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ABSTRACT

The axisymmetric electrohydrodynamic interaction between two spherical emulsion drops has been ex-

amined, using the leaky dielectric model to represent the constitutive behavior of the liquid phases. The

results follow from the general solutions in bispherical coordinates to the Laplace equation for the electric

potential and the Stokes equations for the velocity field. For drops of similar composition, the electrical

interactions induced between the drops by the imposition of the electric field are always attractive, meaning

they favor coalescence of the drop pair. The hydrodynamic interactions, however, are not always favorable

and, indeed, are shown in certain circumstances to drive the drops apart.

INTRODUCTION

The response of individual emulsion drops to the imposition of electric fields has been studied for a

number of decades. The archetypal work on the subject is that due to Taylor (ref. 1), who first elucidated

the role played by weak electrical conduction processes in the context of drop deformation caused by

externally-imposed electric fields. Central to the drop deformation, Taylor showed, were steady fluid

circulations driven in and about the drop. The circulations stem from interracial electrical stresses that

arise as a consequence of ohmic conduction processes in the liquids.

The circulations described by Taylor have since been recognized to be of technological significance as a

tool to enhance heat and mass transfer in liquid-liquid dispersions. In the work that we summarize below,

we show that the circulations are also significant with regard to the interactions that occur between neigh-

boring drops in a space-filling dispersion. That is, we find the imposition of an electric field drives relative

motion between a pair of drops that is a strong function of the hydrodynamics. The behavior of the emulsi-

fied drops thus contrasts with that of aerosols, where electrical interactions dominate the pairwise behavior.

PROBLEM STATEMENT

Consider two spherical emulsion drops immersed in a fluid with which they are immiscible. In general,

the drops need not be the same size, and may possess electromechanical properties (e.g. viscosity p,

electrical conductivity a and dielectric constant c) distinct from one another as well as from those of the

surrounding fluid (Fig. 1). Suppose now that a uniform electric field of strength Eo¢ is externally applied

along the line of centers of the drops. If the fluids are poor conductors, free charge will accumulate at the

interfaces with the result that: one, the drops exert electrical forces on one another; and two, tangential
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Maxwell stresses drive fluid circulation in and around the drops (ref. I). Depending on the resultant of the

electrical and hydrodynamic interactions, the relative motion between the drops may be such that they
are either drawn together, or they move apart.

In the present analysis, we use the leaky dielectric model to represent the constitutive behavior of the

fluids. Furthermore, we examine the case where surface tension is sufficiently high so as to hold the drops

spherical. This fixed nature of the geometry facilitates an analytic solution of the electrohydrodynamic

problem in the form of an expansion in bispherical harmonics.

Provided the charge relaxation time c3_0/_3 is small compared to the characteristic time associated

with that of fluid motion, _3/c3c0 E 2, one can solve for the electric potential independently of the flow-field.

The electrostatics are governed by the Laplace equation

V2@i - 0 for i = 1, 2, 3, (1)

where @i is the potential in each of the three regions (Fig. 1). The boundary conditions on the drop

surfaces are those of continuity of both @ and the normal component of electric current density. Far from
the drops, -V@ goes over to the applied field.

The flow is slow and axisymmetric, so in cylindrical coordinates,

E4_=0, with E 2=r_ ;_ +_z2, (2)

and _ is the stream function. The velocity is continuous, and the tangential components of the stress

balance on the drop surfaces. The normal stress balance is not considered explicitly; instead we apply a

kinematic condition to the normal component of the velocity.

The solution to the Stokes equation gives us the forces on the drops due to the electrically-driven

circulations, as well as the hydrodynamic resistance to the relative motion of the drops. The translational

velocities 1/1 and V2 of the drops, both of which are in the z direction, follow from balancing the force due

to the electrical interactions between the drops with the two hydrodynamic forces, viz. the hydrodynamic

force that stems from the electrically-driven circulations and that due to the hydrodynamic resistance to

the drops' relative motion.

For simplicity, all variables are made dimensionless through division by the following characteristic

quantities: length, al; electric potential, alE_o; stress, c3c0E2; and velocity, ale3¢oE2/p3.

Owing to the geometry of the problem, it is convenient to introduce bispherical coordinates _ and 7,

which are related to (dimensionless) cylindrical coordinates r and z in the following manner:

a sinh _ . a sin

z = cosh_ - cosT' r = cosh_ - ces_" (3)

> 0 for z > 0, _ < 0 for z < 0, with _ - 0 on the plane z - 0 and for infinite distance from the drops.

represents the inverse tangent of the angle between two lines drawn to a point from the drop centers. The

surfaces of drops 1 and 2 have constant values of _, denoted _1 and _2. These values are related to the

drop radii and distances di from the plane z ffi 0 by ad/al = ±a cosech_d and di/al -- ±a coth_i, with the

plus and minus signs for i - 1 and 2, respectively.

RESULTS AND DISCUSSION

The solution to the electrostatics problem in the bispherical system is (ref. 2)

¢l---z+(cosh(-p)lECnexp - n+ _ Pn(P),
.=0

(4)
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[(
n=O

(5)

[¢3= -z + (coshf- v)½_ A.exp -(n+ )f + B. exp (n+ )_ P.(u) (6)
n=0

where p = cosh_I,and Pn(#) isthe nth Legendre polynomial.The constantsAn, Bn, Gn, and Dn are deter-

mined via recursionrelationsobtained by applying the boundary conditionsand using the orthogonality

of the Legendre polynomials.

Knowing the potential enables us to get an explicit expression for the electric stress at the surface,

which in turn gives us an expression for the total electric force on each drop, as we integrate the stress

over each drop surface, viz.

