
NASA-C_-202390

Research Institute for Advanced Computer Science
NASA Ames Research Center

Aerodynamic Shape Optimization of

Supersonic Aircraft Configurations via an

Adjoint Formulation on Parallel Computers

James Reuther, Juan Jose AIonso, Mark J. Rimlinger and Antony Jameson

RIACS Technical Report 96.17 September 1996

Presented at the 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization, September 1996,

AIAA paper 96-4045

Aerodynamic Shape Optimization of

Supersonic Aircraft Configurations via an

Adjoint Formulation on Parallel Computers

James Reuther, Juan Jose AIonso, Mark J. Rimlinger and Antony Jameson

The Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 212, Columbia, MD 21044, (410) 730-2656

Work reported herein was sponsored by NASA under contract NAS 2-13721 between NASA and the Universities
Space Research Association (USRA).

Aerodynamic Shape Optimization of
Supersonic Aircraft Configurations via an Adjoint Formulation

on Distributed Memory Parallel Computers

J. Reuther*

Research Institute for Advanced Computer Science
NASA Ames Research Center, MS 227-6

Moffett Field, California 94035, U.S.A.

J. J. Alonso t

Department of Mechanical and Aerospace Engineering
Princeton University

Princeton, New Jersey 08544, U.S.A.

M. J. Rirnlinger t
Simco

NASA Ames Research Center, MS 227-6

Moffett Field, California 94035, U.S.A.

A. Jameson;

Department of Mechanical and Aerospace Engineering

Princeton University
Princeton, New Jersey 08544, U.S.A.

ABSTRACT

This work describes the application of a control theory-based aero-

dynamic shape optimization method to the problem of supersonic

aircraft design. The design process is greatly accelerated through

the use of both control theory and a parallel implementation on dis-

tributed memory computers. Control theory is employed to derive

the adjoint differential equations whose solution allows for the evalu-

ation of design gradient information at a fraction of the computational

cost required by previous design methods [13, 12, 44, 381. The re-

suiting problem is then implemented on parallel distributed memory

architectures using a domain decomposition approach, an optimized

communication schedule, and the MPI (Message Passing Interface)

Standard for portability and efficiency. The final result achieves very

rapid aerodynamic design based on higher order computational fluid

dynamics methods (CFD).

In our earlier studies, the serial implementation of this design

method [19, 20, 21, 23, 39, 25, 40, 41, 42, 43, 9] was shown to be

effective for the optimization of airfoils, wings, wing-bodies, and

complex aircraft configurations using both the potential equation

and the Euler equations[39, 25]. In our most recent paper, the Euler

method was extended to treat complete aircraft configurations via a

*Student Member AIAA

?Student Member AIAA

/Student Member AIAA

§James S. McDonnell Distinguished University Professor of Aerospace Engineering,
AIAA Fellow

°Copyright (_) 1996 by the American Institute of Aeronautics and Astronautics, Inc.

All rights reserved

new multiblock implementation. Furthermore, during the same con-

ference, we also presented preliminary results demonstrating that this

basic methodology could be ported to distributed memory parallel

computing architectures [24]. In this paper, our concern will be to

demonstrate that the combined power of these new technologies can

be used routinely in an industrial design environment by applying it

to the case study of the design of typical supersonic transport con-

figurations. A particular difficulty of this test case is posed by the

propulsion/airframe integration.

INTRODUCTION

To realize the potential of CFD to'produce superior designs, there

is a need not only for accurate aerodynamic prediction algorithms,

but also for design methods capable of creating new optimum con-

figurations. Yet, while flow analysis has matured to the extent that

Navier-Stokes calculations are routinely carried out over very com-

plex configurations, CFD-based design techniques are just beginning

to treat moderately complex three-dimensional configurations.

Existing CFD analysis methods have previously been used to treat

the design problem by coupling them with numerical optimization

methods [13, 12, 44, 38]. The essence of these methods, which

incur heavy computational expense, is very simple: a numerical

optimization procedure is used to extremize a chosen aerodynamic

figure of merit which is evaluated by the given CFD code. The con-

figuration is systematically modified through user specified design

variables. Most of these optimization procedures require the evalu-

ation of the gradient of the cost function with respect to the specified

designvariables.Thesimplestof the methods to obtain these neces-

sary gradients is the finite difference method. In this technique, the

gradient components are obtained by independently perturbing each

design variable with a finite step, calculating the corresponding value

of the objective function using CFD analysis, and forming the ratio

of the differences. The gradient is used by the numerical optimiza-

tion algorithm to calculate a search direction using steepest descent,

conjugate gradient, or quasi-Newton techniques. After finding the

minimum or maximum of the objective function along the search

direction, the entire process is repeated until the gradient approaches

zero and further improvement is not possible.

The finite difference-based optimization strategy is computation-

ally expensive because the flow must be repeatedly calculated for

perturbations in every design variable. Nevertheless, it is attractive

when compared with other traditional design strategies such as in-

verse methods, since it permits any choice of the aerodynamic figure

of merit. The use of numerical optimization for transonic aerody-

namic shape design was pioneered by Hicks, Murman and Vander-

plaats [13]. They applied the method to two-dimensional profile

design governed by the potential flow equation. The method was

quickly extended to wing design by Hicks and Henne [12]. Later,

in the work of Reuther, Cliff, Hicks and Van Dam, this method was

successfully used for the design of supersonic wing-body transport

configurations [38]. However all of these cases, which were confined

to finite difference gradients on serial computer architectures, were

limited in their geometric complexity simply due to computational

expense. For example, the designs presented in [38] were limited to

wing-body configurations. Yet it is well known that optimum perfor-

mance (especially for supersonic configurations) will require highly

tuned nacelle/airframe integrations. It was not possible to include

nacelle/airframe considerations into the design problem outlined in

[38l since the required number of mesh points, which more than

doubles with the inclusion of nacelles, could not be afforded.

In the last few years, alternative methods for obtaining design

sensitivities have been developed which greatly reduce the compu-

tational cost of optimization. References [1, 2, 3, 5, 4, 7, 8, 6, 32,

29, 16, 35, 30, 28, 34, 47, 31, 36, 37, 49, 15, 33, 14] present a

partial list of recent works in this developing area of research. An

exhaustive report on the various approaches to the problem and their

advantages and disadvantages is given by the first author in [45].

