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I. Introduction

Microgravit3,' processes must rely on mechanisms other thafi bouyancy to move bubbles or droplets

from one region to another in a continuous liquid phase. One suggested method is thermocapillary

migration in which a temperature gradient is applied to the continuous phase 1. When a fluid particle

contacts this gradient, one pole of the particle becomes warmer than the opposing pole. The interfacial
tension betaveen thc drop or bubble phase and the continuous phase usually decreases vfith temperature.

Thus the cooler polc is of higher interfacial tension than the warmer pole, and the interface is tugged in the

dircction of thc cooler end. This thcrmocapillar}, or thernmlly induced Marangoni surface stress causes a

fluid streaming in thc continuous phase from which develops a viscous shear traction and pressure gradient

which together propel the particle in the direction of the _varmer fluid.

A significant and as yet unresolved impediment to the use of thcrmocapillar3' migration to direct

bubblc or drop motion is that thcse migrations can bc significantly retarded by the adsorption onto the fluid

particle surfacc of surface active impurities dissolved in the continuous or (if the particle is a liquid) droplet

phases. Surfactant adsorbs onto the surface of a moving fluid particle, where it is convected by the surface

flow to the particle's trailing end. Accumulation at the back end causes kinetic dcsorption into the bulk

sublaycr, and the sublaycr concentration increases above the value far from the interface. This difference

gives rise to a diffusive flux away from the trailing end. Similarly at the front end kinetic adsorption

occurs from the subla}'er since the front surface is sv,cpt clean of surfactant. The sublaycr concentration

adjacent to the leading end of the particle decreases creating a bulk diffusive flux from the bulk to the front

end. Eventually a steady state dcvelops: In this state, the surface concentration at the back end has

increased to the point where tfic dcsorption rate, proportional to the difference be_'ccn the surface and

sublayer concentration, balances the convective rate. In addition, the sublayer concentration has increased

sufficiently, so that the diffusive flux away from the particle surface, proportional to the difference betwccn

thc sublaycr and far ficld concentration, balanccs the kinetic desorption. At thc front end, the surface

concentration becomes reduced enough so that kinetic adsorption balances convection, and the sublayer

conccntration becomes reduced enough so that diffusion to the surface balances adsorption. Consequently,

in this stead}' state the surface concentration is considerably higher at the rear than at the front of the

particle, and the intcrfacial tension is iox_er at the back relative to thc front. This interfacial tension

diffcrcncc creates a surfactant Marangoni stress along the surface as the front end tugs at thc rcar. The

direction of this surface stress is opposite to that of the surface flow caused by the thcrmocapillar} driven

motion of the particle, and thus the adsorption of surfactant onto the particle interface acts to reduce the

surface flo_v and hinder thc intcrfacial mobility. Thc less mobile an intcrfacc, thc more drag is exerted by

the continuous phase on thc particle as it moves through thc medium, and the smaller is the

thcrmocapillar3" migration velocity.

This reduction in surfacc mobility and migration velocity duc to retarding Marangoni gradients

caused by the convective partitioning of surfactant has bccn studied cxtcnsivclv for thc buoyancy drivcn
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motion in which fluid inertial is negligible (low Reynolds number) and the fluid particles take the shape of

spheres (small Weber number). For this case, the terminal velocity bccomes reduced from the clean,

mobile surface value (the Hadamard-Rybczynski velocity, UItR = pga2/3_t (for a bubble) where p and _t arc

the continuous phase density and viscosity,respectively, g the gravitational acceleration, and a the particle

radius) to the Stokes velocity (UsT = 2pga2/9bt) of a sphere when the interface mobility is completely

arrested. When either the kinetic or diffusive transport is slow relative to intcrfacial convection, surfactant

collects at the trailing pole in a stagnant cap of surfactant, and the terminal velocity is a function of the cap

angle which is determined by the steady amount of surfactant adsorbed. 2-5 Theoretical studies for finite

kinetic and diffusive transport have also been studied 6-_0 The effect of surfactant adsorption on

thermocapillary motion has only recently been studied: Kim and Subramanian 1]-,2 and Nadim and Borhan '_

have theoretically examined the reduction in thermocapilla_ migration velocity due to surfactant

adsorption, and find that, for the same amount of surfactant adsorbed onto the surface, thc reduction

(relative to the val_ _or a completely mobile interfacc) is much greater for thermocapillary driven movement

than it is for buoyancy driven motion. The reason, as they point out, is that in thermocapillary migration

the strength of the streaming flow around the particle which is driven by the surface tension gradient, and

which is responsible for propelling the particle forward, is directly proportional to the interface mobility.

