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ABSTRACT

A model problem is posed to study the influence of flow on the interfacial stability of a nearly

cylindrical liquid bridge for lengths near its circumference (the Plateau-Rayleigh limit). The flow

is generated by a shear stress imposed on the deformable interface. The symmetry of the imposed

shear stress mimics the thermocapillary stress induced on a float-zone by a ring heater (i.e. a full

zone). Principal assumptions are i) zero gravity ii) creeping flow and iii) that the imposed coupling
at the free surface between flow and temperature fields is the only such coupling. A numerical

solution, complemented by a bifurcation analysis, shows that bridges substantially longer than the

Plateau-Rayleigh limit are possible. An interaction of the first two capillary instabilities through

the stress-induced flow is responsible. Time-periodic standing waves are also predicted in certain

parameter ranges. Motivation comes from extra-long float-zones observed in MEPHISTO space

lab experiments (June 1994).

INTRODUCTION

Observation of several float-zones (MEPHISTO, 1994) shows lengths much longer than their average

circumference (up to 50 % longer)J1]. Since knowledge of precise experimental conditions is lacking,

there is room for a variety of explanations. The results of the simple model problem posed below

suggest one possible mechanism.

In the absence of flow (c - 0), the pinned cylindrical interface exhibits, with increasing length, a

sequence of shape instabilities due to surface tension. Destabilizing shapes that are antisymmetric

(eigenvalues Pn) are interlaced with those that axe symmetric about the mid-plane (eigenvalues qn,

where n -- 1, 2, ...). The instability at the Plateau-Rayleigh limit is antisymmetric and corresponds

to eigenvalue Pl.

If the quiescent bridge is perturbed by a flow that is symmetric about the midplane (c > 0),

the symmetry of the bifurcations corresponding to Pn are preserved giving a steady-streaming-like

effect. In particular, that effect on pl gives stabilization (figure la). At the same time, bifurcations

qn are broken (figure lb). Symmetry plays a key role in the analysis. Previous studies, including

those by Ribicki & Floryan[2], Chen& Shen & Lee[3] and Dijkstra[4], have laxgly been numerical

simulations.

A brief sketch of the model problem is given first. A concise formulation is then set down

and symmetry issues are discussed followed by an identification of the underlying mathematical

structure (the universal unfolding).

MODEL SKETCH

Figure 2 shows the schematic. Fluid surface tension is assumed to be a linear function of surface

temperature a = y + _(T - T) and is nowhere zero along the fluid surface. The aspect ratio
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A -- (to - ri)/ro models a possibly solidified core and provides a potential unfolding parameter in

the analysis. The temperature field of the ambient is approximated by a sinusoidal function Ta =

AT sin(lrz) to simulate the effect of external heating. Normal stress induced by thermocapillary

flow is calculated by the lubrication approximation. Figure 3 plots a typical bifurcation diagram

(schematically) obtained by a numerical continuation method [5]. The two state variables, el -

< U, (_1 > and e2 = < u,_)l >, are used to measure the solutions in an appropriate function

space (see FORMULATION for symbol definitions). The dimensionless parameter c controls the

thermocapillary strength, c - -_pAT/y.

The bifurcation structure near the singular points PI and ql is predicted by the symmetry issues

alluded to above and discussed in detail in the next section. The first bifurcation point is shifted

from the classical limit (2_r) by an amount proportional to c -- the Z2-invariant branch may be

stable even for bridge length _ > 21r. By further increasing'c it is possible to turn the pitchfork

bifurcation over -- i.e. to make it supercritical. The trivially-invariant branch may be stabilized.

FORMULATION AND SYMMETRY ISSUES

The model assumes zero Bond, small Reynolds and small Peclet numbers. The imposed tangential

stress at the interface drives the flow. The normal stress balance, however, determines the shape

stability and is our focus. Incorporating appropriate boundary conditions, the normal stress balance

is set-up as a map

_'(u, e, c) - a 27_(u, e) - P, + Af(u, e, c). (1)

The normal stress induced by thermocapillary flow N'(u, _, c) is balanced by the mean curvature

2_(u, t), with surface deflection function u(z), and static pressure Ps.

Note that at c = 0, Af(u, _, 0) - 0 and the classical Young-Laplace equation is recovered. The

linear map cgu_'(0, t, 0) has two distinct categories of null space (n = 1, 2...)[6]:

(I) _bn = sin(pnz), p.=2nlr. (2)

(II) _b, = 2(cos(quz)+ 2sin(qnz)- 1), tan(-_)= 2" (3)
qn

The branching solutions tangent to class (I) form a subcritical pitchfork bifurcation at t = Pn;
the solutions branching from the class (II) form a transcritical bifurcation at _ = qn. The bridge

loses its stability at _ -- 21r. We shall demonstrate that, when c # 0, the nonlinear interaction of

{¢1 }(Pl = 21r) and {¢1 }(ql = 8.98) modes may stabilize an otherwise unstable bridge.

The map Y has reflection symmetry (Z2) inherited from heating at the midplane

Y(Tu, _, c) : 7_(u, e, c), (4)

where the flip transformation 9' 6 Z2 is defined as 7u(z) : u(1 - z). Here, z is normalized by g.
Two remarks are in order:

(i) By the equivariant property (4) one can show that the projection g - < _'(e_b+w, A, c), _b* >

preserves the symmetry, where w is in the complement of span{_b}, ie.

(5)

Generically, (5) shows a pitchfork bifurcation (c.f. figure l(a)).

(ii) Since < OcAf(u, _, 0), _b* ># 0, there exists a unique branch of solutions c = d(_, _) near

e = qn by the implicit function theorem. The transcritical breaks to a limit point bifurcation[7]

(c.f. figure l(b)).
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UNIVERSAL UNFOLDING

The analytical structure and stability of the bifurcation diagram is now considered. Solutions of

the nonlinear problem (1) are obtained by the Lyapunov-Schmidt method near the singular points.

The bifurcation equation is obtained by the projection of F onto ¢_ and ¢_[8,9]:

( )g = 2(8.98) _A2_2 - _1c, (- + _3c)_ 3 + (-_A1 + _1c)cl , (6)

where A1 = 1 - (2r/_) 2, A2 = 1 - (8.98/_) 2 measure the deviation of the bridge length from

the classical bifurcation points, and the coefficients _I(A), _3(A) and 61 (A) are obtained through

the reduction. A straightforward evaluation using (6) gives the positions of the two bifurcation

points (the pitchfork and the limit point), and criteria that turn the trivially-invariant solutions

supercritical.

DISCUSSION

Results of numerical continuation and the reduction equations may be summarized. The problem

falls into the class of a bifurcation problem in two state variables with Z2 symmetry (x, y) _-_

(x,-y). By appropriate coordinate transformations the bifurcation equations may be fitted into a

normal form with the topology of a Z2-codimension 2 bifurcation:

g(x, y) = (x2+ y2 _ ( x2 + _ (7)

p > 0. The normal form renders stability of the branching solutions within the limitation of

negligible Reynolds and Peclet numbers. The unfolding diagram is given in [9, p.441]. A somewhat

surprising result, as seen from that diagram, is that the two-mode interaction may lead to a Hopf

bifurcation. A standing wave solution is possible. Predicting the stability of such solution is beyond

the present model.
Good estimates from the space experiment, of the strength of the perturbation from zero gravity

(relative to the thermocapillary perturbation) and the amplitude of the interface deformation, are

most important in assessing the relevance of this model.
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