The most promising of these approaches is the adjoint formulation

whereby the sensitivity of some objective function with respect to an

arbitrary number of design variables is obtained with the equivalent

of only one additional flow calculation. Here, the solution of the

adjoint system (using the same mature techniques as perfected for

the flow equations) enables each gradient element to be calculated

very cheaply, meaning the number of design variables is essentially

eliminated as a constraining factor. Moreover, the adjoint solu-

tion (and to a lesser extent the accompanying flow solution) need

not be highly converged to be useful, in significant contrast to the

highly-converged flow solutions which are crucial to accurate finite

difference gradients [45].

In spite of the large decrease in computational cost provided by

the adjoint formulation of the design problem, the aerodynamic op-

timization of a complete configuration still remains a formidable

computational task. The advent of reliable and efficient parallel

computers using distributed memory is a key enabling technology

to decrease the turnaround time of these design calculations to the

point where configurations can be optimized almost in real time.

The work presented in this paper combines these two ingredi-

ents (adjoint formulations and parallel implementations) to produce
a robust, accurate, and efficient method that can be used for the de-

sign of supersonic aircraft including the effects of airframe/nacelle

integration.

FORMULATION OF THE ADJOINT EQUATIONS

The aerodynamic properties which define the cost function I are

functions of the flow field variables, w, and the physical location of

the boundary, which may be represented by the function .T'. That is,

I = l(w,Jf)

and a change in F results in a change

bl = Olr 6w + OIT
0--_ -d-ff y (1)

in the cost function. The governing equation R and its first variation

express the interdependenceof w and .T"within the flow field domain

D:

(2)

Introducing a Lagrange multiplier _/J,we have

_I - O1T_w 017" ¢,T OR _.T)

__ + ,-.
Choosing _p to satisfy the adjoint equation

= 0---_ (3)

the first term is eliminated, and we find that the desired gradient
given by

_r Ol r _Or [OR]= OY _ (4)

is only a function of F. Since (4) is independent of 6w, the gradient

of I with respect to an arbitrary number of design variables can be

determined without the need for additional flow field evaluations.

The main cost is in solving the adjoint equation (3). In general, the

adjoint problem is about as complex as a flow solution. Therefore,

when the number of design variables is larger than 2, it becomes com-

pelling to take advantage of the cost differential between one adjoint

solution and the large number of flow field evaluations required to

determine the gradient by finite differences. Once equation (4) is

obtained, _ can be provided to a variety of numerical optimization

algorithms to obtain an improved design.

MULTIBLOCK FLOW SOLUTION

In order to extend the methods presented in our earlier three-

dimensional work to the treatment of complete aircraft configura-

tions, the single-block flow solver used in [21, 40, 421 must be

replaced. As with the single-block solver, the more general flow

solvermust meet fundamental requirements of accuracy, efficiency,

and robust convergence to be employed in an automated design

environment. High accuracy is required since the predicted im-

provements in the design realized by the method can only be as good

as the accuracy of the flow analysis. Efficiency of the flow solver

is also critical since the optimization of the design will generally

require the computation of many flow solutions or other solutions

of comparable complexity. Finally, robust convergence is also of

significant importance since the main benefit of aerodynamic opti-

mization is in obtaining the last few percentage points in improved

efficiency. The solutions must be converged well enough that the

noise in the figure of merit, say drag at a fixed lift, is well below

the level of realizable improvement. The desirable ability to com-

pare adjoint-based gradients with finite differencing as a check also

requires highly-converged flow solutions.

In our three-dimensional single-block applications, the FLO87

code written by the fourth author readily met all of the above crite-

ria. FLO87 achieves fast convergence with the aid of multigridding

and residual smoothing. It is normally easy to obtain solutions that

converge to machine accuracy. The challenge in the present work

was to meet these swict requirements within the framework of a

multiblock flow solver. The use of a multiblock approach is a first

step towards the treatment of more complex configurations. How-

ever, the multiblock strategy presented here is not the only viable

approach. Other alternatives such as unstructured mesh solvers are

also currently under investigation.

The general strategy in developing the multiblock flow solver is

to construct and update a halo of cells around each block such that

the flow solution inside each block is transparent to the block bound-

aries. This task requires establishing the size and location of halo

ceils adjacent to block boundaries and loading the halo cell values

with appropriate flow field data at the appropriate times. To accom-

plish this task, a two-level halo is constructed around each block.

The requirement of this double halo results from the necessity of

preserving a complete stencil of calculated fluxes entering and leav-

ing each cell in the entire domain without regard to block boundaries.

This ensures that the conservative flow solution algorithm is fully

maintained. Since both the convective and the dissipative fluxes

are calculated at the cell faces (boundaries of the control volumes),

all six neighboring cells are necessary, thus requiring the existence

of a single level halo for each block in the multiblock calculation.

The dissipative fluxes are composed of a blend of first and third or-

der differences corresponding to terms that mimic second and fourth

derivatives of the flow quantities [261. For the third order differences

at the boundary faces of each cell for all blocks, the presence of the

twelve neighboring cells (two adjacent to each face) is required. For

each cell within a block, Figure I shows the neighboring ceils that are

required for the calculation of convective and dissipative fluxes. For

each block, some of these cells will lie directly next to an interblock

boundary, in which case, the values of the flow variables residing in

a different block will be necessary to calculate the convective and

dissipative fluxes. Halo cells on the external boundary of the entire

computational domain are constructed and updated by extrapolation

and reflection, depending on the kind of boundary condition ap-

plied. Once the halo configuration is set up for each block, standard

methods for spatial discretization and time integration (including ar-

tificial dissipation, implicit residual averaging, and multigridding)

are employed to compute the flow solution within each individual

2ncl [_=',,_I Halo

c]]_gct ire_ St_T_=il DJ-_ti_ [{_Tcii

Figure 1 : Convective and Dissipative Discretization
Stencils.

block.

The strategy for a complete flow solution proceeds as follows:

First, the blocks that comprise the flow field mesh are read from an

external file. Then, the double halo configuration is established, for

each individual block, by inserting into halo cell locations values for

grid metrics, etc., taken from the interior ceils of adjacent blocks.

For the coarse grids required in the multigrid procedure, the process

is repeated with coarse grid halo cells defined by the internal cells

of adjacent coarse grid blocks. For block faces that lie on solid,

symmetry, or far field boundaries, standard single-block techniques

are used to define the halo cells. As an example, consider the simple

4-block grid depicted in Figure 3. The halo cells for block I will be

obtained from the internal cells of blocks II, 111, and IV, and from

solid or far field boundary techniques for the faces not adjacent to

other blocks. Coarse grids are computed in the usual fashion, by

aggregating groups of eight cells and then repeating the above halo

cell process. Once the halo configuration is complete for the fine and

all coarse grids, the flow solution commences.

