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ABSTRACT

Oscillations of supported liquid drops are the subject of wide scientific interest, with applications in areas

as diverse as liquid-liquid extraction, synthesis of ceramic powders, growing of pure crystals in low gravity,

and measurement of dynamic surface tension. In this research, axisymmetric forced oscillations of arbitrary

amplitude of viscous liquid drops of fixed volume which are pend_nt from or sessile on a rod with a fixed

or moving contact line and surrounded by an inviscid ambient gas are induced by moving the rod in the

vertical direction sinusiodally in time. In this paper, a preliminary report is made on the computational

analysis of the oscillations of supported drops that have "clean" interfaces and whose contact lines remain

fixed throughout their motions. The relative importance of forcing to damping can be increased by either

increasing the amplitude of rod motion A or Reynolds number R_. It is shown that as the ratio of forcing

to damping rise% for drops starting from an initial rest state a sharp increase in deformation can occur

when they are forced to oscillate in the vicinity of their resonance frequencies, indicating the incipience of

hysteresis. However, it is also shown that the existence of a second stable limit cycle and the occurrence of

hysteresis can be observed if the drop is subjected to a so-called frequency sweep, where the forcing frequency
is first increased and then decreased over a suitable range. Because the change in drop deformation response

is abrupt in the vicinity of the forcing frequencies where hysteresis occurs, it should be possible to exploit

the phenomenon to accurately measure the viscosity and surface tension of the drop liquid.

1. MOTIVATION, BACKGROUND, AND OBJECTIVES OF RESEARCH

A fundamental understanding of oscillations of both free and supported -- pendant or sessile -- liquid

drops is of practical and scientific importance. A better understanding of oscillations of supported drops,

the goal of this research and the subject of this brief research progress report, than that currently available is

needed in areas as diverse as: (a) electric field-enhanced liquid-liquid extraction *'2, (b) electrospray methods

for the synthesis of simple- and mixed-oxide ceramic precursor powders 3, (c) growing of pure crystals in the

reduced gravity environment of space 4, and (d) measurement of dynamic surface tension by the pulsating

bubble (drop) technique 5'e and the growing drop technique 7-9.

In (a) and (b), the energy required to break up and/or atomize supported drops can be minimized by

taking advantage of the resonant coupling that can occur between the natural oscillations of the drop and

the controlled oscillations of the driver. In (c), it is important to understand the effect of support vibrations

on the quality of grown crystals. In a pulsating bubble (drop) surfactometer (PBS) (d), a bubble that is

pendant from a tube and is surrounded by a surfactant solution is forced to undergo oscillations to infer

the dynamic surface tension of the interface. In the growing drop technique (d), interracial surface area is

created either by impulsively growing out of a capillary tube an initially static pendant drop or repeatedly

growing and detaching drops, viz. periodically dripping drops, from a tube by continuously flowing the drop

liquid through it. In the experiments of Nagarajan and Wasan 7, oscillations in drop shape and velocity and

pressure fields arise after the static drop is impulsively set in motion. In the continuous flow experiments of

MacLeod and Radke s and Zhang et al. 9, similar oscillations occur after one drop detaches from the capillary

and another one starts growing from it following the rupture of the liquid bridge connecting the former drop

to the rest of the liquid in the capillary (cf. Zhang and Basaranl°). The oscillations of pendant drops that

arise during early times in these growing drop experiments not only create an uncertainty in the initial state
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of the system but also make it impossible to infer dynamic tension values for times lower than about 20

milliseconds despite the desirability of being able to do so in milliseconds and even in submilliseconds 9.

However, while the dynamics of oscillating free drops have been studied for over a century since the time

of Lord Rayleigh n, oscillations of supported drops had not been studied until recently and have received
only limited attention to date. Previous studies of dynamics of supported drops 12-19 have been highly

restrictive, including restriction to small-amplitude oscillations, irrotational oscillations of inviscid drops, and

free oscillations. Moreover, in none of these previous studies has the effect of surfactants on finite-amplitude

oscillations been considered. Given the widespread occurrence of applications that are enumarated above

and the poor state of understanding of them that currently exists, the major goal of this research program

is to develop a comprehensive understanding of the finite-amplitude forced oscillations of supported drops

that either are pure liquids or contain surface-active species.

