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ABSTRACT

The oscillation frequency and damping rate for small-'amplitude axisymmetric shape

modes of a gas bubble in an ideal liquid are obtained, in the limit when the bubble inter-

face possesses Newtonian interfacial rheology with constant surface shear and dilatational

viscosities. Such results permit the latter surface properties to be measured by analyzing

experimental data on frequency shift and damping rate of specific shape modes of suspended

bubbles in the presence of surfactants.

INTRODUCTION

Shape oscillations of bubbles and drops, freely-suspended in microgravity or acoustically-

levitated on earth, have been suggested as a technique for measuring such surface rheological

properties as dynamic surface tension and shear and dilatational interfacial viscosities. As a

prerequisite to such non-contact surface rheometry, one needs to have expressions for both

the oscillation frequency and the damping parameter of the particular shape modes excited

in the experiments (typically the quadrupole mode), when surface rheological effects are

present and significant. The shape modes of an acoustically levitated drop or bubble can be

excited by modulating the frequency of the ultrasound which is being used for levitation, at

a frequency which is close to the natural frequency of the desired shape mode [10, 11, 12].

Since the natural frequency of each shape mode is dependent upon properties of the interface

[9, 13] (e.g., surface tension and surface rheological constants), such an experiment can be

used to measure the interfacial properties [1, 2, 4, 5, 8, 15, 16]. In particular, when the

drop or bubble oscillations take place in the presence of surfactants, the contaminated

interface exhibits a viscous behavior, with surface shear and dilatational viscosities which

are often difficult to measure accurately by other means [3]. Thus, observation of the

forced and free oscillations of drops or bubbles can be quite useful as a technique for a

non-contact measurement of the surface viscosities, provided that explicit expressions are

available relating the oscillation frequency and damping constants of the shape modes to

the interfacial properties. Some expressions of this type have already been found [9, 13],

although under certain restrictive assumptions. The present contribution derives analytical

expressions for the frequency and damping rates of axisymmetric shape modes of gas bubbles

in ideal liquids, when the interface possesses constant Newtonian rheological properties.

Surface rheological effects arise in the presence of surfactants, which are long molecules

with separated hydrophilic and hydrophobic segments [3, 7]. In the presence of an interface
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between an aqueous and a non-aqueous phase, surfactants preferentially adsorb at that

surface. In addition to modifying the surface tension at the interface, an adsorbed layer

of surfactants at a fluid-fluid interface may possess its own rheological properties (e.g.,

viscosity or elasticity), distinct from those of the bulk phases on either side. Scriven [14]

provided the tensorial form of the constitutive equation for a "Newtonian" surface fluid,

although the concept of surface viscosity originated with Plateau and Boussinesq [3].

INTERFACIAL RHEOLOGY

The rheological behavior of a surfactant-laden interface can be characterized by speci-

fying the surface stress tensor l-Is which for a Boussinesq-Scriven Newtonian surface layer

[14] has the invariant form

I-l, = aI, + 2#_,[Es - _I,(L,

in which

: E,)] + _:,I,(I, : E,), (1)

E, - l[(v,u)-I. + I,. (V,u)t], (2)

is the surface rate-of-strain tensor. Here, _8 and g, are the shear and dilatational surface

viscosities, a is the surface tension, Vs -- I, • V is the surface gradient operator, I8 is the
surface unit tensor which is related to the three-dimensional unit tensor I via Is = I - tiff

and u is the velocity vector at the interface. In addition, the superscript ? designates

the transpose of the tensor to which it is attached and fi is the normal unit vector at

the surface. The surface stress tensor appears in the dynamic boundary condition at a

fluid/fluid interface in the form

a. (nz - n.) + n. = 0, (3)

in which l-It and Hg are the respective stress tensors in the liquid and gas phases, and with

the unit normal fi taken to point from the gas to the liquid phase. Equation (3) represents

an instantaneous balance of all forces acting on the interface, valid if the inertia of the

interface is negligible. The dot products of (3) with fi and with I, result in the normal and

tangential stress balance at the interface, respectively. In general, surface properties a, #,

and as all depend on the local concentration of surfactants on the interface, which needs to

be found by solving a surface transport equation. In this brief contribution, however, we

focus on highly contaminated bubbles whose interracial material properties have constant

values, independent of surfactant concentration.

RESULTS FOR A NEARLY-SPHERICAL BUBBLE

As an illustrative example, consider the idealized problem of slight perturbations of an

initially spherical bubble with equilibrium radius ao and surface tension ao. Gravitational

effects are neglected on the assumption that the Bond number, pla2og/a,_, (with Pt the density

of the external liquid and g the gravitational constant) is small. Thus, the equilibrium
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pressures outside and inside the bubble are respectively given by Po and f)o = Po + 2ao/ao.

The bubble is assumed to contain an ideal gas which has a uniform pressure determined

by its instantaneous volume. The surrounding liquid of infinite expanse is treated as an

incompressible ideal fluid with its velocity field deriving from a scalar potential. For this

problem, it is convenient to work in a spherical coordinate system (r, 8, z), in which r and

8 are the radial distance from the origin and the polar angle measured from the z-axis.

Let e be a small parameter measuring the magnitude of deformation. For axisymmetric

surface deformations, the instantaneous shape of the bubble can be written in the form

r = ao[1 + ef(O, t)], where f(8, t) is the shape correction function.

For such slight perturbations from equilibrium shape, all quantities can be expanded in

powers of the small parameter e, as given in the following list:

Coordinate r of a surface point ao + eaof(8, t)

Exterior velocity potential e #(r, 8, t)

Normal interface velocity e U(8, t)

Tangential interface velocity e V(8, t)

Exterior pressure at the surface po + ep(8, t)

Interior pressure 15o + elS(t)

Surface rate-of-strain e N(8, t)

Surface rate-of-dilatation e M(0, t).