The system of equations solved here as well as the solution strategy

follows that presented in many earlier works [26, 18, 17]. The three-

dimensional Euler equations may be written as

Ow Of,

0--7 +_=0 inD, (5)

where it is convenient to denote the Cartesian coordinates and ve-

locity components by Jcl, x2, z3 and ul, u2, u3, and w and f, are

defined as

pul pu,ul + p6,1

W = pu2 , f, = pUtU2 "_-p6,2 (6)

pU3 pit,U3 -_- p613

oE pu, H

where 6,jis the Kronecker delta. Also,

{ 1p=(7- 1)p E-_ (7)

and

pH = pE + p, (8)

where 7 is the ratio of the specific heats. Consider a transformation

to coordinates _1, _2, _s where

/¢"=/ae, j' J=det(K), K,;' L°_' J.

Introduce scaled contravariant velocity components as

Ui _- Q'3 Uj

where

Q= Jtf -1 "

The Euler equations can now be written as

with

OW OF,

0---t-+ _ = 0 in D, (9)

p

pul

W = J _ pu2

pl13

, pE

pU, ul + Q,lp

, F, = Q'sfJ = pU, u2 + Qi2p •

J pU, u3 + QI3p
pU, H

(1o)

For the multiblock case, the above notation applies to each block

in turn. The flow is thus determined as the steady-state solution to

equation (9) in all blocks subject to the flow tangency conditions on

all solid boundary faces of all blocks:

U n=0 on allBs (I1)

where 0 is 1, 2, or 3 depending on the direction that is normal

to the face Bs where a solid surface is assumed to exist. At the

far field boundary faces, BF, freestream conditions are specified

for incoming waves, while outgoing waves are determined by the
solution.

The time integration scheme follows that used in the single-block

strategy [26]. The solution proceeds by performing the cell flux

balance, updating the flow variables, and smoothing the residuals, at

each stage of the time stepping scheme and each level of the multigrid

cycle. The main difference in the integration strategy is the need to

loop over all blocks during each stage of the integration process. The

use of the double-halo configuration permits standard single-block

subroutines to be used, without modification, for the computation of

the flow field within each individual block. This includes the single-

block subroutines for convective and dissipative flux discretization,

multistage time stepping, and multigrid convergence acceleration.

The only difference between the integration strategies is in the

implementation of the implicit residual averaging technique. In the

single-block solution strategy, a tridiagonal system of equations is

set up and solved using flow information from the entire grid. Thus,
each residual is replaced by an average of itself and the residuals of

the entire grid. In the multiblock strategy, the support for the implicit

residual smoothing is reduced to the extent of each block, in order

to eliminate the need to solve large lxidiagonal systems spanning the

blocks, which would incur a penalty in communication costs and

may not even be defined. This change has no effect on the final

converged solution, and in the present application has not led to any

significant reduction in the rate of convergence.

THE ADJOINT FORMULATION FOR THE EULER EQUA-
TIONS

The application of control theory to aerodynamic design problems

is illustrated by treating the case of three-dimensional design, using

the Euler equations discussed above as the mathematical model for

compressible flow. In our previous work, the illustrative problem

most often used specified the cost function as a measure of the differ-

ence between the current and some desired pressure distribution. In

the case of transonic flows over conventional commercial transport

wings this aerodynamic figure of merit proves to be very effective

since the tailoring of these pressure distributions to achieve close to

optimum performance is well understood by most aerodynamicists.

However, for the case of supersonic design of three-dimensional

configurations, the specification of pressure distributions that will

determine near optimum performance is a considerably more chal-

lenging problem. Thus the development here will focus on the more

salient problem for supersonic design: drag minimization at a fixed
lift.

I ---_ C)' D

= CA cos c_ + C,v sin

= 1 [[
CP (Sxcosa + Sysinot) d_ld_2,SrefJJ.s

where Sx and S v are projected surface areas, Sre f is the reference
area, and d(1 and d(2 are the two coordinate indices that define the

plane of the face in question. Note that the integral in the final

expression above is carried out over all solid boundary faces. The
design problem is now treated as a control problem where the control

function is the geometry shape, which is to be chosen to minimize

I, subject to the constraints defined by the flow equations (5-10). A

variation in the shape will cause a variation 6p in the pressure and
consequently a variation in the cost function

bl = _CAcosc_ +6CNSino_

+ {--CA sin o_ + Ct¢ cos_} _

[OCA OCN }+ t-'_--a cos a + -_- sin a 6a

where 6CA and _CN are variations due to changes in the design

parameters with e_fixed. To treat the interesting problem of practical
design, drag must be minimized at a fixed lift coefficient. Thus an

additional constraint is given by

+

+

which gives

8CL = 0,

$6'N COSa -- 6Ca sin a

{ --C'N sin c_ -- CA cosoQ 6c_

OCN OC,_ sin c_} 6c_ = 0-Tff-. cos. O.

Combining these two expressions to eliminate _, gives

61 = 6Ca cos, + _C_v sin,

+_ {_c_cos. - _c. sin. },
(12)

where l] is given by

= (-C_+_cos,+_sin,)

(Or + _a_ cos. - °cAo,,sin .) '

Since p depends on w through the equation of state (7-8), the varia-

tion 6p can be determined from the variation 8w. If a fixed computa-

tional domain is used. the variations in the shape result in variations

in the mapping derivatives. Define the Jacobian ma_ces

Of,
A, = -ff-ww' C, = QoAj. (13)

Then the equation for 6w in the steady state becomes

0

0,,-7(_F,) = 0,

where

Now, multiplying by a vector co-state variable q,, assuming the result
is differentiable, and integrating by parts over the entire domain,

' a,,-" ._ ' &% JB (r"er6F') &5, (14)--lit. __

t _l J

where fi, are components of a unit vector normal to the boundary.

The variation in the cost function can also be expressed in terms of

6p after (12) and (14) are summed to give,

_'_M_Sref s

+f2 (Sy cos c_ - S_ sin a.) } d_ld_2

+ I ffB Cv{(6S'_c°sa+6Susin_)
Sref s

+f2 (6Sy cos _ - 6Sx sin a) } d(, d(2

- I (,< + (,,)
JD

On the solid surfaces Bs, hi = fi2 = 0. It follows from equation

(1 1) that

0 {0
Q,7, _p 5 (Q,7,)

, Qo26p . + p 6 (Qn:)

Q,738p _5(Q,73)

, 0 0

on any Bs.

(16)

Suppose now that O is the steady-state solution of the adjoint

equation
8¢ &/,

-C'[_=0 inD. (17)

At internal block boundaries, the face integrals cancel from the ad-

jacent blocks. At the far field the choice of the adjoint boundary

conditions depends on whether the flow is subsonic or supersonic.

