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ABSTRACT

A novel type of lightweight space radiator has been proposed which employs internal electrostatic

fields to stop coolant leaks from punctures caused by micrometeorites or space debris. Extensive calculations

have indicated the feasibility of leak stoppage without film destabilization for both stationary and rotating

designs. Solutions of the evolution equation for a liquid-metal film on an inclined plate, using lubrication

theory for low Reynolds numbers, Karman-Pohlhausen quadratic velocity profiles for higher Reynolds

numbers, and a direct numerical solution are shown. For verification an earth-based falling-film experiment

on a precisely-vertical wall with controllable vacuum on either side of a small puncture is proposed. The

pressure difference required to start and to stop the leak, in the presence and absence of a strong electric field,

will be measured and compared with calculations. Various parameters, such as field strength, film Reynolds

number, contact angle, and hole diameter will be examined. A theoretical analysis will be made of the case

where the electrode is close enough to the film surface that the electric field equation and the surface

dynamics equations are coupled. Preflight design calculations will be made in order to transfer the modified

equipment to a flight experiment.

INTRODUCTION

Electrostatic forces are inherently weak relative to gravitational forces, and hence have been of limited

use in controlling liquid jets, films, etc. In microgravity environments, however, the situation is quite

different, and some interesting new applications arise. The usages of electric fields for effecting and

improving phasic separations, ionic separations, and molecular separations are well-known. However, the

effect of strong electrostatic fields on free-surface flows, and in particular, the flow of thin films on a solid

substrate is quite new, and potentially of considerable practical importance in microgravity.

Electric fields tend to pull a conductive (or dielectric) material into a non-conductive (or near vacuum)

adjacent region. When applied to a free-flowing film, the electric field produces a surface wave, which may

become unstable and contact the electrode above the film which produces the electric field. With proper

design, however, the surface wave amplitude is limited to a safe value, and the wave is washed harmlessly

away downstream. The tensile stress exerted by the field opposes the hydrostatic and vapor pressure tending

to drive the liquid through a puncture caused by a collision with a micrometeorite or space debris. Hence this

promises to be an effective device for stopping leaks from relatively large micrometeorite collisions, which
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would make membrane-type pumped-loop space radiators practical. This should result in a considerable

weight saving over heat pipe radiators.

The theory and possible designs have been extensively investigated by Kim, et al. (Refs. 1-5). These

detailed analytical and design calculations have pointed to the feasibility and stability of several variants, both

rotating and non-rotating, of the electrostatic liquid-film radiator concept. To test it experimentally would

seem to require a microgravity environment. This is because on earth gravitational forces are many thousands

of times greater than electrostatic forces. However, a relatively inexpensive, but sophisticated experiment has

been devised which will allow preliminary testing of the leak-stopping concept on earth in our laboratory.

Extensive tests will be performed over a three year period, after which a design study will be conducted for

flight experiments for further tests under microgravity conditions.

In addition, we wish to examine a theoretical problem which extends the previous analytical work.

Basic to the previous work was the assumption that the electric field (Laplace) equation is uncoupled from the

evolution equation for the surface waves, since the distance from the electrode to the film is at least an order

of magnitude greater than the thickness of the base film. When this is no longer true, the coupled equation

system must be solved numerically, presenting a challenging problem for boundary integral methods.

THIN FILM FLOW ON AN INCLINED FLAT MEMBRANE

The simplest problem is flow of a thin film on an inclined flat plate, where the film is both stabilized

and driven by gravity. In space gravity would be replaced by centrifugal force, produced by rotation and/or

azimuthal flow along a curved surface, such as a cylinder. Figure I shows a flat membrane inclined at an

angle 13to the direction of gravity, above which a liquid film flows. Above the film is suspended a charged

foil (electrode), whose field causes a standing trough, followed by a crest, in the film surface. The equations

are the Laplace equation in the vacuum, and scaled continuity and momentum equations in the liquid. At the

free liquid surface the boundary conditions are that the tangential electric field, the normal displacement field,

the tangential stress and the normal stress are continuous, together with a kinematic condition on the fluid

particles. The electric field appears only in the normal stress boundary condition. There are four

dimensionless constants (Reynolds (Re), Froude (Fr), capillary (Ca) and electrostatic field numbers (K)) which

need to be specified to solve the problem.