For the purpose of illustration, in this brief progress report attention is focused on forced oscillations of

drops that are supported on a solid rod, as shown in Fig. 1. It is also taken here that the three-phase
contact line where the drop liquid, ambient fluid, and rod meet remains pinned to the sharp edge of the rod

throughout the drop motion and the drop is devoid of any surface-active species.

2. MATHEMATICAL FORMULATION

The system is an axisymmetric drop of an incompressible, Newtonian liquid of constant viscosity p and

constant density p that is pendant from (or sessile on) a circular cylindrical rod of radius R that lies along

the direction of the gravitational acceleration g_, as shown in Fig. 1. The drop is forced to oscillate by

moving the rod in the vertical direction sinusoidally in time with frequency _ and amplitude A so that the

instantaneous position of the rod tip is given by _' = ,4 sin _{ where _' is axial distance measured in an

inertial frame of reference in the direction of (opposite to) gravity for a pendant (sessile) drop and t is time.

The ambient fluid surrounding the drop has negligible density and viscosity and exerts a constant pressure

and negligible drag on the drop as it oscillates. The drop/ambient fluid interface has constant surface tension

a. Throughout the motion, the three-phase contact line (circle) remains pinned to the edge of the face of
the circular rod.

The problem is cast onto a moving frame of reference in which the rod is stationary by the transformation

= 4' - Y]sin _{. The equations, boundary conditions, and initial conditions that govern the dynamics axe

put in dimensionless form by using the radius of the rod R as the length scale and the quantity pV/_/o as

the time scale. In what follows, variables with tildes over them axe dimensional whereas the same variables
without tildes are dimensionless.

The dimensionless groups that govern the forced oscillations of supported drops are (1) a Reynolds number

Re - (1/v)_, (2) a gravitational Bond number G - +pgR2/cr, (3) dimensionless forcing amplitude

A, (4) dimensionless forcing frequency f], and (5) dimensionless drop volume, which is parametrised by a

parameter a that varies between -1 and 1 such that a = 0 corresponds to a drop whose volume equals that

of a hemisphere.

In this paper, two different types of initial conditions axe considered. In one of these, a supported drop that

is in static equilibrium for times t _< 0 is impulsively set into oscillation by moving the rod in the vertical

direction sinusoidally in time for all time t > 0 with a fixed forcing frequency f/ and amplitude A. The

transient Navier-Stokes system is then integrated in time until the drop motion approaches a time-periodic

steady state or a limit cycle. With the other initial condition, once the drop attains a steady oscillatory
state at frequency f/= f_,, the forcing frequency is then changed by a finite amount to f_ : n2 : nl + All.

The transient system is then integrated until a new steady oscillatory state is reached. This procedure is

then repeated by incrementing the forcing frequency. Indeed, frequency sweeps are carried out such that the

forcing frequency is first increased over a range f_tow -_ fl __ flhlgh and then decreased over the same range.

8. RESULTS

Figure 2 shows the drop aspect ratio a/b, the ratio of the length of the drop along the axis of symmetry

to the rod radius, and the instantaneous location of the rod tip in a fixed frame of reference after the drop

has reached a state of steady oscillations during approximately one period for the situation in which the
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equilibrium drop shape is a hemisphere (a = 0), Re = 10, G = 0, and A = 0.1. The forcing frequency

fl = 4 so that the period of steady oscillations is 1r/2. The out of phase oscillations betwen the rod and

the drop aspect ratio give rise to interesting fluid motions inside the drop (not shown but see Wilkes and

Basaran 2°) in particular near maximum and minimum drop deformations and are due to the differences in

the time scale of vorticity diffusion from the solid surface and the time scale of rod motion. This out of

phase motion between the rod and the liquid underneath the fluid interface has also been observed by Chen

ans Tsamopoulos 21 in the forced oscillations of liquid bridges.

Whereas the eigenfrequency of infinitesimal amplitude oscillations is independent of the disturbance am-

plitude, increasing the forcing amplitude decreases the resonance frequency 2°. The downward shift of the

resonance frequency with increasing forcing amplitude shows that oscillating supported drops exhibit a soft

nonlinearity.