For subsonic flow, so long as the outer domain is very far from the

configuration of interest, we may set

_1-5 =0 on all BE.

If, however, the flow is subsonic and the boundary is fairly close,

then far field faces may be set by _,1-5 = 0 for incoming waves,

while outgoing waves are determined by the solution. It is noted

that the waves in the adjoint problem propagate in the opposite

direction to those in the flow problem due to the transpose in equation

(17). For supersonic flows, the choice of boundary conditions at the

outer domain can be developed from physical intuition as well as

mathematical analysis. For a given geometry, say a wing, a change

in the surface at any particular point. P, will incur changes in the

flow field and hence the performance in the region defined by the

Mach cone originating at "P. Similarly. it is possible to determine

the region over which surface changes affect the flow condition at a

given point. This region would also form a cone that would point

exactly in the opposite direction of the Mach cone, depending on

local conditions. It is the solution of this reverse problem that the

adjoint represents. The contribution to. say, drag at a given point is

influenced by changes to the surface at all points within the reverse

cone. The correct supersonic far field boundary conditions for the

adjoint equation that are consistent with this reversed character are:

_],l-s = 0 at the exit;

_&-s extrapolated from the interior at the inflow boundary.

Then if the coordinate transformation is such that 6 (JK -1) is neg-
ligible in the far field, the last integral in (15) reduces to

-- /fBs C T 6 F'7 d_ld_:. (18)

Thus by letting _/, satisfy the boundary conditions,

(02Q,71 + q_3Q,72 + _/,4Qrt3) : Q on all Bs, (19)

where

1
Q - , {(S. cos, + S_sin.)

_TM_Sref

cos.- s=sin.)},
we find after integrating by parts again that

S

+

which is independent of w.

(20)

MULTIBLOCK MESH VARIATIONS AND DESIGN VARI-
ABLES

In order to construct 61 in equation (20), the variation in the metric

terms must be obtained in each block. One way to accomplish this is

to use finite differences to calculate the necessary information. This

approach avoids the use of multiple flow solutions to determine the

gradient, but it unfortunately still requires the mesh generator to be

used repeatedly. The number of mesh generations required is propor-

tional to the number of design variables. The inherent difficulty in

the approach is two-fold. First, for complicated three-dimensional

configurations, elliptic or hyperbolic partial differential equations

must often be solved iteratively in order to obtain acceptably smooth

meshes. These iterative mesh generation procedures are often com-

putationally expensive. In the worst case they approach the cost of

the flow solution process. Thus the use of finite difference meth-

ods for obtaining metric variations in combination with an iterative

mesh generator leads to computational costs which strongly hinge on

the number of design variables, despite the use of an adjoint solver

to eliminate the flow variable variations. Second, multiblock mesh

generation is by no means a trivial task. In fact no method currently

exists that allows this to be accomplished as a completely automatic

process for complex three-dimensional configurations.

In our earlier works 140, 39, 25, 19, 20, 21], two methods have

been explored which avoid these difficulties. In the first method,

a completely analytic mapping procedure was used for the mesh

generation. This technique is not only fully automatic and results in

smooth consistent meshes, but it also allows for complete elimination
of finite difference information for the mesh metric terms. Since

the mapping function fully determines the entire mesh based on the

surface shape, this analytic relationship may be directly differentiated

in order to obtain the required information without considering a

finite step. An analytic mapping method requires the geometry

topology to be built directly into the formulation, and only works for

simple configurations. Nevertheless, within these limitations it has

proven to be highly effective [19, 20, 211.

The second method that we have explored is the use of an analytic

mesh perturbation technique. In this approach, a high quality mesh

appropriate for the flow solver is first generated by any available

procedure prior to the start of the design. In examples to be shown

later, these meshes were created using the Gridgen software devel-

oped by Pointwise Inc.[46[. This initial mesh becomes the basis for

all subsequent meshes which are developed by analytical perturba-

tions. In the method that was previously developed for wing-body

configurations it had been assumed that only one surface, say the

wing, was perturbed during a design case. This permitted the use of

a very simple algebraic mesh perturbation algorithm. New meshes

are created by moving all the mesh points on an index line projecting

from the surface by an amount which is attenuated as the arc length

from the surface increases. If the outer boundary of the grid domain

is held constant the modification to the grid has the form

= ,:,d + so,d - x:', (21)

where z i represents the volume grid points, x.., represents the surface

grid points and S represents the arc length along the radial mesh line
measured from the outer domain, normalized so that ,5 = 1 at the

inner surface. Unfortunately this simple logic breaks down in the

case where multiple faces sharing common edges are allowed to

move. Thus in order to use analytic mesh perturbations for the

treatment of the more general problem where multiple faces of a

given block may be simultaneously deformed, equation (21) had to

be modified in a way that resembles transfinite interpolation (TFI)

1481. Unlike TFI, where there is no prior knowledge of the interior

mesh, the perturbation algorithm developed here CO/ARP3D) does

make use of the relative interior point distributions in the initial mesh.

The WARP3D algorithm has been modified from that presented

in reference [431 and is now a three stage procedure. The first

stage shifts the internal mesh points to produce an interim block that

is determined entirely by the new locations of the 8 corner points

defining the block. Corresponding to the motion of each corner point,

each interior point is shifted by a displacement proportional to one

minus the normalized distance along the index lines away from that

corner point. The second stage corrects the perturbations resulting

from the first stage by determining the distance each of the 12 edges

of the stage 1 block needs to be moved to attain the desired edge

locations. These perturbations are then also incorporated into the

volume mesh points through a weighting scheme that is proportional

to the relationship of an individual edge point motion and the volume

point in question. Finally with both corner and edge point motion

accounted for, the third stage checks the perturbation of each point

in all six faces relative to the position of the corresponding point

in the stage 2 block. If the perturbation of the domain involves

a simple translation of all boundary points, the relative changes

from stages 2 and 3 will be zero and all the perturbation will be

accomplished by stage 1. If, however, face points are perturbed

relative to the reference block, then these changes are propagated

to the interior points through relative arc length-based perturbations

along projecting index lines. In general all 3 stages are required.

The idea of WARP3D is to use an initial mesh with good quality

attributes as a starting point, and then systematically perturb this

mesh in a manner such that the original grid quality is maintained,

without the need for expensive elliptic smoothing.

Since our current flow solver and design algorithm assume a point-

to-point match between blocks, each block may be independently

perturbed by WARP3D, provided that perturbed surfaces are treated

continuously across block boundaries. The entire method of creating

a new mesh is given by the following algorithm.

