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The study of motions of small particles suspended in a fluid has always been an interesting

subject in physics.1 The dynamics of the particles is determined by the statistical properties of the

random forces resulting from interactions between the particle and the surrounding fluid molecules.

Brownian diffusion of small particles in a fluid at thermal equilibrium is one of the classical and

best understood examples. Sedimentation, wherein heavy particles fall under the action of gravity

through a fluid in which they are suspended, on the other hand, represents a "self-induced hy-

drodynamic diffusion".2 The character of the sedimentation depends upon the interplay between

long-range hydrodynamic forces, random Brownian forces and direct inter-particle forces. 3 The

main objectives of our NASA research projects carried out at Oklahoma State University are: (1)

study motions of colloidal particles under different random forces in the carrier fluid, and (2) un-

derstand the effect of gravity on the particle motion when the density of the particles is different

from the carrier fluid.

In this paper we focus on the polymer-induced depletion attraction and its effect on colloidal

sedimentation in colloid-polymer mixtures. We first report a small-angle neutron scattering (SANS)

study of the depletion effect in a mixture of hard-sphere-like colloid and non-adsorbing polymer.

Then we present results of our recent sedimentation measurements in the same colloid-polymer

mixture. A key parameter in controlling the sedimentation of heavy colloidal particles is the inter-

particle potential U(r), which is the work required to bring two colloidal particles from infinity

to a distance r under a given solvent condition. This potential is known to affect the average

settling velocity of the particles, 3 and experimentally one needs to have a way to continuously vary

U(r) in order to test the theory. The interaction potential U(r) can be altered by adding polymer

molecules into the colloidal suspension. In a mixture of colloid and non-adsorbing polymer, the

potential U(r) can develop an attractive well because of the depletion effect 4, in that the polymer

chains are expelled from the region between two colloidal particles when their surface separation

becomes smaller than the size of the polymer chains. The exclusion of polymer molecules from the

space between the colloidal particles leads to an unbalanced osmotic pressure difference pushing

the colloidal particles together, which results in an effective attraction between the two colloidal

particles. The polymer-induced depletion attraction controls the phase stability of many colloid-

polymer mixtures, which are directly of interest to industries.
It has been shown that the potential U(r) has the form 4

+c¢ r<aU(r)= -IIpV0(r) a<r_<a+2Rg
o r > a + 2Rg

(1)

where a is the particle diameter, IIp is the osmotic pressure of the polymer molecules, and Rg is

their radius of gyration. The volume of the overlapping depletion zones between the two colloidal

particles is given by 4

(__1)3[ 3(r) 1 (r) 3]y0(r)=.p , (2)
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where v_ = (4_r/3)R_ is the volume occupied by a polymer chain and A = 1 + 2RJa. In th

experimet, we measure the colloidal (partial) structure factor, So(Q), which is directly related to th

interaction potential U(r). An advantage of using SANS is that one can eliminate the undesirabl

scattering from the polymer chains by using isotopically mixed solvents. (In the discussion belo_

the subscripts c and p will be used to refer to colloid and polymer, respectively.)

The colloidal particles used in the experiment consisted of a calcium carbonate (CaCOa) cot

with an adsorbed monolayer of a randomly branched calcium alkylbenzene sulphonate surfactan_

These particles have been well characterized previously using SANS and small-angle X-ray seal

tering (SAXS) techniques. 5 Our recent SANS and SAXS measurements revealed that the particl

has a core radius, R0 = 2.0 nrn, and a monolayer thickness, 6 = 2.0 am. Previous dynamic ligt

scattering experiment s has shown that the colloidal particles are relatively monodispersed wit

,,_ 10% standard deviation in particle radius. The polymer used in the study was hydrogenate

polyisoprene (poly-ethylene-propylene or PEP), a stable model polymer. The molecular weigt

of the PEP was M r = 26,000. Decane has been found to be a good solvent for both the colloi

and PEP. s Because decane and PEP are both protonated, the polymer chains in the mixture al

invisible to neutrons. Our Zimm analysis of the SANS data from the pure PEP/deuterated-decaI.

solution has shown that the polymer chains have a radius of gyration Rg = 8.3 nm and their secon

virial coefficient A2Mp = 44.4 (crn3/grn). With the measured A2 one can define an effective har,

sphere radius Rhs via 4(4rr/3)R_,s = A2M_. Thus we have Rh, = 4.8 am, which agrees well wit

our previous light scattering measurement, s The light scattering experiment has revealed that t}:

