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ABSTRACT

Single bubble dynamics are investigated using acoustic techniques for isolation and manipulation.
The goal of the investigations is to understand the dynamic origin of the various phenomena that
bubbles exhibit: light emission, enhanced mass transport, chaotic and quasiperiodic oscillations and
translations. Once understood, acoustically manipulated bubbles can serve as platforms for materials
effects on free surfaces, using surfactants to alter surface rheology and observing how that affects
both dynamics and also mass transport. The effects of gravity on the problem will be shown to be
significant. The first set of observations from lg experimentation are presented. These observations
are of the onset conditions for instability of the spherical shape of the bubble. For the size range 55 -
90 microns in diameter we observe instability governed by resonant mode coupling, which is
significantly affected by the buoyant force and its effects.

INTRODUCTION

A bubble is a laboratory for the study of a surprising variety of physics problems. Heat
transport [1], mass transport [2], surfactant effects [3], shock waves [4], chaos [5], free surface
instability [6], and even electromagnetic radiation [7] are all phenomena associated with the highly
nonlinear oscillations of air bubbles in water. It is impossible, however, to separate the study of any
of these phenomena from the fundamental mechanics of the bubble wall's oscillation, coupled to the
thermodynamics of the interior. Thus it is crucial to make detailed observations of bubble mechanics
in concert with other investigations of material or transport properties.

Many areas of science and technology depend on bubble dynamics. In the field of
biomedical ultrasound, many of the effects studied in the ultrasound community (such as enhanced
cell lysis, sonochemical reactions, ultrasonic cleaning, etc.) depend on the mechanical response of a
bubble to a sound field. In the field of surface rheology, knowing the mechanical response of
bubbles lets us use them as tools to probe the effects of surface active agents, much as drops are
currently being used [8]. In addition to being a closed, isolated interface, one of the major reasons a
bubble is used in these contexts is that a bubble can produce both pure dilatational, shear, and a
combination of dilatational and shear interfacial motions. Mass transport research on the effect of
surfactants on the diffusion of gas across the air water interface [Fyrillas and Szeri in 3] also relies on
detailed bubble mechanics, and will eventually lead to understanding the fundamentals of air-sea
mass transfer. Ambient noise in the ocean (which has been shown to be largely due to volume
oscillations of bubbles near the sea surface [9]) has been conjectured to depend on precisely the
nonlinear shape/volume mode energy transfer for which we present results in this paper [10].

In the microgravity environment, bubbles are important for two reasons. The first is that
bubbles experience a buoyant force due to gravity, and the justification for microgravity
experimentation is simply the removal of the buoyant force and its effects. Static deformation of the
equilibrium shape changes the very nature of the coupling between volume and shape mode(s) ,
which we will show is the primary instability for a bubble [11]. As well, translatory oscillations of the
bubble guarantee that the onset of shape oscillations in Ig will occur at relatively low pressure values,
making impossible the observation of the predicted volume-oscillation bifurcation superstructure
[12].

Bubbles are best studied in isolation, without contact and contamination from containers, and
then non-invasivcly manipulated. Perhaps the most effective scheme is that of acoustic levitation,
where the nonlinear acoustic radiation force balances thc buoyant force in I g, and merely positions at
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pressuremaximumin 0g. On the practical side, however, measurements on bubbles in lg are
compromised because positioning is coupled to driving force, and nonlinear effects such as self-
oscillation and streaming occur due to the coupling (via the necessarily high-amplitude acoustic
field) of the volume and translational modes. Decoupling driving from positioning is impossible in
lg.

Secondly, apart from bubbles being the subjects of microgravity research themselves, bubbles
occur in fluids in space, and their appearance is fraught with problems, not least of which is how to
get rid of them! Fluids experiments (Drop Physics Module, Zeolite Crystal Growth, Oscillatory
Thermocapillary Flow, Generic Bioprocessing Apparatus) on both the STS-50 and STS-73 missions
have often developed bubbles whose presence and dynamics affected what was being measured.
Most proposed schemes for elimination of unwanted bubbles (acoustic, thermocapillary,
electrophoretic) depend on dynamics of bubbles for their efficacy. Once again understanding
bubble mechanics is seen as fundamental to a host of practical problems.

We present here the results from the first phase of our planned experimentation: the
investigation of the onset of non-spherical oscillations of the shape of the bubble. These Faraday
shape oscillations form a natural boundary in the parameter space of bubble dynamics, since
experimentation on spherical bubbles can occur only at pressures and radii below the critical values.
Above the threshold, the amplitude of these shape oscillations can rapidly grow, and lead to breakup
of the bubble. We will limit ourselves to a brief descriptive background of the problem, followed by
an experiment description and results.