1. All faces that are directly affected by the design variables (active

faces) are explicitly perturbed.

2. All edges that touch an active face, either in the same block or

in an adjacent block, are implicitly perturbed by (21).

3. All inactive faces that either include an implicitly perturbed

edge or abut to an active face are implicitly perturbed by a
quasi-3D form of WARP3D.

4. WARP3D is used on each block that has one or more explicitly

or implicitly perturbed faces to determine the adjusted interior
points.

Note that much of the mesh, especially away from the surfaces, will

not require mesh perturbations and thus may remain fixed through

the entire design process. Close to the surfaces, many blocks will

either contain an active face or touch a block which contains an

active face, either by an edge or by a corner. As the design variations
affect the active faces, the above scheme ensures that the entire mesh

willremainattachedalongblockboundaries.Addedcomplexityis
needed to accomplish step (2) since the connectivity of the various

edges and comers must be indicated somehow. Currently, a list of

master edges and master comers is determined as a preprocessing

step. During the design calculation, these lists are updated and
transferred to all connected edges and comers as the mesh is moved.

Since this mesh perturbation algorithm is analytic it is possible

to work out the analytical variations in the metric terms required
for equation (20). This approach was followed in reference [40].

However since the mesh perturbation algorithm that was used in

the current paper was significantly more complex, and it was dis-

covered that the computational cost of repeatedly using the block

perturbation algorithm was minimal, finite differences were used to

calculate 6Q,j instead of deriving the exact analytical relationships.
Even in cases with hundreds of design variables, the computational

cost of repeatedly re-evaluating/_Q,i for all necessary blocks is

still insignificant compared with the cost of a single flow solution.
The conclusion is that the analytical mesh perturbation algorithm,

WARP3D, unlike an elliptical mesh generation method, is efficient

to the extent that the cost of remeshing can be neglected.

It remains to choose a set of design variables which smoothly
modifies the original shape, say b,. The gradient can then be defined

with respect to these design variables as

6I

_(b,)- 8hi' (22)

where 61 is calculated by (20) and each term b, is independently

perturbed by a finite step. Therefore, to construct G, a basis space of

independentperturbation functions hi, i = !, 2,..., n (n = number

of design variables) must be chosen to allow for the needed freedom

of the design space. In this work, design variables were chosen as a

set of Hicks-Henne functions simply for their ease of implementation

and their proven reliability. The form of the Hicks-Henne functions

which were initially proposed in Reference [12] is given by:

[(b(z) = sin a-z_-_(_ , 0 < z < 1 (23)

Here tl locates the maximum of the bump in the range 0 _< z _<
1 at z = tl, since the maximum occurs when z '_ = 1 where

3'
= log ½/ log tl, or a log t_ = log _-. The parameter t2 controls the

width of the bump. To generalize the application of the Hicks-Henne

functions, which have traditionally been used for the modification of

airfoil sections where the z in equation (23) refers to the chordwise

position, they are applied directly to a parameterized (fi, _) surface

which may be composed of one or more faces in different blocks.

The parameterization may be accomplished in many ways. For this

study, the wing is designed by projecting all surface points to be

perturbed onto a plane and normalizing by the planform outline.

Thus the Hicks-Henne shape functions may be applied as functions

in either the fi, b, or both directions. The design code is further

structured so that these variables may be applied to any subset of

the parametric surface. Alternatives are provided such that these

variables may be linearly lofted in the second direction as opposed

to Hicks-Henne functions in both directions. All of these options

may be prescribed at the input level, leading to a highly versatile

design code in which one or more faces in the multiblock domain

may be perturbed by the design variables. To enforce geometric

constraints, each design variable may be activated on more than one

face. For example, if the thickness of a wing is to be preserved and

the upper and lower halves of the wing are in separate blocks, then

the design variables need to be applied at the proper locations with

the proper weights and on the appropriate faces in both blocks such

that thickness does not change while both surfaces are allowed to be

modified.

DOMAIN DECOMPOSITION AND PARALLEL IMPLEMEN-
TATION

The main strategies that are used to accomplish the parallelization of

the design code are: a domain decomposition model, a SPMD (Single

Program Multiple Data) strategy, and the MPI (Message Passing

Interface) Library for message passing. The choice of message

passing library was determined by the requirement that the resulting

code be portable to different parallel computing platforms as well as

to homogeneous and heterogeneous networks of workstations.

As one can see from the previous sections, obtaining the desired

parallelization by domain decomposition entails the treatment of four

separate parts: the solution of the flow equations, the solution of the

adjoint equations, the calculation of the mesh perturbations, and the

calculation of the gradient integral formulas. No attempt is made

to parallelize the quasi-Newton optimization algorithm. It is thus

assumed in this construct that the determination of the step sizes and

search directions provided by the optimization algorithm is com-

putationally insignificant when compared with the other elements

necessary during the design.

Since the flow and adjoint equations are to be solved using ex-

actly the same efficient numerical techniques, the same paralleliza-

tion techniques used for the flow equations apply to the solution of

the adjoint equations. Therefore, all details of the parallel imple-

mentation corresponding to these first two parts of the program will

be explained with reference only to the flow equations. Further-

more, since the mesh perturbation algorithm WARP3D also works

on a block-by-block basis, the communication necessary to main-

tain mesh consistency can also be addressed by the same domain

decomposition strategies that are used for the state and costate fields.

The subdomains of the flow solution resident on each processor are

divided along the block boundaries such that one or more complete

blocks are allocated to each processor. This has the natural conse-

quence that the communication between subdomains is performed

through the same halo cells that were described earlier for the multi-

block computations, only now, the interior cells corresponding to

given halo cells might reside in a different processor. An alternative

to this would be to partition the complete problem along the three
coordinate directions for each of the blocks in the mesh. Since the

sizes of the blocks can be quite small, this further partitioning would

severely limit the number of multigrid levels that could be used in

the flow and adjoint solutions. The underlying assumption is the fact

that there always will be more blocks in the mesh than processors

available. If this is the case, every processor in the domain would be

responsible for the computations inside one or more blocks. In the

case in which there are more processors than blocks available, the

blocks can be adequately split during a pre-processing step in order

to have at least as many blocks as processors. This approach has

the advantage that the number of multigrid levels that can be used in

the parallel implementation of the code is always the same as in the

serial version, and is only limited by the size of the smallest block in

themesh.
Oneadvantageoftheassignmentof complete blocks to a given

processor is that the number of processors in the calculation can be

an arbitrary integer. The drawback of this approach is the loss of the

exact load balancing that can be achieved by coordinate direction
partitioning. All blocks in the calculation can have different sizes,

and consequently, it is very likely that different processors will be

assigned a different total number of cells in the calculation. This, in

turn, will imply that some of the processors will be waiting until the

processor with the largest number of cells has completed its work

with the result being that the parallel performance will suffer. The

approach that we have followed to solve the load balancing problem

is to assign to each processor, in a pre-processing step, a certain

number of blocks such that the total number of cells in each processor

is as close as possible to the exact share for perfect load balancing.
In practice, this approach yields quite good load balancing [24]. One

must note that load balancing based on the total number of cells in

each processor is only an approximation to the optimal solution of
the problem. Other variables such as the number of blocks, the block

locations, the size of each block, and the size of the buffers to be

communicated play an important role in proper load balancing, and

are the subject of current study.

