coefficient at short time will be reduced.

Figure 3 shows the growth of the apparent chain lengths with time at different fields from 52 to 195 G

corresponding to 1 = 26 to 228. The same sample as in Fig. 1 was used with ¢ = 1.4 x l0 -5 and 0 = 90 o using

He-Ne laser of wavelength 632.8 nm. When the field is ramped up quickly and held at a constant value, the

short-time self diffusion coefficient similar to Fig. 2 is observed which decreases with time as chains build up.

The s¢onger the applied field, the faster the diffusion coefficient decreases, and therefore, a longer chain

length is formed. The apparent chain length is obtained the same way as the one in Fig. 2 by comparing

calculated diffusion coefficient for straight chains with experimental data.

Fig.3
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Fig. 4. Apparent chain length vs. time measured for different
particle volume fractions at H=50 G and 2=24. Both figures
correspond to a=233 nm and 0 = 90°.

Fig. 3. Apparent chain length in units of particle diameters
vs. time measured for different applied field strengths which
correspond to I = 26, 85, 156, 228. The field is tm'nedon at
t=0. _ = 1.4 x 10"J.

Figure 4 shows the results of changing particle volume fractions for the same sample at a constant field

of 50 G (1--24) and 0 = 90°using Ar + laser of wavelength 514.5 nm. If we increase the particle volume

fraction ¢, the initial distance between particles is reduced which shortens the diffusion time for particles to

enter each other's interaction range which is defined by I > 1 and more particles are within that range to form

chains. Therefore, a longer chain is formed as compared to that at low ¢ for the same time after the field is

applied. Specifically, at 0=-3.6 x 10-6, a dimer forms after the field is turned on for one hour. Whereas at

0=-1.5 x 10-4, it takes only 1 minute. However, they both increase with time at a similar rate on this log-log

scale once dimers are formed and N starts to increase. The slowing down of N at 0=1.5 x 10.4 at later time

might be due to the sedimentation of long chains and the long-time decay influence to the short-time behavior

in the correlation function. The ferrofiuid emulsion is nearly density matched but not exactly. When chain

gets longer, sedimentation becomes more obvious.

Figure 5 shows the apparent chain length from Fig. 3 and 4 plotted as a function of rescaled time on a

log-log scale. The normalization factor is a characteristic time scale, tBw, for particles to aggregate. This time

factor originates from the Brownian motion weighted by the stability factor W to take into account of dipolar
interaction: tBW=tBW=9.16 a2/(6DCX 4/3) (Ref. 14). All the data collapse to follow a power law N = (VtBw) z

where z=0.6 as shown in Fig. 5. For 1 _>9, the aggregation process is non-equilibrium or irreversible for the
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volume fractions used in our experiments (Ref. 15). At lower H or #, it takes a longer time for two particles to

move into each other's interaction range to form a dimer. However, the growth rate of average chains for each

sample measured follows the same relation: dN/dt - _,o.8(_0.6DO.6t-0.4. The larger the interaction strength and

diffusion constant or the closer the initial particle distance, the faster the chains grow.

A power-law behavior shows that the chain formation can be described by the Smoluchowski's

equation for irreversible aggregation. It means that the formation of a N-particle chain is due to a

combination of two short chains at any given time. Earlier study of ER fluid by Fraden et al. has shown a

similar behavior with z =0.6 (Ref. 16).
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Fig. 5. Apparent chain length in units of particle diameter vs. normalized time
measurements show the same power-law growth.
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for the data shown in Fig. 3 and 4. All the

3. Long-Time Dynamics

Figure 1 shows that an additional decay appears at long time when the field is applied. As the short

time decay reflects the diffusing motion of a straight chain, the long time decay may reflect additional motion

of a chain. On a closer look at the long-time behavior one finds surprising results. Figure 6 shows correlation

functions measured at different angles when the same field is turned on for about two hours. In this case,

smaller size particles with a=80 nm are used at a higher field (H=310 G and ,_ = 15) than that used in Fig. 1.

Now an average chain consists of about 300 panicles which is at least a factor of 10 more than the particles in a

typical chain formed with larger particles used in obtaining Fig. 1-4. A little bump at the decay slope in Fig.