BACKGROUND: THE SHAPE OSCILLATION PROBLEM

A gas/vapor bubble in water is a highly nonlinear system. This is most readily seen when the
bubble is subject to an external forcing, such as is the case when a time-varying acoustic field is
imposed. Suppose that the acoustic wavelength is much larger than the bubble radius RO (kaRO small,
where ka is the acoustic wavenumber in water). During a compression phase of the field, the bubble,
since it is highly compressible, will contract, accelerating inward. The pressure and temperature will
increase. Eventually, the contraction halts, reverses, and the bubble begins expanding. During the
expansion phase of the external field, the bubble expands, cooling and reducing the pressure in its
interior.

This oversimplified picture gives us at least a qualitative insight into the motion. The
nonlinear restoring force is largely thermodynamic during collapse (due to the increased interior
pressure) and expansion, since equilibrium implies a static pressure stress balance across the bubble
wall. The nonlinear damping is due to thermal, bulk viscous and sound radiation mechanisms in the
case of a pure liquid, and additionally due to surface viscosity for liquids with surfactants. For a
fixed equilibrium radius RO, the bubble will exhibit a fundamental linear resonance frequency fo.
For an air bubble in water of radius RO = 64 microns, fo _ 50 kHz at atmospheric pressure.

Consideration of the spherically symmetric problem yields predictions of highly nonlinear
dynamics as the acoustic pressure Pa is increased. Numerical integration of the equation of motion
for a driven, spherical bubble predicts the resonant creation of periodic (and via standard period-
doubling bifurcations chaotic) families of solutions via resonant saddle-node bifurcations. The
Farey ordering [12] of the resonant saddle-node bifurcations imposes a recurrent superstructure
which controls the appearance of period-doubling bifurcations to chaos. One of the goals of this
research is to observe this behavior, or determine why it is not observed.

Under what conditions will spherical symmetry become unstable, and further under what
conditions will this instability lead to observable distortions of the shape and eventual breakup of the
bubble? There are two candidate instabilities: Rayleigh-Taylor (RT, [13]), and parametric or
Faraday (F, [14]). It can be shown that, during at least some part of its motion, a bubble is RT
unstable. RT instability occurs for accelerated interfaces when density and pressure gradients across
the interface are opposed. RT occurs on a fast time scale, and is thus likely to be violent in its effects
on the bubble surface if conditions allow it to develop. At first glance, RT appears very likely to
destroy a bubble at its first collapse.
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F, in contrast, requires a resonant interaction for the necessary energy exchange. A free
liquid surface, when vibrated periodically and normal to its surface plane, will exhibit Faraday waves
with half the driving frequency when the excitation overcomes the damping [15]. In addition to
requiring a finite threshold excitation, sufficient time is required for the coupling to occur, typically 2
or more cycles of the periodic excitation. Finally, since a bubble is a closed surface whose
circumference is of the same order as the capillary wavelength, the energy must excite a normal mode
of the bubble, constrained by a resonance condition similar to the classic fsha0e / fvolume = 1/2, and
consideration must be given to the damping of the normal modes. Theoretical treatments of this
problem [Strube, Eller and Crum in 6] predict that such instabilities will occur near the (Pa RO)
values where the interesting spherical dynamics occurs. Thus, we want to resolve the issue of the
dynamical behavior of bubbles over a wide range of parameter space (Pa RO): what behaviors obtain,
and why?

EXPERIMENT
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Figure 1: Schematic of setup for acoustically levitating and imaging bubbles in water

Air bubbles initiated via electrolysis are acoustically levitated in water in the fa = 20.6 kHz standing
wave field of a cylindrical resonance cell as illustrated in Fig. 1 [16]. The acoustic pressure Pa at the
antinode is obtained from a custom hydrophone mounted near the z antinode and lcm away from
the side wall inside the cell. The hydrophone is calibrated by balancing the buoyant force with the
acoustic force for a variety of bubble sizes and positions along the z axis pressure gradient, always
using small amplitude oscillations. For calibration purposes, Rave (= RO for a linearly oscillating
bubble) is measured directly by measuring the locations of the peaks encountered by sweeping a
detector from 20 ° to 90" in the polarization-plane forward scattering of an incident linearly polarized
He-Ne beam using Mie theory [17]. RO, Rmax and Rmin are obtained from single frame video
images illuminated at 1 pulse per frame (maximum 1 ms pulse width); RO in particular is obtained
by turning the sound field off instantaneously when the bubble is in the focal plane of the imaging
system. R(t) is obtained from a PMT located at 80" from the forward [18]. Corroborating R(t)
information is obtained from a fast photodiode directly in the forward diffraction lobe of the bubble.
Distilled, de-ionized, carbon and particulate filtered water was used for all measurements. Dissolved
gas concentrations less than saturation were obtained by allowing the water to equilibrate at a reduced
pressure.
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The practical key to performing the measurements we report here is the slowing of the mass
transport time scale within two pressure constraints: our lowest obtainable pressures are bounded by
the minimum trapping pressure, while the highest obtainable pressures (for a given RO) are bounded
by the threshold for Faraday shape oscillations and breakup of the bubble. Within these bounds, for
a fixed Pa and dissolved gas concentration, the system will self-select one (or very few) bubble size
R* which will be in dynamic mass equilibrium. By varying the dissolved gas concentration we can
cause that size range to span the entire space from 1 to 100 microns. We can vary Pa near R* where
dRo /dt is small, and observe the onset of shape oscillations quasistatically.