The less mobile the surface, the more reduced is the streaming flow due to a fixed surface tension

gradient, and the smaller is the particle velocity. Thus thermocapillary migration is very sensitive to the

surfactant adsorption, and this adsorption, even arising from surfactants dissolved in trace amounts, can

reduce thc thermocapillary movement to near zero.

Most experimental evidencc in tests both on earth and under microgravity conditions indicate that

it is difficult to achieve significant thermocapillary migrations in agreement with the Young et al value,

and many studies have attributed the reduced migrations to the retarding effect of surfactant impurities
unavoidably present in the bulk phases (see the review article of Subramanian_4). In addition, Barton and

Subramanian _s demonstrated directly the retardation by the intentional addition of surfactant to a liquid

phase in which droplets werc moving by thermocapillarity. To date the problem of retardation of

thermocapillary driven particle motion due to surfactant impurities remains unresolved. Thcrmocapillary

motions in agreement with the expression of Young ct al _ can only bc achicved in systems in which

extreme precautions have been taken to remove impurities (as, for example, in Barton and Subramanian's t

experiments using ethyl salicylate drops in ethylene glycol).

In this paper, we providc a theoretical basis for remobilizing surfactant retarded fluid particle

interfaces in an effort to make more viable the use of thcrmocapillary migrations for the management of

bubbles and drops in microgravity. The retarding Marangoni stresses arise because the rate of convection

of surfactant to the trailing pole is much larger than either the kinetic or diffusive flux away from the

particle surface. The scale for the convective flux is FoUa, whcrc U is the terminal velocity, a (as before)

the radius and Fo is the surface conccntration in cquilibrium with the bulk concentration Co far from the

particle. In this study we will use Langmuir relations to describe surfactant exchange; thus the adsorption

rate is 13Cs(F_-F) and the desorption rate is otF, C_ the surfactant concentration adjacent to the interface

(the sublayer concentration), F,, is the maximum packing density, and ot and 13arc kinetic coefficients. At

equilibrium, the sublayer concentration is equal to Co and the equilibrium surface concentration Fo is

ro ('o/h

F_,, 1 +('o Ib (1)

where b is an adsorption parameter equal to o¢11.The scale for the diffusive flux is lDCo/al a2 , where D is

the bulk diffusion coefficient. Wc assume surfactant concentrations arc below the critical miccllc

concentration, so no surfactant aggregates arc prcscnt in the bulk liquid. The scale for the kinetic

desorptive flux isod-'0 a2. Retarding surfactant gradients do not develop when
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_a /g/>> I

Z(I + (70 / b) / Pe >> l (2a,b)

where x=ba/F" and Pc is the Pcclct number Pe=Ua/D_bccausc when these inequalities are met, kinetic and

diffusive transport are sufficient to maintain the surface concentration uniform despite the action of

convective redistribution. The diffusion criteria in (2) illustrates the reason impurity or small
concentrations of surfactant tend to retard interfaces: The diffusion coefficient of surfactant monomers is of

the order of I{/'cm2/sec, and b/F" is of the order .01-1, so for typical values of a and U of 10s cm<a<10 "0

cm and 10_ cm/scc < U< 1 cm/sec, x/Pc is not larger than !. Thus diffusion alone reduces the surface

mobility. However, the criteria in (2) suggest a method for rcmobilizing interfaces which have been

retarded by the adsorption of a surfactant impurity. Select a surfactant (which we term a remobilizing

surfactant) whose kinetic desorption rate constant is larger than the convective rate U/a. There arc not

many reported measurements of surfactant kinetic rate constantS, but the small amount of data derived

from d)aaamic surface tension measurements indicates that ot can be as large as 102 see _, so that for

U/a<10 2 see -1, surfactants whose desorptive rate is fast enough so that (2a) is satisfied can be identified.