6a indicates that an additional motion may exist and overlaps with the short-time decay. Dramatic results are

seen at the scattering angle of 1500 where oscillation is observed. The first oscillation peak of the correlation

function in Fig. 6b occurs at a time about 2.7 ms which corresponds to a frequency of 364 Hz. Oscillation in

the correlation function indicates that chains fluctuate regularly at this characteristic frequency. If plotted in a

linear scale, the interval between oscillations are constant. This shows the possibility of existence of phonons

which is surprising to see in a heavily damped system.

The differences between Fig. 6a and 6b is the length scale or window used to measure transverse

motion: /q = l/q = 1.5 x 2a for 0 = 150 °, whereas /q= 2.1 x 2a for 0=90 °. This indicates thai the fluctuation

amplitude, Af, is about two-particle diameters. If lq > Af, the fluctuation is averaged out as seen by the deteclor.

If lq < Af, the fluctuation can be delected. This observation is consistent with other measurements at smaller
angles of 300 and 60 o where the bump becomes less obvious.

The oscillation does not occur at all the times. It appears about 15 minutes after the field is turned on

which depends on the field applied, the particle volume fractions, and the particle size. The oscillation

amplitude increases and the peak width narrows down with lime. If we reduce the field step by step after

saturation is reached, the oscillation in the correlation function generally reduces with field and disappears at

low field where no chain exists. Thus a certain threshold-field strength is required to see oscillation. This
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indicates that a certain length and stiffness of chains is required to support oscillation. It is consistent with the

picture of phonon propagating along a chain in a damped environment.
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Fig. 6. Correlation function measured at scattering angles of (a) 900 and Co)1500 corresponding to a length scale lq=l/q= 2.1 x
2a and 1.5 x 2a. Oscillation is observed and becomes pronounced at 1500. Here H=310G (_, = 15), 0=3.6 x 10"5,a =80 nm.

CONCLUSION

In summary, we have presented initial dynamic-light-scattering measurements on a dilute model

magnetorheological fluid. Field-induced chain formation was observed for ;t > 1. The motion of chains can

be described by two processes: the diffusive motion of straight chains as a whole and the fluctuation of chains.

The straight-chain motion corresponds to a diffusion constant which decreases with the increase of applied

field and particle volume fraction. The chain fluctuation shows a surprising periodic oscillation at a time scale

of a few ms when the chains reach a certain length with time and softness at a threshold field. This result may

suggest the existence of phonons along chains. The observed chain fluctuation supports the basis of Halsey's

theory for the chain-coarsening mechanism.

ACKNOWLEDGMENT

We thank Dr. Yun Zhu and Dr. Mark Gross for helpful discussion and gratefully acknowledge the
support by NASA, NAG 3-1634.

REFERENCES

1. J.D. Carlson, et al, Proc. of 5th Int. Conf. on Electro-Rheological Fluids and Magneto-Rheological
Suspensions, University of Sheffield, UK, 10 - 14 July 1995, Bullough ed. (World Scientific, 1996).

2. E.M. Lawrence, et al, Int. J. Mod. Phys. B, 8, 2765 (1994).
3. J. Liu, et al, Phys. Rev. Lett._74, 2828 (1995).
4. R. Tao and J. M. Sun, Phys. Rev. Lett. 67, 398 (1991).
5. B. Murakami, APS March Meeting, St. Louis, 1996.
6. T.C. Halsey and W. Toor, J. Stat. Phys., 61, 1257 (1990).
7. J. Bibette, J. Magnetism and Magn. Materials 122 (1993) 37.
8. J. Bibette, J. Coll. Int. Sci. 147 (1991) 474.
9. B.J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
10. P.N. Pusey, J. Phys. A: Math. Gen. 11 (1978) 119.
11. K.J. Gaylor, I. K. Snook, W. J. van Megen, and R. O. Watts, J. Phys. A: Math. Gen. 13 (1980) 2513.
12. K. Zahn, R. Lenke, and G. Maret, J. Phys. H France 4 (1994) 555.
13. H. Yamakawa, J. Chem. Phys. 53 (1970) 436.
14. M. Fermigier and A. P. Gast, J. Coll. Int. Sci. 154 (1992) 522.
15. P.G. de Gennes and P. Pincus, Phys. Kondes, Mater._ll, 189 (1970).
16. S. Fraden, A. J. Hurd, and R.B. Meyer, Phys. Rev. Lett._63, 2373 (1989).

394