RESULTS

At low Pa, the bubble remains spherical, and exhibits the weak nonlinear trait of harmonic
generation [16], with the response remaining periodic with the same period Ta as the acoustic field.
Figure 2a shows the measured Pa and R as functions of time; note the strong 2nd harmonic
component. The bubble in Figure 2 had an equilibrium size of 66 microns, and a linear resonance
frequency of 48 kHz, very nearly twice the acoustic frequency fa. The pattern repeats itself for
smaller bubbles as their linear resonance frequency nears an integer multiple offa. Thus, we observe

the pre-saddle-node harmonic resonance predicted by theory. However, all the spherical!y symmetric
oscillations we have observed have been strictly periodic with period Ta, and remain below the
amplitudes required for the saddle-node bifurcation predicted. What prevents this bifurcation?
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Figure 2: Response of a 66 micron radius bubble to an acoustic pressure of 0.24 bar at 20.6
kHz. a) from top to bottom: the pressure vs time (arbitrary units) from the
hydrophone; normalized radius vs time from the 80" PMT scattered light; and FFT of
the radius, b) The same data at 0.25 bar, just after the onset of a mode 5 shape
oscillation. The signature of the shape oscillation is the peak at f/f0 = 1/2.
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Our observations show that, for all acoustic pressures Pa below 1.3 bar for air bubbles in
water, the instability which develops first is the Faraday instability. The signature of this instability is
often a period-doubling of the scattered laser signal, as shown in Fig. 2b for a 66 micron bubble
driven just past the onset of the 5-lobed mode, identified by video image analysis. Figure 3 shows a
subset of the measured (Pa RO) values for onset of an oscillation of the shape of the bubble, and thus
the loss of spherical stability. The observed modes are indicated by the symbol type. Notice also the
set of theoretical curves for onset of the different modal oscillations: we will discuss these in the next

section. We concentrate on understanding the experimental data in simple terms in this section.
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Figure 3: Measured threshold acoustic pressure Pa and equilibrium radius R0 for
onset of shape oscillations (Faraday instability: mode observed given by
symbol). All data presented are for air bubbles levitated in pure water
driven at 20.6 kHz at 22" C at ambient pressure of 1 bar. The theoretical
thresholds and modes presented for comparison are courtesy of M.
Brenner, calculated using the algorithm presented in [6].

The general trend of higher threshold at smaller bubble size (averaged over different modes) is just
the stabilizing effect of the curvature 1/R. Most of the dips and peaks, and the presence and location
of specific normal modes can be understood in terms of resonances. A particular shape mode n is in
external resonance to the driving field (via the forced non-resonant response of the volume mode)
when fn/fa - i / 2, i = 1,2,3 ..... and we speak of i:2 external resonance. A shape mode n is in internal
resonance with the resonating volume mode whenfn/fo ~ J / 2, j = 1,2,3 ..... hence j:2 intemal
resonance. Understanding that the energy transfer mechanism is the Faraday instability is the reason
for the factor of 2 in the denominator. The locations in (Pa, RO) space where i and j are integers are
not in general coincident. For bubbles in the range presented here, either resonance is equally likely;
for very small bubbles, only internal resonance is possible at kHz frequencies. Note that, though we
use the classification 'shape modes in external resonance with the driving field', the field does not
directly force the modal oscillation.