Now, within each processor, there will be several blocks that need

to communicate with their neighboring blocks. The data for these

neighboring blocks can reside in a different processor, and therefore,

communication is necessary. In order to minimize communication

cost, it was decided to pack all data that needed to be communicated

from one processor to another in one single message, regardless of

the number of blocks that resided in each of the processors. Within

each processor, the data for the flow variables, adjoint variables, and

grid locations are stored on a large one-dimensional array. In order

to accomplish this type of communication, during the pre-processing

step, each processor compiles a pointer list with all the enmes in these

large arrays that need to be sent to all other processors. Similarly,

another pointer list for the locations of the data to be received is

also setup. At the time of communication exchanges each processor

communicates all the information for the blocks that it contains to

those processors that need to receive it. The communication is

implemented using asynchronous (non-blocking) send and receive
MPI constructs.

The final formulas for the gradient of the cost function include a

number of volume and surface integrals (see [22[) that can also be

calculated in parallel. The nature of the integrations is such that.

from a domain decomposition point of view, the problem is nearly

embarrassingly parallel, since the partial values of the integrals in

each domain can be calculated without the need for any communi-

cation at all. Once the individual processors have completed their

calculation, a single global MPI reduce operation can combine the

results into the total gradients, which can then be passed to the nu-

merical optimization algorithm to develop the shape change at each

design iteration.

COMPLETE MULTIBLOCK DESIGN ALGORITHM (SYN87-
MB

With all the necessary components defined for the multiblock adjoint-

based design, it is now possible to outline the complete procedure:

1. Decompose the multiblock mesh into an appropriate numberof

processors, and create lists of pointers for the communication

of the processor halo cells.

2. Solve the flow field governing equations (5-10).

3. Solve the adjoint equations (17) subject to the boundary condi-

tion (19).

4. Por each of the n design variables repeat the following:

, Perturb the design variable by a finite step according to

(23, etc.).

• Explicitly perturb all faces affected by thedesign variable.

• Implicitly perturb all faces that share an edge with an

explicitly perturbed design variable.

• Obtain the new internal mesh point locations via

WARP3D for those blocks with perturbed faces.

• Calculate all the delta metric terms, 6Q,,j, within those

blocks that were perturbed by finite differencing.

• Integrate equation (20) to obtain 61 for those blocks that

contain nonzero 6Q,.:.

• Determine the gradient component by equation (22).

5. Calculate the search direction and perform a line search.

6. Return to (2) if minimum has not been reached.

The basic method here builds on that used in reference 140] with the

proper extensions to treat multiblock domains. In order to imple-

ment the method, equation (17) and boundary condition (19) must

be discretized on the multiblock domain. In the current implemen-

tation, a cell centered, central difference stencil that mimics the flux

balancing used for the flow solution is used. Since this choice of

discretization differs from the one obtained ff the discrete flow equa-

tion Jacobian matrix were actually transposed to form the adjoint

system, the gradients obtained by the present method will not be

exactly equal to the gradients calculated by finite differencing the
discrete flow solutions. However, as the mesh is refined these differ-

ences should vanish. Continuing, the adjoint system so discretized

is solved on the multiblock domain in a fashion identical to that

used for the flow solution. Therefore, the adjoint solver, like the

flow solver, uses an explicit multistage Runge-Kutta-like algorithm

accelerated by residual smoothing and multigridding. Intra-block

communication is again handled through a double halo which allows

for the full transfer of information across boundaries except for the

stencil of support for the implicit residual smoothing.

Step (3) in the above procedure is the portion of the method that

is still treated by finite differences. Fortunately, all of these steps

incur only a trivial computational cost compared with even a single

flow analysis time step. It is therefore possible, without significant
penalty, to leave this in finite difference form even for cases where

many hundreds of design variables are used.

The present implementation uses the quasi-Newton algorithm,

QNMDIE developed by Gill, Murray and Pitfield [10] and en-

hanced by Kennelly [27], to calculate the search direction. It is an

unconstrained optimization algorithm that uses Broyden-Fletcher-

Goldfarb-Shanno (BFGS) updates to the Cholesky factored Hessian

matrix. A complete treatment of the quasi-Newton and other opti-

mization strategies is given by Gill, Murray and Wright [11].

PARALLEL EFFICIENCY

For problems with a low task granularity (ratio of the number o f bytes

received by a processor to the number of floating point operations

it performs), large parallel efficiencies can be obtained. Unfortu-

nately, convergence acceleration techniques developed in the 19g0s

base their success on global communication in the computational

domain. Thus, current multigrid and implicit residual smoothing

techniques could possibly hinder parallel performance in traditional

mesh sizes. However, for larger meshes used in viscous flows and

complex geometries, the granularity becomes low enough, and the

parallel performance is quite high.

A careful implementation of the communication schedules can

yield a design method with excellent parallel performance. The par-

allel efficiency of the design method is presented in Figure 2 for the

case of the automated redesign of a typical business jet con figuration.

In the modeling of the aircraft, a wing-body-naceUe topology was

used containing 72 blocks of varying sizes with a total of 750,000

cells. It must be noted that the parallel speed-ups below are com-

puted using true execution wall-times. The execution time of the

one processor job is taken as that of the most efficient serial im-

plementation of the method. In addition, the complete execution

of the design problem (for parallel performance calculations) was

taken to be that of 2 complete design iterations, which include sev-

eral flow and adjoint solutions. Finally, I/O time was also included

in the performance calculations. As one can see, for a problem of

moderate size such as this, excellent speed-ups are obtained using

up to 16 processors. The speed-up for the 32 processor calculation

shows a breaking trend due to the impossibility of achieving good

load balancing by partitioning a 72 block mesh into 32 processors.

The optimum solution for this problem shows a spread in the load

balancing of almost 10%. This, together with the fact that the serial

parts of the algorithm play a large role for problems with short exe-

cution times (large numbers of processors), accounts for the decrease

in parallel efficiency.

