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ABSTRACT

The motion of a fluid-fluid-solid contact line on a rough surface is well known to display hys-
teresis in the contact angle vs. velocity relationship. In order to understand the phenomenon
at a fundamental microscopic level, we have conducted molecular dynamics computer simulations
of a Wilhelmy plate experiment in which a solid surface is dipped into a liquid bath, and the
force-velocity characteristics are measured. We directly observe a systematic variation of force
and contact angle with velocity, which is single-valued for the case of an atomically smooth solid
surface. In the microscopically rough case, however, we find (as intuitively expected) an open
hysteresis loop. Further characterization of the interface dynamics is in progress.

INTRODUCTION

The contact angle at which a meniscus separating two fluids meets a solid surface is an important
quantity for both static and moving fluid interfaces. The static angle determines the shape of
partially wetting drops and, when zero, implies that a drop will wet a surface completely. The
dynamic contact angle of a moving interface is an important ingredient in its time evolution, and
enters as a boundary condition in the free surface problem. In either case, a number of interesting
issues arise, which are generically referred to as contact angle hysteresis [1,2].

Firstly, Young’s equation relates the contact angle to the various interfacial free energies in
the problem, and ostensibly implies a unique angle for a given solid-liquid-liquid system. In fact,
one observes that a range of static angles is possible. The origin of this phenomenon is believed
to be surface heterogeneity, which can be of two varieties. If the surface is structurally rough,
having a non-planar shape at mesoscopic lengths between the atomic size and the resolution of the
observations, then even a unique microscopic or intrinsic angle on a fluctuating surface may give a
range of apparent macroscopic angles. If instead, the surface has chemical heterogeneities, then the
microscopic angle may fluctuate from point to point and cause the apparent angle to vary with the
location of the interface. In the dynamic case, a second phenomenon arises — the observed contact
angle varies with the velocity of the meniscus. Here, in addition to surface effects, the viscous stress
resulting from fluid motion will certainly affect the interfacial shape away from the surface, and
perhaps cause further changes in the apparent angle.

Although contact angle hysteresis has been well documented in the laboratory, and is a common
ingredient in recent hydrodynamic calculations, its origins involve the interplay of fluid dynamics
and microscopic surface effects and the difficulties of the problem have discouraged computational
or theoretical studies of its origins. In terms of quantitative calculations, several authors have
considered the possible static interfacial configurations resulting from model surface heterogeneities.
The latter have ranged from a 2-d sinusoidal variation in the position of a solid surface (3] to a
more realistic periodic pattern of wettability variation on a solid plate [4]. In the latter case,
Schwartz and Garoff consider the effects of dipping the plate into a fluid bath, and find multiple
minima in the free energy, deducing that the meniscus motion consists of alternating stick and jump
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events. Analytic time-dependent calculations of the origin of hysteresis have considered only the
effects of a single defect — a localized region of different wettability [5], while molecular dynamics
(MD) simulations aimed at the moving contact line singularity question [6] observed a systematic
variation of contact angle with interface velocity.

In this paper we report on MD simulations of a Wilhelmy plate experiment, in which hysteresis
is the focus. The Wilhelmy configuration of a plate dipped into a bath at fixed velocity directly gives
the force as a function of plate velocity. Hysteresis appears as an open loop in the force-velocity
plane as the plate velocity varies from positive to negative values. In this procedure, is a direct
measurement of angle is not needed, although the force is easily converted to an apparent angle,
which can be approximately correlated with observation. The advantage is that angles are difficult
to observe directly in the laboratory at short distances from the solid, and difficult to quantify in
molecular simulations due to small-system fluctuations. We consider structural heterogeneity only,
and solid surfaces which are either atomically smooth, periodically rough, or randomly rough. We
find that roughness is necessary to obtain hysteresis.

SIMULATION METHOD

Molecular calculations of fluid flow have become common (7], and the details of the present
simulation are quite similar to that used previously in molecular studies of wetting processes [6,8,9].
In an MD calculation, one computes the (classical) motion of the individual atoms comprising the
fluid by giving initial positions and velocities, and integrating Newton’s equations of motion with a
specified intermolecular potential. Since we are interested in fluid behavior near a solid wall, whose
atomic size may be comparable to that of the fluid atoms, it is appropriate to treat the wall as a
collection of atoms as well. A further consideration is that we wish the atoms to be as simple as
possible so that typical correlation lengths are small compared to the size of the whole system, and
continuum behavior may be expected. A soft-sphere atomic fluid with Lennard-Jones potentials
is then optimal, but unfortunately leads to a rather diffuse interface [7], whose contact angle is
difficult to establish. The interface may be sharpened up while retaining a monatomic fluid by
considering the relative displacement of two immiscible viscous fluids, as in [6,8], although chain
molecules in contact with near-vacuum [9] would have the same effect.

The interaction between atoms is a two-body potential of generalized Lennard-Jones form,

e s [(5) e (2) ]

where ¢ and o are energy and length scales, respectively, and if m is the (common) atomic mass
of the fluids, the appropriate time scale is 7 = 0y/m/e. All quantities discussed below are non-
dimensionalized using {0, 7,€}. The indices 1,  label the atomic species, fluid-1, fluid-2, confining
walls (W), and plate (P), and the coefficient matrix (c;;) is chosen as follows. Between any two atoms
of the same species, we use the standard interaction strength, ¢;; = 1 for all i. Atoms of different
immiscible fluids should have a weaker attraction, and we choose c;2 = 0. The precise value controls
the interfacial width, but we have not explored other choices. The fluid-plate interaction controls
the wetting properties, and we choose the lower fluid to preferentially wet the plate, c;p = 0.75
and cop = 0.5. The interaction of the fluids and the plate with the top and bottom walls is of
little consequence, and we take cjw = cow = cpw = 0. The remaining coefficients are determined
by symmetry (Newton’s third law). The r~!2 term provides a strong short-distance repulsion to
prevent overlap of the atoms, and and we simply use the standard (unit) coefficient.

