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ABSTRACT

The motion of air bubbles and water drops in a Hele-Shaw cell filled with a silicone oil has

been studied experimentally and theoretically. By adding a predetermined amount of a surfactant

to the water drops we attempted to investigate the surfactant influence systematically. While the

motion of air bubbles was in reasonable agreement with the predictions of Taylor and Saffman

[Q J. Mech. Appl. Math. 12, 265 (1959)], water drops behaved quite differently in that the

translational velocities were smaller by an order of magnitude and their shapes were very unusual

as observed previously by Kopf-Sill and Homsy [Phys. Fluids 31, 18 (1988)]. Assuming that

the surrounding fluid wets the solid wall and the bubble (or the drop) surface is rigid due to the

surfactant influence, we have estimated the translational velocity of an elliptic bubble. The

calculated velocities were in good agreement with the observations indicating that the surfactant

influence could retard the bubble motion significantly. The present study also indicates that the

unusual bubble shapes are also due to the surfactant influence.

INTRODUCTION

Various physical systems involving the motion of bubbles or drops often show many

unexpected flow phenomena which cannot be explained by existing theories. The unexpected

flow characteristics of bubbly flows may include unusually high pressure drops, low bubble

velocities, and perplexing bubble shapes. Furthermore, these flow characteristics are usually

bubble-size dependent. While many of the unexpected flow phenomena may be attributed to the

influence of surface active substances present in the system, details of such flows are yet to be

fully understood.

When bubbles or drops are driven by a surrounding immiscible fluid, the flow may involve

two characteristic velocities; the bubble velocity and the average velocity of the surrounding fluid.

Although the bubble is driven by the surrounding fluid, the two characteristic velocities are not

necessarily the same depending on the flow situations. If surface active substances are present,

the flow becomes even more complicated since they affect the relative magnitude of the two

characteristic velocities, resulting in various flow regimes. Although these complex flow

situations may be encountered whether the gravity effect is present or not, _he fundamental issue
is in understanding the balance between the surface elasticity induced by the non-uniform surface

tension and the viscous force under various flow conditions. Thus, in studying such flows it is

desirable to minimize the gravity influence which introduces unnecessary complication. In

ground-based experiments, the gravity effect may become negligible in a flow where the

541



characteristic length scale is very small. Examples may include the motion of bubbles in a

capillary tube or in a Hele-Shaw cell. The motion of bubbles in a Hele-Shaw cell is especially rich

in exhibiting various perplexing flow characteristics which are apparently caused by the

surfactant influence.

The motion of a finite bubble moving in a Hele-Shaw cell which is filled with a viscous liquid

was first analyzed by Taylor and Saffman (1959). Neglecting the surface tension and the wetting

film between the bubble and the plates (Fig. 1), they predicted that a small elliptic bubble with its

longer axis in the flow direction moves with a velocity U greater than 2V. Here V is the average

velocity of the surrounding fluid which drives the bubble (Fig. 1). When U < 2V, on the other

hand, the shorter axis of the elliptic bubble is in the flow direction. If the bubble is circular,

U=2V. In any case their solution indicates that the bubble velocity is always greater than the

average velocity of the surrounding fluid (i.e., U > V).

Maxworthy (1986) conducted an experiment with bubbles that were driven by buoyancy

rather than by a pressure gradient. He investigated air bubbles moving in an inclined Hele-Shaw

cell which was filled with silicone oil. The bubbles in his experiment were ellipses elongated in

the flow direction. While large bubbles moved somewhat faster than the Taylor-Saffman

prediction, small bubbles moved slower than expected. Kopf-Sill and Homsy (1988) conducted

similar experiments, but theirs was a pressure driven flow in which air bubbles in a horizontal

Hele-Shaw cell were driven by a glycerin-water mixture. Unlike the experiments of Maxworthy,

they observed a variety of unusual bubble shapes such as ovoids, long- and short-tailed bubbles.

In addition, the bubble velocities were much smaller than expected by an order of magnitude.

Considering the fact that aqueous systems are very prone to contamination by surface active

substances, it may be possible that the perplexing observations by Kopf-Sill and Homsy may be

due to the influence of surface-active contaminants.