The second criteria can be satisfied if the bulk concentration is large enough; typically Co/b can be as large

as l0 s or more, before Micellar aggregation initiates. When the bulk concentration of the remobilizing

surfactant is high. the impurity does not have an opportunity to adsorb onto the surface because of the

faster transport of the remobilizing surfactant. Thus the interface consists only of the remobilizing

surfactant, which keeps the interface mobile by maintaining a uniform surface concentration.

To verify the above scaling arguments, we undertake numerical simulations of the effect of

increasing the bulk concentration on the steady velocity of a gas bubble in a continuos liquid phase. In this

first effort, we assume that buoyancy drives the bubble motion, and that surface tension forces arc larger

than inertial and viscous forces (small Weber and capillary' numbers) so that the bubble retains its spherical

shape as it movcs. The kinetic exchange is assumed to be fast enough to insure that the surface and the

sublayer are in equilibrium, as we have observed that surfaetants can have fast kinetic regimes, and Peclct

numbers for the bulk surfactant mass transfer are assumed of order one, as observed above. In addition, we

retain the effects of fluid inertia by developing order one Reynolds number solutions since the Reynolds

number is not small for bubblc motions in the most common of continuous phases, water. In the following
sections we detail the Formulation and the Numerical Solution Aigorithim (Sec. I| ), and the Results (Sec.

|II).

II. Formulation and Solution Algorithim

Wc consider the axis3mmetric, steady motion of a spherical bubble in an unbounded, Newtonian

incompressible liquid in a spherical coordinate system (r,0) with the bubble fixed, and the coordinate angle

0 measured from the upstream pole. All fluid equations are written nondimensionally with the radial

coordinatc scaled by a, and the velocity by U, the terminal velocity. Because the fluid motion in the

surrounding liquid is axis_mmctric and incompressible, the velocities in the r (u0 and 0 (u0) directions can

be specified in terms of a (nondimcnsional) stream function q_(r,0) (scaled by a2U):

1 |
u_ - r 2 sin0 c39 ; u° - rsinO _ (3)

and the onc component of the vorticity, w (in the azimuthal direction, scaled by U/a) is

r_ (r, O) - sin01 __+_---rl c39y sin 0 (4)

The fluid motion is governed by the Navicr Stokes equations at order one Reynolds number, and wc use the

vorticity-stream function formulation to develop solutions:
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Id 0 I[,¢(d _ 0 r+ sino_(wsinO (5)

where Re is the Reynolds number (=pUa/_t). The boundary conditions on the stream function and vorticity

are the matching to the free stream velocity at infinity (r-+oo)

1 r_"_,-->- sin0
2 (6a,b)

w-_0,
zero normal velocity_and the balance of the tangential stress with the Marangoni stress at the bubble
interface r= 1:

_r=0

2 cow Ma oT (7a,b)
W-- -I

sin0 dr l-F

where F is the surface concentration (nondimensionalized by F_) and Ma is the Marangoni number RTF_

/_tU. The surface concentration is obtained from the solution of the convective diffusion equation,

uo VC = 1V2C (8)
Pe

where C(r,O) is the bulk concentration (nondimensionalized by the far field value Co) and Pe the Peclct

number, and the surfactant boundary conditions at the bubble surface r-=1:

F- /a?

l + lcC_ (9a,b)
1 o kz

(sin OFuo ) -
sin0 dO Pe dr

where k=Co/b and x=baJFoo as in Sec. I. The nondimensional concentration must match to 1 as r_.

We use a finite difference method to solve the above equations. The infinite boundary is truncated

to a value r =20, and the annular region from the bubble surface r= 1 to the outer boundary' r=20 is mapped

to a unit square (x,y) by the transformations x=lnr/lnr_, and y= re/0. The square is discrc_ized with Ax=.01

and Ay=.01. The discretized system is solved by using an ADI (Alternating Directions Implicit) scheme 16

in which the field equations (4,5 and 8) and boundary condition (9b) are made pseudo-unsteady in time, and

equal part time steps (At=.005), implicit in either x or y, are taken. The convergence criteria in time is

formulated in terms of the change in the maximum value of the vorticit3' and the stream function over At
102; this change is required to be less than 10-6.