PEP chains do not adsorb onto the colloidal surfaces, and the phase separation in the colloid-PE

mixture samples occurs at the concentrations very close to the depletion prediction. 6 Because tI

basic molecular interactions are tuned to be simple, the SANS measurements in the colloid-PE

mixture can be used to" critically examine the current depletion theory. The SANS measuremen

were performed at the High Flux Beam Reactor in the Brookhaven National Laboratory. The ii

cident neutron wavelength A0 = 7.05 =h 0.4 ,_, and the usable range of the scattering wave numb,

Q [= (47r/A0)sin(0/2), with O being the scattering angle] was 0.007 .;t -1 _< Q _< 0.15 _-1. Tt

structure factor Sc(Q) was obtained using the equation Sc(Q) = I(Q)/[pcPc(Q)], where I(Q)

the scattered intensity of the mixture samples, pc is the colloid number density, and Pc(Q) is tt

scattering intensity per unit concentration measured in a dilute pure colloidal suspension, in whi¢

Sc(Q) = 1. All the scattering measurements were conducted at room temperature.

To reduce the fitting ambiguity and pinpoint the control parameters for the depletion effec

we prepared three series of mixture samples with the colloid volume fraction ¢_ = 0.146, 0.0_

and 0.038, respectively. For each series of the samples, ¢c was kept the same and the polyxm

concentration C r (gm/crn 3) was increased until the mixture became phase separated (except f(

the series with ¢c = 0.038) with a visible interface, which separates the dark brown colloid-ri(

phase from the light brown colloid-poor phase. Fig. 1 compares the measured Sc(Q) for thr_

values of Cp when (a) ¢_ = 0.146 and (b) ¢c = 0.086. It is seen that the main effect of adding PE

into the colloidal suspension is to increase the value of S_(Q) in the small-Q region, whereas t}

large-Q behavior of S_(Q) remains nearly unchanged. The solid curves in Fig. 1 show the calculat(

So(Q) using U(r) in Eq. (1). Note that there are four fitting parameters in the calculation: tt

diameter a, the volume fraction ¢c, the dimensionless interaction amplitude P = Ilpvp/kBT, al

the range parameter A. The first two parameters are used to describe the hard core part of U(r

and the last two parameters are used for the attractive tail. It is found from the fitting that 5

a fixed colloid concentration, the fitted values of a and d)_ for the mixture samples do not chanl
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very much with Cp, and they are very close to those obtained from the corresponding pure colloidal

suspensions. Furthermore, the fitted A also remains constant for different d_c and Cp, and its best

fit value is A = 2.9. This value is close to the calculated A = 1 + Rg/(Ro + 6) = 3.07. With

the above three fitting parameters fixed, we were able to fit all the scattering data from different

mixture samples (19 samples in total) with only one free parameter - the interaction amplitude/5.

Figure 2a shows the fitted ,5 as a function of the effective polymer volume fraction Cr =

G/C*, where C* = is the polymer overlap concentration. It is seen that P first

increases linearly with Cp up to Cp __ 1 and then it levels off. For a given Cr, /5 also depends

upon ¢c. If the polymer molecules in the mixture are treated as an ideal gas, their osmotic

pressure rip = npkBT and hence/5 = Ilpvp/(kBT) = Cp. Recently, Lekkerkerker et al.7 pointed

out that the polymer number density np should be defined as np= Np/VI, where Np is the

total number of the polymer molecules and V! = o_(¢c)V is the free volume not occupied by the

colloidal particles and their surrounding depletion zones. They have calculated a(¢c) as a function

of ¢c. It is seen from Fig. 2b that once Cp is scaled by the calculated ot(¢_), s the three curves

in Fig. 2a collapse into a single master curve. The solid curve in Fig. 2b is the fitted function

/5 = -0.054 + 0.178(¢p/a) - 0.0245(¢p/a) 2.

The fitted/5 consists of three terms. The small negative intercept indicates that there is a

weak repulsive interaction between the soft surfactant shells of the colloidal particles. (To have a

meaningful comparison with the fitted/5 for the mixture samples, we used the same U(r) as in Eq.

(1) but change the sign of U(r) for r > a to fit the repulsive tail for the pure colloidal samples.)