In this paper, the results of an experimental study are presented in which water drops

containing sodium dodecyl sulfate at a predetermined concentration were driven through a Hele-

Shaw cell filled with a silicone oil. A theoretical calculation is also presented for the bubble

velocity which accounts for the influence of surfactants. Both experimental and theoretical

results show reasonable agreement with those of Kopf-Sill and Homsy indicating that surface

active contaminants can be responsible for the observed retardation and for the perplexing bubble

shapes.

EXPERIMENTS

The Hele-Shaw cell consisted of two 1/2-in thick Pyrex glass plates separated by a rubber

gasket of 0.9 mm or 1.8 mm in thickness. The effective cell dimension was 17.8 cm by 86.4 cm.

A silicone oil with the measured viscosity and surface tension of 97 cp and 21 dyn/cm was used

as the driving fluid. The cell had an injection port at one end of the top plate so that an air bubble

or a water drop could be introduced into the cell using a syringe The planform diameter of

bubbles and drops was controlled to be at about 13 cm and 2.1 cm throughout the experimental
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study. Water drops containing a surfactant at various concentrations were prepared by

dissolving sodium dodecyl sulfate (SDS) in distilled water at a concentration of 5%, 10% and

20% of the critical micelle concentration (CMC), respectively. The CMC of SDS in water at

25°C is 8.2 mmol/l which is equivalent to 0.236% by weight. The interfacial tension at room

temperature was 34.3, 32.1 and 25.9 dyn/cm at the prescribed concentrations of SDS.

Once an air bubble (or a water drop) of predetermined size was positioned at one end of the

cell, the silicone oil was driven by a peristaltic pump at various flow rates to induce the bubble

motion. The translational velocity and the shape of the bubble (or drop) were then recorded for

each value of the oil flow rate. The measured velocities are plotted as a function of capillary

number Ca in Fig. 2. Ca is defined as _tU/_ where la is the viscosity of the surrounding fluid, U is

the bubble velocity and cr the equilibrium value of the interfacial tension. Although some

discrepancies existed, the air bubbles were moving with a velocity close to the prediction of

Taylor and Saffman and their shapes were near circular with slight elongation in the flow

direction. Water drops, on the other hand, were moving much slower than predicted, and they

were elongated in the transverse direction unlike the air bubbles. At the prescribed

concentrations of SDS, the data sets were indistinguishable from one another. Although not

indicated in the figure, some drops showed a transition to a short-tailed shape at a higher

capillary number in accordance with the observations of Kopf-Sill and Homsy. These differences

between air bubbles and water drops are apparently due to the surfactant influence as supported

by the theoretical calculation given in the following section. More details of the experimental

study can be found in Park et al. (1994).

ESTIMATION OF BUBBLE VELOCITY

In the absence of surface tension effect, the analysis of Taylor and Saffman predicts an

elliptic shape when the bubble size is much smaller than the width of the cell. If surface active

substances are present, the bubbles are not necessarily elliptical and may take on various

interesting shapes depending on the flow condition. Nevertheless, we assume an elliptic plan

form since the shape distortion is small at a low capillary number as observed experimentally.

While the bubble shape should be determined as a part of solution, the current analysis is an

approximation in which the bubble shape is assumed a priori in order to obtain an analytic

progress.

As indicated in Figure 1, the two principal axes of the elliptic bubble are assumed to be

aligned with the flow and the transverse directions with 2a and 2b denoting the bubble

dimensions in the two principal axes. The surrounding fluid wets the solid surface thus forming a

thin liquid film between the plates and the bubble. In the presence of surface active substances,

the Marangoni effect resulting from the surface tension gradient may complicate the flow field

near the bubble. When the bubble is small, however, it may be simplified since the entire bubble

surface may become rigid (Davis & Acrivos, 1966; Park, 1992). Here we consider the case of a

small bubble in which the entire bubble surface is assumed to be rigid.
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The flow field slightly away from the bubble is known to be parabolic in the xz-plane (i.e.,

across the gap). Furthermore, it can be described as a potential flow in the xy-plane. Thus,