Figure 4 plots the ratio of mode (shape or volume) frequency to acoustic driving frequency
fa using the measured RO and the observed mode number (assumed axisymmetric) at the onset of
shape oscillation. Analytical curves for the Lamb frequency [19] for the shape modes 2 - 5 are
plotted, as is an analytical expression for the fundamental linear resonance frequency for the volume
mode {20] at ambient pressure. Thus, points where the halved volume frequency curve intersects any
shape modal frequency curve (e.g., the n = 4 curve near 60 microns) represent the condition for 1:2
internal resonance, or j = 1 [a slightly different definition from that of Feng et al. in 21]. Points
where a shape frequency curve intersects a line i = 1, 2, 3 represent i:2 extemal resonance: e.g., i = 1
for the n = 2 curve near 60 microns.
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frequency of the volume mode due to Minneart [20].

Figure 4 clearly shows the organizing principle of resonance: the data fall in bunches near
points of internal or external resonance. The origin of the peak and valley in the measured threshold
between 60 and 70 microns is clear:, it is due to an approximate 2:1 external resonance of the n = 2
mode. The observation of the n = 4 mode at onset between 70 and 80 microns is due to a double

resonance: j ~ 1 and i ~ 2 simultaneously (this region is usually called the '2nd harmonic' resonance,
since the bubble's linear volume frequency is twice the driving frequency, and the bubble oscillates
nonlinearly with a strong 2facomponent near this size).

DEVIATIONS FROM THEORY: THE EFFECT OF GRAVITY

The theoretical threshold curves in Figure 3 were generated using a technique presented in
Brenner et al. [6]. The radius variable in the nonlinear 2nd order ODE describing spherical bubble
dynamics [the 'Rayleigh-Plesset equation', 22] is replaced by an expansion in normal shape modes
described by Legendre polynomials. A linear-form 2nd order ODE for the amplitudes an of the
shape modes n is derived, possessing nonlinearly time-varying coefficients (a generalization of Hill's
equation). This approach can account for both intemal and external resonances of all orders, but
does not account for the effect of the buoyant force.

In Fig. 3 we see good agreement for the location of the threshold for the 4 mode, and fair
agreement for the 5 mode. The 3 mode appears to be in disagreement, butthis is partially due to the
fact that it becomes more important in the ranges 15 - 40 microns, and for 90-110 microns; we see
the 3 mode often in these regimes, but the data is not yet fully reduced.

The effect of gravity can be seen in the striking disagreement between theory and experiment
for the 2 mode between 60 and 70 microns in Figure 3. Experiment shows the 2 appears initially at
larger pressures than the theory predicts, and then a strong resonance dip to onset at anomalously low
pressures occurs. Figure 4 reveals that these data are all in 1:2 external resonance with the acoustic
field via the nonresonant (entrained) response of the spherical volume pulsations. How can the
presence of gravity explain this?

The key is the slight deformation of the bubble due to the balance of the time-averaged
acoustic force and the buoyant force. Marston [23] showed theoretically that the primary spatial
component of the acoustic force was the quadrupole (n = 2) term. Holt et al. [24] among others have
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verified this for larger bubbles. Yang, Feng and Leal [21] investigated the influence of an external
pressure or flow field with quadrupole spatial characteristics on the resonant coupling. In particular,
they found that not only were energy-exchange and stability different from the free-field cases
previously studied, a different coupling mechanism was discovered, of 0(3/2). One general
conclusion was that mode-mode coupling was significantly enhanced over the free-field case, and
more likely to occur at lower amplitudes (and hence lower driving pressures).

Thus, the resonance dip between 65 and 70 microns is explained: the quadrupole
deformation due to the buoyant force lowers the necessary threshold for onset of shape oscillations.
Things are not as clear in attempting to explain the appearance of the 4 mode near 60 microns, but
enhancement of the 2 - 4 mode coupling is possible, since the theory predicts the 2 should be
excited. However, at 60 microns the 4 mode is in 1:2 resonance with the volume mode, providing an
alternative explanation.

CONCLUSION

Understanding the nonlinear dynamics of driven bubble oscillations is important as a basic
problem in fluid physics and nonlinear dynamics. There exists a complex set of behavior(s) whose
observation depends on nonlinear resonant coupling, internal resonances and their structures, initial
conditions and external parameters and fields. The implications this understanding will have for
other fields in which bubble phenomena play a role will be far-reaching. The research presented
here represents a first step towards a global understanding of bubble behavior. The future directions
of this reserch as outlined above all depend on an accurate and quantitative understanding of the
nonlinear mechanics of bubble oscillations. Gravity has significant and subtle effects effects on the
problem, and it is clear that microgravity experimentation would provide both qualitative and
quantitative improvements. The dominance of surface tension forces and the lack of a buoyant force
would not only enable direct comparison with theories, but would allow access to parameter space
forbidden in lg due to the need for levitation.
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