Here, the surface rates of dilatation and strain--corresponding to the trace of (2) and its

remaining traceless part--can be related to the surface velocities given in the same table by

ao sin(O) [sin(O)V] + 2U , (4)

N(O,t) = l[O---VV-cot(O)V]. (5)
ao

The complete set of equations which describe the linearized dynamics of the bubble

at O(e) can now be formulated as follows. Since the perturbation from the equilibrium

spherical shape is assumed to be small, all surface boundary conditions can, to leading

order, be imposed at the undisturbed position of the bubble surface, r = ao. The velocity

potential of the exterior liquid phase is a solution to

V2_ = 0 (r > ao)

subject to boundary conditions

(6)

¢_0 as r-_oo, (7)

O¢/Or=aoOf/at= U(O,t) at r=ao, (8)

where (8) results from the kinematic condition at the surface. The normal stress condition,

obtained by taking the dot product of (3) with fi, presently takes the form

2 (,_soM)- ao [a2f Of
i5 - p -- a-"_ a-"-ot 002 ÷ cot(8) _--_ + 2f], (9)
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whilethe tangentialstresscondition,obtainedby takingthe dot product of(3)with (I-tiff),

reducesto

0 = --_O(_,oM + p,oN) - 2_U,ocot(0)N. (10)

Here,the surfaceviscosities_soand #,oare constants.The perturbationtothe exteriorpres-

sureat the bubble surfaceisdetermined from the velocitypotentialby means of BernouUi's

equation forpotentialflow

P = -Pl
T'=O. 0

with the higher order terms in _ omitted.

The set of equations given above, together with an equation-of-state which relates the

uniform pressure inside the bubble to its instantaneous volume, fully chaxacterize the lin-

earized dynamics of the slightly perturbed surfactant-la_len bubble. The solution to this set

of equations can be obtained by modal expansion. Let the surface deformation f(O, t) and

the surface tangential velocity V(O, t) have decompositions of the form

oo

f(O,t) = _ f_(t)P,(cosO), (12)
n----O

oo dP,_ffs0)V(O,t) = y] Vn(t) , (13)
n=l

where, P,,(cos0) represents the Legendre function of order n. The kinematic condition

(8) allows a similar modal expansion to be obtained for the normal velocity U(0, t) with

coefficients given by f,(t), and the solution to the exterior velocity potential, satisfying

(6)-(8), can also be found easily, resulting in an expression for the exterior pressure at the

surface, based on Bernoulli's relation. The pressure in the bubble interior is found to depend

only upon the n = 0 term in the shape expansion to this order in ¢. The so-called breathing

(i.e. n = 0) mode of the bubble is thus the only mode that is affected by the pressure within

the bubble, which provides the primary "restoring force" for bringing the bubble back to

its equilibrium volume. Here we will concentrate on the shape modes (n > 1) for which

the characteristic time is determined by surface tension. Hence, we adopt the equilibrium

radius ao as the length scale and define the time scale r by

r - (pla3o/O'o) 1/2 . (14)

Variables t, and (U, V) are then rendered dimensionless using respective scales 1"and ao/V

and dimensionless surface viscosities are defined by

• (is)
(7o7" GoT

Substitution of the modal expansion into the the normal and tangential stress conditions

(9) and (10) produces the following coupled equations for the evolution of the n-th mode:

i ._ + 4t¢*],_ + (n - 1)(n + 2)fn = 2t_*n(n + I) V,_,
n+l

(16)
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2_*fn -- [_*n(n + 1) +/F(n - 1)(n + 2)] Yn. (17)

Here, overdot represents differentiation with respect to dimensionless time and f,_ and Vn
are also dimensionless. If exponential behavior of the form e_"t is assumed in each of the

modal coefficients, the linear system (16)-(17) produces an eigenvalue problem for A,_ which

determines the frequency and damping rate of the n-th shape mode.

Interestingly, for any mode of the bubble, if the surface shear viscosity #* is set to zero,

the equation for the n-th shape mode reduces to

j_ + (n - 1)(n + 1)(n + 2) f,_ = 0. (18)

Thus, in the absence of surface shear viscosity, the linearized shape oscillations are the same

as those for a clean bubble. In that case, the dimensionless frhquency of oscillations is found

from (18) to be

(w_) 2 = (n - 1)(n + 1)(n + 2), (19)

in agreement with known results [6]. For the quadrupole (n = 2) mode, the eigenvalues A2

are easily found to be

i 12_*#* )2
+ i 12 - ( . (20)

AT = -3_* + 2#* 3_* + 2#*

The complex conjugate pair of eigenvalues (20) characterize the damped oscillation of the

quadrupole shape mode, as modified by constant surface shear and dilatational viscosities.

If either of these vanishes, the oscillation reduces to that dictated by the Lamb formula

(19). In the limit when one of the surface viscosity coefficients is much smaller than the

other, (20) shows that it is the smaller of the two viscosities which contributes the most to

damping and frequency modification.

OUTLOOK

Although idealized, the above calculation can be used, in conjunction with existing es-

timates of surface viscosity coefficients, to show that surface rheological effects can exert a

strong influence on the frequency-shift and damping of the oscillations. To make quantita-

tive comparisons against experimental results (e.g., see [2]), however, one must also include

in the analysis the effects of viscous boundary layers in the bulk fluids [11], as well as the

influence of surface and bulk transport of surfactants and their sorptive exchange, the role

of Marangoni stresses, and possible nonlinear modal interactions when the amplitude of

oscillations is large. Such issues are currently under investigation and will be addressed in

forthcoming contributions.
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