Here the capillary number is

Ca =
2PUo

0 (1)

where p is the liquid viscosity, o is surface tension and U o is the average liquid velocity. The electrostatic

field number is given by
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K = 16_Uo, (2)

where _ is the vacuum dielectric constant, F is the electric field strength and d is the mean film thickness.

Since the length of the electrode in the direction of flow is effectively infinite, or at least large

compared to the mean film thickness, a thin-film analysis is appropriate. This was performed for Reynolds

numbers of O(l) (proposed experiment) and of O(i/_) (proposed radiator), where _<< 1 is the ratio of the film

thickness to a characteristic length in the flow direction. In the former case lubrication theory can be

employed, and a nonlinear evolution equation can be derived, in a is similar fashion as many other

investigators (Ref. 6), except that an electrostatic term has been added on the right-hand side.

The electric field is determined by solving the Laplace equation for the electric potential _(x,y) in the

fluid _e, and the electric potential, _bv, in the vacuum region above the fluid but below the charged plate

(Figure 1). The fluid region, Vf, is defined by 0 < y < h(x,t) and - oo < x < oo, where y = h(x,t) is the height

of the film above the inclined plane, and the vacuum region, V v, is defined by the strip - o= < x < oo and

h ( x, t ) < Y < -Q- The boundary conditions are that

_(x,_)

= 0, for y = O.

= F!21_ (x) , for y = /4, (3a)

(3b)

FH is a constant with units of
The function O(x) is a given dimensionless function of x, and the product

electric potential. Along y = h(x,t) we have the boundary conditions that the tangential electric field and the

normal displacement field are continuous (Landau, et ai., 1984)

£ _)_ = £ _)v (4a,b)
_f(x,h, t) = _V(x,h, t), f--O"n °-'0_

Here ef is the dielectric constant of the fluid and the partial derivative is in the direction of the outward unit

normal, n, to the interface.

Following the now-standard procedures of Benney (Ref. 6) and Gjevik (Ref. 7) one can derive the

nonlinear long-wave evolution equation for the film thickness as a function of time and space.

_h + 3h 2 _h + _ _ [6Re h 6_h _ cot(_)h 3 _h 2 _2 h 2 _3hl
-0-{ _ --'O'-X['-_ _ "-O--X + -'_ Ca J
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Upon linearization, one can perform an Orr-Sommerfeld stability analysis, leading for long waves to

the critical Reynolds number:

10K H2 _Re < cot(_) - T (6)

where H is the height of the electrode above the mean film surface. If K = 0, the Yih-Benjamin (Refs. 9,10)

expression for the critical Reynolds number is obtained.

It is found that shocks can form, after which the lubrication equation is no longer valid. Nevertheless,

with a finite length electrode these disturbances can wash harmlessly out from under the electrode and be

carried away downstream. For large Reynolds numbers, Karman-Pohlhausen-type equations are derived:

_h =_ _q
_ (7)

-ff_ R _ R h 2 Fr 2 "d-'x ] " (8)

where q is the volumetric flow rate per unit width.

From these equations a dispersion equation and steady-state solutions can be developed. Finally,

numerical solutions, using the SOLA code, and a realistic electrostatic field, based on a single finite-length

electrode rather than an infinite-length electrode, are obtained.

RESULTS

The linear eigenvalue problem was solved numerically by a shooting method. Figure 2 shows the

neutral stability curves (i.e. c_ = 0) in the _ - Re plane for the case of Ca = oo, i.e., no surface tension, and for

Ca = 2 x IO 4, and for both K = 0, (no electric field) and K = 253.1. It is seen that small Reynolds number

flows are stable, while increasing Re for fixed wavelength will cause the flow to become unstable. Note that

the effect of the electric field is to lower the value of the critical Reynolds number at which the flow becomes

unstable. Also note that the surface tension increases the critical Reynolds number for both K = 0 and K not

equal to zero.