/1_'_= 2_ i 2 coshf- u -oq Of_,}+ (i-_) Or _,]J

-°-!sinh_ 1- "2 0@'1 0@' } d#, i--1,2. (7)a3 coshf-# 0f _ O# _i

Note the tangential component of the electric stresses also contribute to the tangential stress balance

condition for the drop surfaces and this drives the velocity field.

The general solution to the Stokes equation for the stream function ¢ is

_o

¢i = (coshf - #)-_(1 - #2)E U_.(f)P'n(#), i ----1, 2, 3, (8)
.=1

where

(9)

Thus the boundary conditions can be recast as equations in Ut(_l) and U2(_2), which comprise a linear

system of equations for the stream function coefficients a_., b{., ci., and din for each n from 1 to co.

Sozou (tel 3) has implemented this scheme for the particular situation involving identical drops, subject
to the restriction that there be no relative motion between the drops. Here we relax Sozou's constraints,

allowing for relative motion and considering drops of different size and electromechanlcal properties. The

principal results that come from our analysis, then, are the drop velocities Vt and V2, and the conditions

for which no relative motion obtains.

The coefficients for the external flow field are used to compute the net hydrodynamic force _i yd exerted

on the drops, through the well-known formulae (ref. 4)

0o

a
.=1

with the plus and minus signs corresponding to i -- 1 and 2, respectively. The coefficients ai., b{., C/n, and
d_. are linear in Vt and V2, and _/h/y involves a contribution from the relative motion F/el and from the

electrically-driven circulation _/ire. Since _d is a linear combination of V1 and V2, one may write

F_d = DCnVt + DCt2V2, _2 el = DC2tVt + DC22V2, (11)
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where DC11, DC12, DC21, and DC22 are the drag coefficients for the relative motion (refs. 5 and 6). Finally,
balancing b_l__c, _b_el.,and F_circ on each drop yields the drop velocities, viz.

V1 = -- [DC22(F_I 'ec + 1F_)- DC12(F_2 lee + F_2irc)] /_, (12)

V2 = [DC12(F_I ]ec + F_lire) - DC22(F_2 lec + F_2irc)]/_, (13)

where

A _---DCII DC22 -- DCI2 DC21. (14)

In Fig. 2, we give the translational velocity of drop 1 as a function of center-to-center separation for

the special case that the drops are identical. For this circumstance, the electric forces on the drops are

attractive. The electrically-driven circulations are attractive when al/a3 < el/e3, repulsive for _l/a3 >

el/C3, and vanish when ol/o3 = Cl/C3. Plots are given for various conductivity ratios al/a3, with viscosity

ratio #1/p3 fixed at 1.0 and dielectric constant ratio el/c3 fixed at 2.0. A negative velocity indicates that

the drops are moving toward one another, so one can see that for certain values of Ol/O3 > Cl/e3, the drops

may move apart. Physically, this means that the tangential electric stresses acting on the drop surfaces

drive circulations that not only oppose drop motion, but are strong enough to overcome the attractive
force due to electric interactions.

In Fig. 3 there are given plots of combinations of conductivity ratio Crl/a3 and dielectric constant ratio

Cl/e3 for various drop separations at which the relative motion between the drops vanishes. Again, for sim-

plicity, the results shown are for identical drops. Given a curve for a particular separation D - (dl +d2)/al,

the area underneath the curve represents combinations of allot3 and cl/c3 for which the drops are driven

apart by the fluid flow when the separation is at least D. For values of _l/a3 and c1/c3 that lie above the

curve, the drops translate toward each other when at separations less than D. Thus, we see in Fig. 3 that a

smaller variety of electrical properties facilitate coalescence for larger separations. This is mainly because

_edlee , i - 1, 2, decays inversely with drop separation to the fourth power, whereas the interactions due to

the circulations decay as one over the separation squared.

CONCLUDING REMARKS

The results presented here are a useful leading-order analysis for electrohydrodynamic interactions

involving drops that may deform modestly under the action of an electric field. In general, keeping track

of drop shape must be done numerically. The analytic results offer the advantage of providing qualitative

behavior, such as the direction of the drops' translation for different values of a_/a3, _d/_3, Pj#3, and drop

separation. Such information is rather cumbersome to generate numerically, especially when the relative

motion is weak. Denoting the interfacial tension as 7, we note that the capillary number Ca -- ale3c0 E_/7

is small (_ 1) in our study, and thus one can add corrections to the solution presented, using Ca as a
perturbation parameter.

The results are most useful for appreciable drop separations, i.e. when the gap between the drop sur-

faces is at least the radius of the smaller drop. Referring to Eqs. (6), (7), and (8), we note that for smaller

separations, it takes more terms in the sums for @ and _ to make these expressions accurate. Simple

expressions for hydrodynamic resistance have been derived (refs. 7, 8) based on asymptotic analysis of the

infinite sum that appears in Eq. (10) for the case of strictly spherical drops. In addition, it is at smaller

separations where drop deformation becomes more significant. Indeed, it has been noted by Davis et al.

(ref. 8) and others that, for small separations with the drops moving toward one another, the attendant
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increase in pressure within the lubrication layer results in dimpling of the drop surfaces. A subject for

subsequent investigation, therefore, would be the influence of the electrohydrodynamic circulations on such

dimpling.
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Figure 1: Definition sketch.
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Figure 2: Velocity of drop 1 as a function of center-to-center separation, for various values of al/a3(=

cr2/cr3). The unit of length is the radius of drop I. /_I/P3 = _2/_3 -" i; _i/c3 --- _2/c3 -- 2.
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Figure 3: Combinations of conductivity and dielectric constant that hold two drops fixed in space, for

various center-to center separations. #1/#3 = #2/_3 = 1; al = a2; al/a3 = _2/a3; ct/e3 = c2/c3.
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