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CAbstract.

We present preliminary results of our implementation of a novel electrophoresis separation tech-

nique: binary oscillatory cross flow electrophoresis (BOCE). The technique utilizes the interaction

of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active

binary filter for the separation of charged species. Analytical and numerical studies have indicated

that this technique is capable of separating proteins with electrophoretic mobilities differing by

less than 10%. With an experimental device containing a separation chamber 20cm long, 5cm

wide, and lmm thick, an order of magnitude increase in throughput over commercially available

electrophoresis devices is theoretically possible.

Introduction.

Electrophoresis has long been shown as an effective process for the separation of particles and

biological macromolecules based on small differences in electrophoretic mobility. Since Tisilius [1]

discovered electrophoresis in 1937, the technique has become a cornerstone for biochemical analysis

and has branched into several different subfields. Despite its attention, several key problems have

prevented electrophoresis techniques from scaling up to commercial processes. Among these are

Joule heating and crescent dispersion caused by electroosmosis, parabolic velocity profiles of the

carrier electrolyte, and electrohydrodynamic effects [2], [3].

The present research project, binary oscillatory crossfiow electrophoresis, has the potential for

significant improvements in throughput and resolution over conventional CFFE techniques. This

technique relies on the interaction of an oscillatory electric field and an oscillatory shear flow, shown

in Figure 1.

Cross Flow

Electric Field Oscillation

Figure 1: Direction of motions in a binary oscillatory crossfiow electrophoresis cell.

By appropriate selection of frequency and phase of oscillation of the two interacting driving forces,

an effective filter can, in principle, be created that will allow proteins either higher or lower than

a chosen electrophoretic mobility to pass through the device. The technique could be used for

both analytical and preparative work by programming the filter setpoint with time and collecting

proteins that pass through the device at each setpoint. For continuous isolation of a particular

fraction from a complex mixture feed, a network of four of these devices could be used.

Analytical Model

The driving forces in the binary separator are an oscillatory convective flow and an oscillatory

electric field. The solute molecuZes will have some net motion that is a complex function of the two

driving forces, the electrophoretic mobility, and the diffusion of the species. The cross flow may be

written as
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where u= is the fluid velocity in the x direction, um_= is the velocity of the center line, y is position

in the gap, b is the gap thickness, w is the frequency of oscillation, t is time, and f is some periodic

function of wt. The motion of a particular solute molecule across the channel will depend on f(wt)

and the position of the molecule in the gap. If we neglect diffusion, we may write the motion of

the solute across the gap due to an oscillatory electric field as

dy I_Eo d
- _tg(,,t ) = pEoh(,,t)dt

(2)

where p is the electrophoretic mobility, Eo is the characteristic amplitude of the electric field, g(wt)

is the oscillatory motion of the solute, and h(wt) is the oscillation of the electric field. Integrating

this equation, we can solve for the position across the gap of the solute molecule.

_- = _g(wt) (3)
b

where a = _ is the dimensionless electrophoretic mobility and g(_t) is bounded between 0 andwb

2. Substituting the position of the solute molecule into equation 1 and taking the time average, we
will have an equation that describes the motion of a solute molecule in the absence of molecular
diffusion:

where (.) is the time average over one period. Equation (4) is limited to dimensionless mobilities

c_ _< 0.5. The maximum value of a corresponds to a solute molecule that just reaches the opposite

wall during one period of oscillation. With equation (4) we may evaluate the solute velocity across

the channel for combinations of arbitrary choices for f(wt) and g(wt). Chandhok and Leighton [4]

chose g(wt) -- 1 - cos(wt) and showed that the only Fourier modes of a general periodic function

f(wt) that contributed to a migration velocity were a steady flow, cos(wt), and cos(2wt). While this

analytic solution is very useful for qualitatively determining the performance of such a separations

device, the solution is seriously limited by neglecting the effects of diffusion. This is particularly

true since the interaction of diffusion with an oscillatory shear flow has been shown to increase the

dispersion in the direction of motion by several orders of magnitude [5], [6]. Furthermore, bounding

the maximum value of c_ significantly limits the possible operating parameters of the system.

In order to better characterize the motion of the solute, we numerically simulated the solute

motion in the channel including the effects of diffusion. To perform the numerical simulation, we

used a molecular dynamics approach. At each time step, we added a random walk of length

to the electrophoretic motion of a solute molecule and used the resulting position to calculate the
displacement in the direction of the fluid motion. The simulation was carried out for 1000 molecules

and the average position and variance of the solute as a function of time were recorded. From the

position data we determined the time averaged solute velocity and the effective diffusion coefficient

in the direction of motion of the solute. We ran the simulation until the velocity reached a steady

value, usually after only a few periods of oscillation.