Were surface tension, density, and rod radius held fixed, a change in Re reflects a change in the viscosity

of the drop liquid. Figure 3 shows the effect of Re on the variation of the maximum aspect ratio achieved

during steady oscillations, (a/b)m, with forcing frequency when a = 0 and G = 0 for drops that are forced

to oscillate at a value of the forcing amplitude fixed at A = 0.10. As with simple systems such as the Duffing

oscillator, the results highlighted show that as viscosity (Re) decreases (increases}, the drop deformation

increases and the resonance frequency decreases. Figure 3 shows that oscillation modes, in particular modes

other than the primary oscillation mode, become easier to detect as Re increases. Within the range of forcing

frequencies examined, a second peak in (a/b)m could not be detected for Re < 5 and no peaks could be

detected for Re = 1.

During nonlinear oscillations of suppported drops, as Re increases the dissipation of energy by viscous

forces decreases relative to the the input of kinetic energy into the drop due to the rod motion which manifests

itself as an increase in fluid inertia. As in the case of increasing forcing amplitude discussed previously, one

can think of this roughly as increasing the relative importance of forcing to damping. The soft nonlinearity

of the system is once again made plain by Fig. 3, which shows that as the forcing to damping ratio increases,

the observed peaks in deformation amplitude (a/b)m are skewed to the left or lower values of the forcing

frequency. It is well known for the Duffing oscillator that as the ratio of forcing to damping further rises,

the ascending side of the Duffing profile can actually turn back on itself. This yields a range of forcing

frequencies over which two stable limit cycles exist. This jump phenomenon, also known as hysteresis, is

exhibited by many nonlinear systems. For example, DePaoli et al. 22 have reported experimental observations

of hysteresis in drop response for pendant drops that are forced to oscillate by carrying out frequency sweeps

in which the forcing frequency is first increased over a range and then decreased over the same range. By

continuously varying the forcing frequency, DePaoli et al. were able to observe both limit cycles.

Next the response of pendant drops to frequency sweeps were studied. The effect of increasing forcing

amplitude on the dynamics of a pendant drop at the highest value of Re shown in Fig. 3 was investigated.

When the forcing amplitude was sufficiently small, the computed value of (a/b)m for increasing values of

fl was the same as that for decreasing values of l]. However, Fig. 4(a) shows that the drop response is

hysteretic when the forcing amplitude is increased to 0.05. Fig. 4(b) shows the phase portraits of the drop

in the plane of velocity of the drop tip (v0) versus position of the drop tip (/0) at the same value of the

forcing frequency albeit the portrait on the left corresponds to the upward part of the sweep whereas the

one on the right corresponds to the downward part of the sweep. The phase portraits of Fig. 4(b) plainly

demonstrate the existence of two stable limit cycles.

4. CONCLUSIONS AND OUTLOOK

The abruptness of the transition in drop deformation at a well defined value of the forcing frequency that

is typical of hysteretic response offers a potentially highly accurate method for making physical property

measurements with oscillating supported drops and liquid bridges although no attempt has heretofore been

made to take advantage of such drop 1_ or bridge response 21.

Oscillating bubbles and drops are widely used in measuring dynamic surface tension of gas-liquid inter-

faces (see, e.g., Chang & FransesS'G). Howeverj the underlying flow field is always simplified in these studies

to facilitate the solution of the surfactant transport problem. The methods and results reported in this
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paper form the necessary preliminaries for analysing rigorously the combined problems of flow and surfac-

tant transport in and around oscillating drops and bubbles for making improved dynamic surface tension

measurements. Such analyses and the requisite accompanying experimental studies are now underway in

our laboratory.
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Figure 1. A liquid drop that is pendant from or sessile on a solid
rod and undergoing forced oscillations in a vacuum
or a gas of negligible density and viscosity.
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Figure 2. Variation in time of the drop aspect ratio and position of the
rod tip. The vertical lines indicate times at which the flow field
undergoes interesting transitions (see reference 20). For

example, at t = 17.620 and 18.098 fluid particles inside the

drop are following the motion of the rod. However, due to

finite inertia, at t=l 7.717 and 18.588, some fluid particles are

moving in the direction of the rod whereas others are moving

in the opposite direction. At the remaining times, recirculating

eddies are visible inside the drop.
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