III. Simulation Results

We bcgin by first examining the case without incrtia (Re=O). To illustrate rcmobilization, wc fix

the valucs of the Marangoni and Pcclct numbers (Ma=5, Pc=l) and X (=1), and we obtain solutions for

increasing bulk concentrations by varying k. In Fig. 1, we plot the surfacc concentration profilc for three

different values of k (=. 1,1 and 5) relative to the maximum packing concentration F,, (Fig. 1a) and the

equilibrium concentration F,, (Fig. l b). Thc convective partioning of surfactant on thc surface is cvidcnt for

all valucs of k, as the surface concentration is higher at thc downstream polc (0=r0 then thc upstrcam pole

(0=0). We note that as k increases, Fig. la indicates clearly that the total amount of adsorbed surfactant

increases. More importantly, as is evident in Fig. lb, the aurfacc concentration bccomcs more uniform as k

incrcascs: The ratio of bulk diffusion to convection (X(I +k)/Pc incrcascs from 1.1 to 6 as k varies from. 1
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to 5, and diffusion therefore begins to outscale convection (see criteria 2b) to maintain a uniform surface

concentration. The rcmobilization of the intcrfacial mobility is evident in Figs. 2 which plots the maximum

interfacial velocity as a function of k over a much wider range of k ( 10-2<k< 102) with the same values of

Ma, Pc and 7 as in Fig. 1. Note that for a clean interface, the surface vclocity is equal to (1/2)sin0, so the

maximum velocity at the equator (0=n/2) is 1/2. As k increases from 0 to 1, the interfacial velocity
decreases from the clean value of 1/2. This is the retardation that as we noted in the Introduction has been

well documented in the literature. However, as k increases further and the surface concentration becomes

uniform, thc intcrfacial mobility is restored and the maximum surface velocity tends to .5.

As the bulk concentration increases and the surface concentration becomes more uniform, the

sublaycr concentration (in equilibrium with the surface) also becomes more uniform. In Fig. 2a, we plot the

sublayer concentration for k=. 1,1 and 5 (for Ma=5,Pc= 1 and X= 1), and the tendency towards a more

uniform concentration with increasing k is evident. With the sublayer concentration approaching 1, the

concentration in the bulk also approaches one as the diffusion driving force disappears. In Fig.3, contours

of constant bulk concentration are showaa for k=. 1 (Fig. 3a), k--1 (Fig. 3b) and k= 10 (Fig.3c), and it is clear
that as thc interface remobilizes, the bulk concentration becomes uniform.

The effect of increasing the bulk concentration on the terminal velocity is examined in Fig. 4 which

plots the drag on the nondimensional drag on the bubble (nondimensionalized by nlaaU) as a function of k,

for Ma=5 and X= 1 and a few values of Pe (. 1,1 and 10). In these nondimensional units, the drag on a clean

bubble is 4 and the drag on a completely immobile surface (the Stokes drag) is equal to 6. For fixed Pc, we

note that as k increases, the drag at first increases (corresponding to the decrease in interfacial mobility

observed in Fig. 2b), but then decreases as the interface becomes remobilized. For fixed k, as Pc increases

the drag increases. This elevation in drag, which begins to approach the Stokes value of 6 for Pe= 10, can

be directly attributed to the larger convective partitioning of surfactant on the surface relative to bulk

diffusion; as Pc increases, X( !+k)/Pc decreases. Importantly, the larger drags at high Peclet numbers can

also be reduced to clean surfacc drags if the bulk concentration is taken large enough so as to increase the

ratio X( 1+k)/Pe.

The above simulations have been for Re=0; some preliminary results for a finite value of Re

(Re=5) arc given in Fig. 5 in which the drag is plotted as a function ofk for Pc=l and Ma=5. Again we

note that as k increases, the drag can be reduced and the terminal velocity increased.
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Fig. 1 Surface concentration distribution as a function ofk for Re=O, Ma=5, x=l and Pc=l.
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Fig. 2. The maximum interracial vclocity as a function ofk and the sublayer concentration for Re=O,
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Fig. 3.Contours of constant concentration in the bulk for k=. I, I and 10 and Re=0, Ma=5, X= 1 and Pc= I
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Fig. 4. Terminal vclocit3' as a function of k for Re=0
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Fig. 5 Terminal velocity as a function of k for Re=5
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