For our simulation we have chosen the gap width b = 0.1 cm, and by arbitrarily choosing the

dimensional electrophoretic mobility of a particular species and the oscillation frequency w, we

fix the electric field amplitude for a desired value of 4. Consequently, our choice of the above

parameters fixes the dimensionless diffusivity. We simulated the solute motion for an electric field

of amplitude h(t) = sin(_t) - 0.05 coupled with both f(wt) = cos(wt) and f(wt) = cos(2wt). The

small steady component to the electric field strength of 0.05 is important to refocus the solute at

the lower wall during each period. The velocities for the solute as a function of (_ for f(t) equal to

cos(wt), cos(2wt), and cos(wt) - cos(2wt) coupled with h(t) = sin(wt) - 0.05 were simulated and

are shown in Figure 2.
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Note that f(t) equal to cos(wt) and cos(2wt) both lead to negative velocities, with the maxi-

mum amplitude occurring at different mobilities. For a binary separation to be possible, the time

averaged velocity for the solute molecules must change sign at some critical value of the elec-

trophoretic mobility. Because the fluid motion does not directly influence the migration across the

gap, the effect of each mode of the imposed solvent velocity on the time averaged solute velocity

is linearly additive. As a result, we chose to subtract the two modes. The velocity resulting from

f(wt) = cos(wt) - cos(2wt) coupled with h(t) = sin(wt) - 0.05 meets the constraints for a binary

separation. In addition, d(vA/_,,a,) iS large near the mobility with zero net velocity, a condition for
do

sharp separation.

To determine the characteristic throughput and selectivity of the device, we consider a cell

connecting two reservoirs of fluid. In one reservoir, we impose some concentration CA1, in the other

reservoir we impose a concentration of zero by flushing it with buffer. The cell is of length L, width

W, and thickness b with operating parameters as listed above. The cross flow will oscillate with

f(wt) = cos(wt) - cos(2wt) and um_x = Axw where Ax is the characteristic amplitude of fluid

oscillation.

To find the flux though a cell we start with the governing equation

2 • Oc'A_. O cA . (5)
_eff_x*_ -- VA Ox*

where key/is the dispersion coefficient determined numerically, x is the direction of flow, cA is the

concentration of species A, and VA is the velocity of species A depicted in Figure 2. Equation (5)

is the result of substituting the flux into the mass balance. By integrating twice and imposing the

boundary conditions of c*A(x* ---- 0) = 1 and c*A(x* = L/Ax) = 0, we can solve for the dimensionless

concentration profile. Substituting the dimensionless concentration profile into the flux equation,

we find the the dimensionless flux is

1
N_ : v A (6)

1 - exp (_)

Figure 3 shows a plot of N_x as a function of (_ for a value of -_ = _ where v_ is as shown

in Figure 2 and k_/] is determined numerically. The curve labeled high pass represents the flux
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Figure 2: Plot of dimensionless velocity versus dimensionless electrophoretic mobility including the
effects of cross-streamline diffusion.
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when f(wt) = cos(wt) - cos(2wt), and the curve labeled low pass represents the flux when f(wt) =
cos(2wt) - cos(wt).
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Figure 3: Plot of Dimensionless Flux versus dimensionless electrophoretic mobility.

Clearly the flux changes very dramatically near tr = 0.41 for both high and low pass operation.

For a 10% change in a about this point, the flux increases two orders of magnitude.

Experimental.

To verify the analytical and numerical results of the BOCE technique, an experimental system

including a single binary separation cell, two reservoirs and an electrolyte bath was constructed.

The cell is similar to that of Giddings [7], and allows continuous flow of solute in a buffer solution

through a separation chamber 20.0 cm long, 5.0 cm wide, and 0.1 cm thick. Care was taken to

address problems inherent in electrical flow cells of this type; mainly gas generation from electrode
reaction, Joule Heat and membrane flexure.