A snapshot of a typical simulated system is shown in Fig. 1, and is meant to mimic a laboratory
Wilhelmy plate experiment. The system is fully three-dimensional but shown in a projected view for
clarity. The two fluids have 11760 atoms each and are placed in a rectangular region of space with
periodic boundary conditions in both horizontal directions. The fluids are confined in the vertical
direction by solid walls and a solid plate straddles the fluid-fluid interface. The plate is periodic in
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the vertical direction as well as the direction normal to the figure, so as to allow as steady state to
be established when it moves. Initially, the fluid atoms are placed on lattice sites with density 0.8
and given a random initial velocity chosen from a Boltzmann distribution at temperature T = 0.8.
After some time the atomic positions become disordered due to mutual interactions, although one
sees some layering near the walls. The wall atoms are localized for all times on an approximate
crystal structure by tethering them to the sites of a regular lattice by linear springs. In this way,
one has a realistic solid structure while at the same time allowing heat generated by viscous friction
to escape through the solid [8].

Motion is produced by translating the lattice of tether sites at a fixed velocity. The tethers then
drag the wall atoms, and the wall atoms drag the fluid with them. During the simulation we record
the atomic positions, from which the contact angle may be estimated, and the force on the plate -
more precisely, the net force exerted by the fluid atoms on the plate atoms. In principle, the angle 6
and the force F are related by F = 2W~ycos 8, where W is the plate width and v = 2.8 is the surface
tension (and 2 comes from the two sides of the plate), but in practice the force measurement is the
most reliable in that it is less susceptible to statistical fluctuations. We have also measured the local
velocity and stress fields, but at the translation velocities considered here, thermal noise dominates
and little information is present. One does however observe fluid slip at the contact line, as in [6,8].
To study the force or contact angle as a function of velocity, the system is first equilibrated, then
a small positive plate velocity is applied and the system proceeds at this velocity until the force
reaches a steady state. The velocity is then increased until a new steady state is reached. As the
plate velocity increases, the fluid-fluid interface becomes increasingly distorted and eventually hits
the top wall. This value is discarded, and the velocity is now decreased systematically until at large
negative values the interface hits the bottom wall. This value is again discarded, and the velocity
is increased back to zero. The force (or contact angle) vs. velocity plot is then examined.

RESULTS

First we consider an atomically smooth plate, where no hysteresis is anticipated. Indeed, the
f — v plot Fig. 2 is, within statistical fluctuations, a simple curve, with a single value of force
depending only on the current velocity and not on the system’s history. The change in the contact
angle itself at least qualitatively follows the same trend: Fig. 3 gives snapshots of the three-phase
region for various velocities. It is non-trivial to assign a specific value to the contact angle because
of the fluctuations in the interface position itself at a given speed, as well as the the change in
shape of the interface with distance from the contact line. Previous work [10] has addressed the
latter issue, at least, and further work on analysis of the angle vs. velocity relationship and the
interfacial shape is in progress. In this simulation, the Reynolds number based on the plate velocity
and half-width of the cell is at maximum speed 1.2, while the capillary number extends up to 2.1.

Next we have considered two types of rough plate, obtained by displacing groups of solid atoms
outward from their ideal-lattice positions. We either displace a periodic array of square regions as
in [4] or, more realistically, groups of atoms chosen at random are displaced. In either case we find
an open hysteresis loop; the result for the random case is shown in Fig.4, while the periodic case
falls somewhat between the latter and the smooth case but is clearly multivalued. The qualitative
features of the contact line shape are somewhat similar to the smooth-plate case, except that it
appears more diffuse in a projected view because of a stronger variation along the direction of the
contact line, as the latter attempts to follow the heterogeneity. Once again, further analysis is in

progress.

CONCLUSIONS

Although these simulations have for the first time directly demonstrated the role of surface
heterogeneity in producing hysteresis in a dynamic wetting process, they have only begun to explore
the problem. We conclude by listing several further significant issues which are now under study,
or which we will consider presently.
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. We have considered only the steady wetting characteristics — the force or angle observed after
a long displacement at a particular velocity. The pre-asymptotic behavior, i.e., the dynamic
response to a change in wetting speed, is equally relevant. This topic amounts to exploring
the interior of the hysteresis loop. Wetting behavior under cyclic operating conditions and
its relation to dissipation have been considered theoretically [11], but only with simplified
assumptions for the velocity dependence of the angle. Furthermore, the degree to which the
phenomena studied here parallel the details of hysteresis in magnetic systems [12] is unclear.

We have simulated structural roughness alone, and only the simplest liquids. Various seg-
regation phenomena may occur if the liquids are mixtures or if the molecules have specific
end groups, or more generally if the chemistry of the system is non-trivial. The wetting of
polymeric liquids is expected to be unusually interesting [13], even beyond the previously
studied case of terraced wetting [9].

Analytic calculations for the motion of an interface near a single defect have shown a pre-
cursor of hysteretic behavior — a difference between the velocity seen at fixed force and the
force measured at fixed velocity [5]. The calculations have been limited to the small-slope
and lubrication approximations, however, and do not address multiple defects or systematic
wettability variation at all. Since we can modify the solid surface at will, it is possible to
explore the transition between isolated defects and various types of systematic heterogeneity.
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Fig. 1. Snapshot of a
typical simulation run.
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Fig. 4. Force - velocity
plot for a randomly rough
plate.
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