We plot the steady solution of both the lubrication model with Ca = oo in Figure 3 and the steady-state

Karman-Pohlhausen approximation in Figure 4. In order to simulate a slowly-varying potential we set • =
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exp(-100x2). This potential has the slowly varying form of the assumptions for _ small. The steady

lubrication model is a second-order ordinary differential equation, which can be integrated once to reduce it to

a first order equation. With the higher Reynolds numbers, the tendency to form a shock is greatly reduced

and the wave shapes and amplitudes are in fair agreement, despite the small Reynolds number implicit in the

lubrication model. Figure 5 shows the development of the surface wave at Re -- 189, as determined by

numerical solution of the full equations. It is seen that a peak height is reached with time at an amplitude of

about 30% of the mean layer thickness. However, since the electrode is far from the film, the wave will be

washed harmlessly downstream out of the influence of the electrode. Figure 6 shows the pressure at the

bottom of the liquid layer directly over the puncture, where p = 0 in the vacuum. The combined

dimensionless vapor pressure and hydrostatic head tending to drive the liquid out of the hole is more than

balanced by tension (negative pressure) due to the electric field with a margin of about two. The tension can

be made larger by increasing the field strength and/or the Reynolds number. Figures 7 and 8 show that the

Karman-Pohlhausen method gives quite similar results to the direct numerical solution.

CONCLUSIONS

Calculations by three methods show that leaks from a liquid-film radiator with internal electrodes and

surface puncture detection can be stopped with a safety factor of at least two. An experiment on earth is

being undertaken to test some of these predictions and to determine feasible operating conditions.
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Fig. 1. The coordinate scheme of the plane flow with x = 0 as puncture location.
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UNSTABLE

Fig. 2. Neutral stability curves in the ct - Re plane for [3= 0.1 radians, H = 13 1/3
(a: K= 253.1 and Ca=_,,b: K=0andCa=_,c: K= 253.1 and Ca= 2 x 10-_
and d: K = 0 and Ca = 2 x 10_).
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Fig. 3.
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Steady state solutions in the lubrication model with zero surface tension,

F = 20KV/cm and 13= 0.I rad (Re = 23.6, 189.0, 875.2).
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Fig. 4. Steady state solutions in the Karman-Pohlhausen model with zero surface

tension, F = KV/cm and 13= 0.1 tad (Re = 189.0, 875.2.

708



1.4

Z

L)

1.2

1.O

0.8 I I l | l

-0.3 0.0 0.3 0.6
x

Fig. 5. Free surface h vs. x as detemfined by (2-5) - (2-13) for t = n(0.Ol), n =
1..... 15 with F = 20.0 KV/cm, [3 = O. 1 rad, d = 0.15 ¢m, g = 100 cm/s 2,

(_ = 0, Re = 189,0, K = 28.87, H = 13 i/3 and the other parameter for

lithium at 700°K.
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Fig. 6. Bottom pressure p vs. x as determined by (2.5) - (2-[3) for t = n(O.O1),
n = 1..... 15 with F = 20.0 KV/cm, ]3 = 0.1 rad, d = 0.15 cm, g = 100 cm/s:,
0 = O, Re = 189.0, K = 28.87, H = [3 1/3 and the other parameter for lithium

at 700 ° K.
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Fig. 7. Free surface h vs. x as determined by the Karman-Pohlhausen model (2.46) -

(2-47) for t = n(O.O1), n -- 1..... 15 with F = 20.0 KV/cm, [3 = 0.1 tad,
d = 0.15 cm, g = 100 cm/s:, 0 = 0, Re = 189.0, K = 28.87, H = 13 1/3 and
the other parameter for lithium at 7f_ ° K
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Bottom pressure p vs. x as determined by the Karman-Pohthausen model (2.46) -
(2-47) for t = n(O.01), n = 1..... t5 with F = 20.0 KV/cm, 13= 0.1 rad,

d = 0.15 cm, g = lO0 cm/s:, 0 = O, Re = 1890, K = 2g.87, H = 13 I/3 and

the other parameter for lithium at 700 ° K.
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