Just as important as the speed-up curves of the method is the true

wall-clock execution time. Two complete design iterations were

completed in under 35 minutes using 32 processors. The rapid re-

sponse of the design method clearly allows the possibility of investi-

gating a large number of configurations, and increases the probability

of arriving at a truly optimum design. Timings for the 1,500,000-cell

HSCT mesh used in the Results sections can be readily extrapolated

from the ratio of the numbers of cells in the two meshes.

NUMERICAL TESTS AND RESULTS

To demonstrate the utility of the design method, a supersonic trans-

port configuration will be used as a testbed for the optimization

algorithm. The baseline supersonic transport configuration depicted

in Figures 4----6 was sized to accommodate 300 passengers with a

gross take-off weight of 750,000 lbs. The supersonic cruise point

is Mach 2.2 with a CL of 0.105. As can be seen in Figure 6, the

planform has a break in the leading edge sweep. The inboard leading

edge sweep is 68.5 degrees while the outboard is 49.5 degrees. Since

the Mach angle at M = 2.2 is 63 degrees it is clear that some leading

edge bluntness may be used inboard without a significant wave drag

penalty. Airfoils which use blunt leading edges were created that

range from 4% thick at the root to 2.5% thick at the leading edge

Mu_b4ock Demgn Code - Parallol Sp4NKlup C_rw

i i i " '..................
3° ..--Ideal i i :: .i/

25

i+
'1'15

Q.

10 •

i i i i i i

5 10 15 20 25 30

Number Of Procossonl

Figure 2: Parallel Speed-ups for the AdJoint Design
Method

break point. The symmetric initial airfoils were chosen with the pur-

pose of accommodating thick spars at roughly 30% and 80% chord

over the span up to the leading edge break. Outboard of the lead-

ing edge break where the wing sweep is ahead of the Mach cone, a

sharp leading edge was used to avoid undue wave drag. The airfoils

were chosen to be symmetric, biconvex shapes modified to have a

region of constant thickness over the mid-chord. Figure 5 shows that

the four-engine configuration features axisymmelaic nacelles tucked

close to the wing lower surface. This layout favors reduced wave

drag by minimizing the exposed diverter area. However, it may be

problematic because of the channel flows occurring in the juncture

region of the diverter, wing, and nacelle at the wing trailing edge. The

leading edge heights of the diverters are determined by the boundary

layer local displacement thickness such that entrainment of boundary

layer flow into the engines is avoided. Since the distance from the

wing leading edge to the diverter leading edge is different for the

two nacelle, this causes a corresponding diverter height difference.

In this design problem, we have chosen to attempt the straightfor-

ward task of recambering the wing so as to minimize the total con-

figuration wave drag while maintaining fixed CL and Mach number.

This represents a much simpler problem than allowing both thickness

and camber to vary while maintaining spar constraints and adequate

fuel volume. However, since the complex nacelle geometry and re-

sulting meshes on the wing lower surface must be moved in unison

with the wing motion, even a camber-only design represents a sig-

nificant challenge for demonstration purposes. Further optimization

benefits could also be attained not only by allowing thickness vari-

ations in the wing optimization but also by performing both body

optimization and nacelle orientation and position optimization. Such

studies will be made in future work.

Returning to the wing camber design at hand, the mesh system

shown in Figure 4 was created with 180 blocks and 1,533,440 com-

putational cells including halos. While the point-to-point topology

forces a larger number of blocks to be used, this is actually benefi-

cial from the standpoint of parallel load balancing. Ninety design

variables of the Hicks-Henne type are lofted in both the spanwise

and chordwise direction. These are spread over the entire wing such

that complete freedom is allowed with the exception of the wing root

intersection and the wing trailing edge. The former was held fixed

since the capability of reintersecting different geometry elements

has yet to be implemented. The latter was held fixed since it was

determined that freedom in the wailing edge would likely produce

waves in the spanwise direction along the trailing edge which would

violate possible flap constraints. Figure 6 shows the solution on the

upper and lower surface for the baseline configuration at the cruise
point. The nacelles and diverters were forced to follow the varia-

tions that were imposed on the wing. This allowed the nacelles to be

included in the optimization without approximations. The rest of the

complex mesh system in and around the nacelles shown in Figure 4

was perturbed automatically as the design proceeded.

Due to a shortage of both resources and time, only a two-design-

cycle run of the optimization algorithm was achieved using 16 pro-

cessors on an IBM SP2. This must be thought of as a very preliminary

result. It nevertheless demonstrates the power of a parallel imple-

mentation of the adjoint-based design method. The total wall clock

time was 1.75 hours for the entire run. Figure 7 shows the final solu-

tion at the end of the second design iteration for both the upper and

lower surfaces. It is clear that large differences have been made to the

upper surface pressure field. The comparisons of the cross-sectional

cuts of both the airfoils and the Cps shown in Figure 8 are more

indicative of the design differences. The strong oblique shock that

ran near the leading edge has been largely softened. Meanwhile, the

lower surface regions around the nacelles have been tuned so as to

cusp the region where the nacelle shocks impinge on the wing lower

surface. This creates a forward facing region with high Cps, thus

reducing wave drag. The final overall pressure drag was reduced

by 3.5% or from CD = 0.00882 to CD = 0.00851. It is confidently

believed that much more could be gained through the investment of

more computer resources.

CONCLUSIONS

In the period since this approach to optimal shape design was first

proposed by the fourth author [19], the method has been verified by

numerical implementation for both potential flow and flows modeled

by the Euler equations [20, 39, 25, 23]. It has been demonstrated

that it can be successfully used with a finite volume formulation

to perform calculations with arbitrary numerically generated grids

[39, 25]. Further, results have been presented for three-dimensional

calculations using both the analytic mapping and general finite vol-

ume implementations [40]. In the last year the technique has been

adopted by some industry participants to perform the aerodynamic

design of future configurations [91. With the parallel implementa-

tion of the multiblock flow solver presented here, the technology has

advanced to the degree that aerodynamic shape design of complete

aircraft configurations with very rapid turnaround is possible.

In this paper we have shown how the complicated design of super-

sonic aircraft configurations including airframe/nacelle interaction

effects can be accomplished in a routine fashion with the current

method. For demonstration purposes a typical supersonic configu-
ration with closely coupled nacelles and diverters was used as a test

case. Nacelles of the axisymmetric type were employed and situated

such that they almost abutted the wing lower surface. The diverters

filling the space between the nacelles and the wing lower surface

were constructed to eliminate the possibility of boundary layer en-

trainment into the nacelle inlets. These geometry entities as well

as the complete wing and body were fully modeled using the new

muitiblock analysis and design method. A preliminary camber-only

design was carried out to optimize the cruise point performance for

the complete aircraft configuration subject to wing thickness con-

straints and fixed lift. All analysis and design cases were performed

on parallel architecture machines in less than one day, demonstrat-

ing that complete configuration designs may be achieved with rapid

turn-around even with the most conservative estimates of available

computational resources. In future efforts, the techniques will be

extended to address both unstructured meshes and flows governed

by the Navier-Stokes equations.