The linear coefficient should be unity for non-interacting polymer chains (an ideal gas), but our

fitted value is 0.178. One plausible reason for the deviation is that with the effective potential

approach, the polymer molecules are assumed to be smaller than the colloidal particles and their

number density should be much higher than that of the colloidal particles. In our experiment,

however, these two assumptions are not strictly satisfied, and thereby the overlap volume Vo(r) in

Eq. (2) is over-estimated. As a result, the fitted /5 becomes smaller than its actual magnitude,

because U(r) in Eq. (1) is proportional to the product of Vo(r) and /5. Another possibility is

that in calculating Cp, a smaller characteristic length than Rg should be used for the polymer

chains. For example, if Rhs is used to compute Cp, the linear coefficient will be increased by a

factor of (Rg/Rhs) 3 _- 5.2. The polymer-polymer interaction, which gives rise to the quadratic

term in the fitted P, can have two competing effects on the depletion attraction. It may either

increase the osmotic pressure (and hence P) because the polymer chains have a positive second

virial coefficient, or reduce the depletion attraction because it requires the system to do more

work to expel the polymer molecules from the depletion zones. Fig. 2b clearly shows that the

polymer-polymer interaction tends to reduce the depletion attraction. Similar suppression effects

are also found in recent theoretical calculations of the depletion attraction between two parallel

plates immersed in an interacting polymer (or particle) solution. 9

The above SANS measurements clearly demonstrate the effectiveness of using a non-adsorbing

polymer to control the magnitude as well as the range of the interaction between the colloidal

particles. It is shown that the amplitude of the potential U(r) is controlled by the polymer con-

centration Cp, and the range of U(r) is proportional to the radius of gyration Rg of the polymer

chains. Because the depletion potential U(r) can be continuously varied in the experiment, the

colloid-PEP mixture becomes an ideal system for the study of the interaction effect on the colloidal

sedimentation. In the experiment to be described below, we measure the average settling velocity

vc(Cp) of the colloidal particles as a function of Cp. The addition of the polymer molecules into

415



the colloidal suspension can have two competing effects on vc(Cp). It can either reduce vc(Cp)

because the viscosity of the mixture solution is increased, or increase vc(Cp) because the depletion

attraction between the particles is increased. Experimentally, one can separate the two effects by

changing the colloid concentration. For sufficiently dilute colloidal mixtures, the distance between

the colloidal particles is so large that their mutual interaction can be ignored. In this case, adding

polymer into the colloidal suspension only affects the viscosity of the solution. The effect of U(r)

on v_(Cp) can be studied in the concentrated colloidal mixtures, once the sedimentation of th¢

individual particles through a polymer solution is understood.

We now discuss the measurements of vc(Cp) in the dilute colloidal mixtures. The CaCO:3

particles have a hydrodynamic radius, Rh = 5.0 rim, and their density dc -_ 2.0 gm/cm a. Th_

density of the PEP is dp = 0.856 grn/crn 3. The solvent (decane) density is do = 0.73 gm/cm 3 an¢:

its viscosity r/0 = 0.84 cp (at T = 25°C). The Stokes velocity of the particle, determined by the

balance between the accelerational force and the viscous drag, is

v_(Cr) = 2n2h(dc - d,)A
9r/¢(Cr) , (3

where .A is the acceleration and _(Cr) is the viscosity experienced by the colloidal particles in th_

polymer solution at the concentration Cp. Because the particles are very small, their sedimentatioi

under earth gravity (.A = g) is unobservable. To increase the settling velocity of the particles, w_

used a commercial ultracentrifuge, Beckman Model L8-70M. The sample cells were made of Ultra

Clear solid polymer and their size (diameter × height) was 14 × 95 ram. The distance betweex

the middle of the sample cell and the center of rotation was f = 11.3 cm. All the samples wer_

centrifuged at the rotation speed f = 35,000 rpm for 4 to 6 hours depending on the sample viscosity

The corresponding centripetal acceleration A = (27rf)2f was 1.5 × l0 s crn/s 2 (1.5 × 105g), which wa_

large enough to cause the colloidal particles to settle 1 to 6 cm towards the bottom of the cell. Afte:

the centrifugation, a clear interface could be observed by eye in the initially uniform solution. Thi

interface separated the upper clear solvent region from the lower dark-brown colloid-rich region

The travelling distance h of the interface was measured by a low-magnification microscope mounte_

on a translational stage controlled by a micrometer. The settling velocity was computed from th,

measured h via vc(Cr) = h/t, where t is the running time. All the measurements were conducte_

at 22°C. Because the polymer density is very close to that of the solvent, the sedimentation o

the polymer molecules was negligible. Therefore, the colloidal particles settled through a unifon_

PEP/decane solution at rest. To reduce systematic errors in the experiment, we present th,

sedimentation data in terms of the velocity ratio R_ =_ v_(C r = O)/v_(Cr). As shown in Eq. (3)

R_ = tl_(Cr)/rlo for the dilute colloidal mixtures.