1 4z2)

v=1.5 Va_ -7)
(l)

where v,vg is the gap (or depth)-averaged velocity field described by the potential flow in xy-

plane. In an elliptic cylindrical coordinate system (4, rl), the complex potential f_ for the flow

past an elliptic cylinder in a bubble fixed frame of reference is given by

_-_ [ ev e-_' ] (2)£2=q)+iV=-b(V-U) _ _+1 k-1

where _, = _ + i 1] and k the shape factor defined as k = a/b. V and U are the magnitude of the

average velocity of the surrounding fluid and the bubble, respectively. From the gradient of the

velocity potential q) or the stream function _P, the velocity components in _ and rl directions

(hence va,,g) can be obtained.

In the thin film region between the plates and the bubble, the flow field is represented by a

Couette flow if the bubble surface is rigid. The previous analyses on the bubble motion in a

capillary tube or in a Hele-Shaw cell provide an expression for the film thickness which is

proportional to Ca 2/3 (Park, 1992). Thus, the flow field in the thin film region is known. Eqns

(1), (2) and the Couette flow in the film region represent the three-dimensional velocity field

around the translating bubble excluding the small region of O(h) in the immediate vicinity the

bubble rim. Using this velocity field, an analytic description of the translational velocity of the

elliptic bubble can be obtained from an integral form of the x-directional momentum balance as

follows:

121anC21vk+l_[ uk-ll+(v_U)k2_I} 16_tU(ab/) (3)FD- h 4 [ k-1 (V-V)+ -_j 2.122hCa2

.orec ".Jla -andI acor,s,ant ivor, do.n to,nto a, ao0oun,sfor,,.of ,m
thickness variation in the transverse direction (i.e., y-direction) for a given value of k. I varies

from 0.79 to 1.29 fork changing from 0.1 to 3.0. For a circular bubble (i.e., k = 1), I = 0.91. FD

is the drag force acting on the bubble which is zero for a freely suspended drop. Consequently,

the following expression for the bubble velocity can be obtained:

2

CaX (4)
U = 13(k + 1)V where 13- Ca _ + 0.2k/
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Here 15 is the retardation factor introduced by the surfactant influence which is O(Ca_/3). This

order of magnitude decrease in the bubble velocity is due to the large drag in the thin film region

where the bubble surface is rigid. Since this drag is proportional to the film thickness, the bubble

velocity is also proportional to Ca 2/3. In the absence of Marangoni effect, the bubble surface in

the thin film region is stress free, and the expression for the bubble velocity is equivalent to

setting 13= 1. Thus the result of Taylor and Saffman for elliptical bubbles is recovered.

In Figure 2, the calculated U/V using Eqn (4) has been overlaid for various value of k to

compare with experimental results. It appears that the measured velocities are in reasonable

agreement with the current predictions for ellipses which are elongated in the transverse direction

(i.e., k < 1). While the drops in the experiment were not exactly elliptical, they were nearly

elliptical and elongated in the transverse direction. Experiments indicate that the drops are

elongated sideways at a low capillary number and their aspect ratio decreases with increasing

capillary number. It is interesting to note that the data points show better agreement with the

theoretical curve with smaller k at a lower Ca. With increasing Ca, the agreement becomes

progressively better with the curves for larger k in accordance with the experimental

observations.

CONCLUSIONS

The present study indicates that surface active contaminants can influence the bubble

dynamics significantly, and that most of the perplexing observations by Kopf-Sill and Homsy are

probably due to the influence of surface active substance which may be present in the system as

contaminants. As Kopf-Sill and Homsy anticipated, the significant retardation of bubble

velocity and remarkable bubble shapes, in fact, result from the three-dimensional nature of the

flow which cannot be explained by the two-dimensional Hele-Shaw equations.
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Figure 1 Schematic of a bubble moving in a Hele-Shaw cell
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Figure 2 Comparison of experimental results and the theoretical estimate given by Eqn. (4)

(*, air bubbles; Open symbols are for water drops at the SDS concentration of

5% (D), 10% (A), and 20% ( × ) of CMC.)
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