The BOCE cell is approximately 24.0 cm long, 7.0 cm wide, and 2.0 cm thick. The central

separation chamber of the cell is machined from a plastic sheet that is divided into two halves to

accommodate feed and exit channels. Fluid is introduced at either end of the chamber by means of

a stainless steel syringe connected to polypropylene fittings extending through the electrolyte bath
and connecting to the reservoirs. The separation chamber is sandwiched between two cellulose

membranes, supported by the electrode screens. The layers are clamped between two plexiglass

blocks. In the center of each block a rectangular opening approximately the size of the separation

chamber was machined. This design allows the central chamber to be sealed with the membranes

and screen support using bolts to provide uniform pressure around the perimeter.

Giddings [7] found in experiments using a similar device that cellulose membranes are prone to

flexing even upon small pressure fluctuations. The requirement of fixed volume in the separation

chamber thus necessitates the use of a support. Aside from chemical compatibility with the buffer

solution and mechanical strength, the electrical resistance was an important consideration. It was

therefore decided that the electrode screens could be used as supports, thus serving dual purposes•
This reduced the electrode separation to under 1.1 mm.

Gas bubbles and Joule heat are removed by submerging the entire cell in an electrolyte bath

open to atmosphere. The bath accommodates up to 6 liters of electrolyte fluid and copper cooling

coils. The cell is positioned in the bath with the 7.0 cm side forming the vertical axis, and gas

bubbles generated from electrode reaction are removed from the electrodes through the machined
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openings in the clamping block halves.
The two oscillatory driving forces were provided by a KEPCO BOP100-4M bipolar power supply

capable of constant current operation and a specially designed syringe pump. The electric field

was controlled using LabVIEW software and a 100 MtIz Pentium personal computer. Bulk fluid

conductivity data was acquired into LabVIEW using a Cole-Parmer conductivity meter and the

amplitude of the current waveform was simultaneously adjusted to maintain the desired electric
field. The flow waveforms were delivered to the syringe pump using a Galil DMC-1500 motion

controller and software. Position data from the syringe pump was fed back into LabVIEW allowing

phase locking of the two driving forces to within a few milliseconds. Temperature was monitored

using the Cole-Parmer conductivity meter and protein concentration was analyzed using a Varian

UV-VIS spectrometer.

Results

The focus of preliminary experiments was to verify qualitatively that the interaction of a purely

oscillatory shear flow with an oscillatory electric field could indeed lead to the net convection of a

single charged protein species under conditions of uniform concentration throughout the system.

Furthermore, we sought to demonstrate that by changing the dimensionless mobility, _, by changing

the amplitude of the electric field, we could change the sign and magnitude of the velocity of the

protein. To this end preliminary experiments were conducted using Bovine Hemoglobin (BHb)

dissolved in a sodium acetate/acetic acid buffer of pH 4.5 and conductivity of approximately

375.0 _ Based on results from Douglas et. al. [8], the electrophoretic mobility of BHb was
C_¢1 "

"_ 4 -s cm2 The choices of waveforms included h(wt) -- sin(wt) - 0.05 for theapproximately l_. e _p-_.
electric field and f(wt) = 2 cos(2wt) for the crossflow. The concentration throughout the system

was initially uniform using a 0.021 wt% solution of BHb. The syringe, which served as the inlet

reservoir, was filled with a volume of 8mL of protein solution, while the outlet reservoir contained

approximately 40mL of the same solution.

For each of the experiments, the frequency of oscillation was chosen to be 0.068 l__s_cand the
stroke volume to be 1.5 mL. For _ = 0.25, an electric field amplitude of 9.795 y was required,

cm

and for c_ = 0.5, the amplitude was doubled. In both experiments, the concentration of the outlet

reservoir was monitored with time. The results of the experiment using a - 0.5 is shown in Figure

4. Note the concentration of the outlet reservoir increased by over 10% for 20 minutes of run time

while the syringe concentration (not shown) was almost entirely depleted. The results of these

experiments indicate that even with initially uniform concentrations, a net flux could be obtained

for both choices of _, and furthermore, the magnitude of the velocity qualitatively agreed with

theory.

Experiments will continue with single protein species using various oscillatory shear flows and
dimensionless mobilities under both transient and steady state conditions. From these experiments

we hope to achieve quantitative comparisons of the net velocity and effective diffusivity of various

protein species. Additionally, we will conduct multi-protein experiments in an attempt to verify

that binary oscillatory crossflow electrophoresis as an effective binary separation technique.
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Figure 4: Plot of dimensionless weight percent of Bovine Hemoglobin in the outlet reservoir versus

time for a dimensionless electrophoretic mobility of (_ -- 0.5.
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