Figure 3 shows the measured R_ as a function of Cp at ¢_ = 0.014. The molecular weight ¢_

the PEP was M r = 17,500 and its Rg -_ 5.8 nm. l° It is seen that the measured R_(Cr) first increase

linearly with Cp up to C_ _- 0.07 gm/cm 3 and then it turns up sharply. Similar behavior was als,

observed for the measured Rc(Cr) with other molecular weights. The crossover concentration C

is found to be independent of M r. With this value of C_, we estimate the correlation length (o

the mash size) of the polymer solution to be _ _ Rg(Cp/C*) -3/4 __ 3.5 nm, which is close to th

size of the colloidal particles. The solid curve in Fig. 3 shows the macroscopic viscosity of th

same polymer solution measured independently by Davison et al. with a capillary viscometer. 1

The functional form of the solid curve is _p/rl0 = 1 + [T/]Cp + kn([_]Cr) 2, with the coeffci,_nt

[T/] = 25 cmS/gm and kH = 0.335. The dashed line is the lin(_ar plot r/p/q0 = 1 + [_]C r. Fig. 3 thu

416



revealsthat the colloidal particles in the polymer solution feel the single-chainviscositywhentheir
size is smaller than (. The particles experiencethe macroscopicviscosity of the polymer solution
whentheir sizebecomemuch larger than _.

We now discussthe effectof the colloidal interaction on Rc(Cp). Fig. 4 shows the measured

Rc vs. Cp for different ¢c. It is seen that for the two lowest colloid concentrations (¢ = 0.014

and 0.02), the measured Rc(Cp)'s superimpose with each other, indicating that the interaction

between the colloidal particles is negligible and thus the velocity ratio Rc equals the viscosity

ratio 71c(Cp)/T]o. As ¢c increases, the colloidal particles feel more and more depletion attraction

and, therefore, their settling velocity at a fixed Cp is increased (Re is reduced). For a fixed ¢c,

the depletion attraction between the particles also increases with increasing Cp. Consequently,

the colloidal settling velocity is increased. This is seen in Fig. 4 once the effect of increasing

viscosity is divided out from the measured Rc vs. Cp. For the first time, the experiment provides a

quantitative relationship between the settling velocity v¢(Cp) and the inter-particle potential U(r).

Further theoretical calculation of vc(Cp) using the depletion potential U(r) is underway. The above

measurements reveal a great potential of using sedimentation to measure the interaction between

the colloidal particles and other macromolecules in complex fluids.
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Fig. 1 - Measured So(Q) of the colloid-PEP
mixtures for different Cp when (a) ¢c = 0.146 and (b)
¢c --- 0.086. The values of Cp (gm/cm 3) in (a) are:
0.0039 (circles), 0.0165 (triangles), 0.0308 (squares),
and those in (b) are: 0.0038 (circles), 0.0233 (trian-

gles) and 0.0652 (squares). The solid curves are the
calculated S¢(Q) using U(r)in Eq. (1).
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Fig. 2 - Fitted /_ as a function of (a) Cp =

Cp/C ° and (b) Cv/cL The values of ¢c in the mixture
samples are: 0.146 (circles), 0.086 (triangles) and 0.038

(squares). The solid curve in (b) is the fitted function
P = -0.054 + 0.178(¢p/(_) - 0.0245(¢p/o_) 2.
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Fig. 3 - Measured Rc as a function of Cp at ¢¢ =
0.014. The solid curve is Tlv/_]o= 1+[T]]Cp+kH([r/]Cp) 2
with [7}]= 25 cm3/gm and kH = 0.335. The dashed
linc is the linear plot _p/r/0 = 1 + [q]Cp.
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Fig. 4 - Measured Re vs. Cp for different ¢c.
The values of ¢¢ are: 0.014 (triangles), 0.02 (circles),
0.086 (diamonds), and 0.146 (squares).
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