ACKNOWLEDGMENTS

This research has benefited greatly from the generous support of the

AFOSR under grant number AFOSR-91-0391, ARPA under grant

number N00014-92-J-1976, USRA through RIACS, the High Speed

Research branch of NASA Ames Research Center, and IBM. Con-

siderable thanks also goes to David Saunders of Sterling Software
for his help in assembling the text.

References

[1] O. Baysal and M. E. Eleshaky. Aerodynamic sensitivity anal-

ysis methods for the compressible Euler equations. Journal of
Fluids Engineering, 113(4):681-688, 1991.

[21 O. Baysal and M. E. Eleshaky. Aerodynamic design optimiza-

tion using sensitivity analysis and computational fluid dynam-
ics. AIAA Journal, 30(3):718-725, 1992.

13] O. Baysal and M. E. Eleshaky. Airfoil shape optimization

using sensitivity analysis on viscous flow equations. Journal

of Fluids Engineering, 115:75-84, 1993.

[41 G.W. Burgreen and O. Baysal. Aerodynamic shape optimiza-

tion using preconditioned conjugate gradient methods. AIAA

paper 93-3322, July 1993.

[5] G. W. Burgreen and O. Baysal. Three-dimensional aerody-

namic shape optimization of wings using sensitivity analysis.

AIAA paper 94-0094, 32nd Aerospace Sciences Meeting and

Exhibit, Reno, Nevada, January 1994.

[61 G. W. Burgreen, O. Baysal, and M. E. Eleshaky. Improving

the efficiency of aerodynamic shape optimization procedures.

AIAA paper 92-4697, September 1992.

I7] M. E. Eleshaky and O. Baysal. Preconditioned domain decom-

position scheme for three-dimensional aerodynamic sensitivity

analysis. In Proceedings of of the 12th AIAA computational

fluid dynamics conference, pages 1055-1056, July 1993.

[81 M. E. Eleshaky and O. Baysal. Shape optimization of a 3-D

nacelle near a flat plate wing using multiblock sensitivity anal-

ysis. AIAA paper 94-0160, 32nd Aerospace Sciences Meeting

and Exhibit, Reno, Nevada, January 1994.

10

19]J. Gallman, J. Reuther, N. Pfeiffer, W. Forrest' and D. Bemstorf.

Business jet wing design using aerodynamic shape optimiza-

tion. AIAA paper 96-0554, 34th Aerospace Sciences Meeting

and Exhibit, Reno, Nevada, January 1996.

[10] P. Gill, W. Murray, and R. Pitfield. The implementation of

two revised quasi-Newton algorithms for unconstrained opti-

mization. NAC 11, National Physical Laboratory, Division of

Numerical Analysis and Computing, 1972.

[11] P.E. Gill, W. Murray, and M.H. Wright. PracticalOptimization.
Academic Press, 1981.

[12] R. M. Hicks and P. A. Henne. Wing design by numerical

optimization. JournalofAircrafi, 15:407-412, 1978.

[131 R. M. Hicks, E. M. Murman, and G. N. Vanderplaats. An

assessment of airfoil design by numerical optimization. NASA

TM X-3092, Ames Research Center, Moffett Field, California,

July 1974.

[14] J. Huan and V. Modi. Design of minimum drag bodies in

incompressible laminar flow. Technical report, The Forum on

CFD for Design and Optimization, (IMECE 95), San Francisco,

California, November 1995.

[15] W.P. Huffman, R.G. Melvin, D.P. Young, F.T. Johnson, J.E.

Bussoletti, M.B. Bieterman, and C.L. Hilmes. Practical design

and optimization in computational fluid dynamics. AIAA pa-

per 93-3111, AIAA 24th Fluid Dynamics Conference, Orlando,

Florida, July 1993.

[161 A.C. Taylor III, G. W. Hou, and V. M. Korivi. Sensitivity anal-

ysis, approximate analysis, and design optimization for internal

and external viscous flows. AIAA paper 91-3083, September
1991.

[17] A. Jameson. Solution of the Euler equations for two dimen-

sional transonic flow by a multigrid method. Applied Mathe-

matics and Computations, 13:327-356, 1983.

[18] A. Jameson. Multigrid algorithms for compressible flow calcu-

lations. In W. Hackbusch and U. Trottenberg, editors, Lecture

Notes in Mathematics, Vol. 1228, pages 166-201. Proceed-

ings of the 2rid European Conference on Multigrid Methods,

Cologne, 1985, Springer-Verlag, 1986.

[19] A. Jameson. Aerodynamic design via control theory. Journal

of Scientific Computing, 3:233-260, 1988.

1201 A. Jameson. Automatic design of transonic airfoils to reduce

the shock induced pressure drag. In Proceedings of the 31st

Israel Annual Conference on Aviation and Aeronautics, Tel

Aviv, pages 5-17, February 1990.

[211 A. Jameson. Optimum aerodynamic design via boundary con-

trol. In AGARD-VKI Lecture Series, Optimum Design Methods

in Aerodynamics. yon Karman Institute for Fluid Dynamics,
1994.

122] A. Jameson. Optimum aerodynamic design using CFD and

control theory. AIAA paper 95-1729, AIAA 12th Computa-

tional Fluid Dynamics Conference, San Diego, CA, June 1995.

[231

[241

1251

[261

127]

[281

1291

1301

1311

1321

133]

[341

A. Jameson. Optimum Aerodynamic Design Using Control

Theory, Computational Fluid Dynam&s Review 1995. Wiley,
1995.

A. Jameson and J.J. Alonso. Automatic aerodynamic optimiza-

tion on distributed memory architectures. AIAA paper 96-0409,

34th Aerospace Sciences Meeting and Exhibit, Reno, Nevada,

January 1996.

A. Jameson and J. Reuther. Control theory based airfoil de-

sign using the Euler equations. AIAA paper 94-4272, 5th

AIAA/US AF/NAS A/IS SMO Symposium on Muitidisciplinary

Analysis and Optimization, Panama City Beach, FL, Septem-
ber 1994.

A. Jameson, W. Schmidt, and E. Turkel. Numerical solutions

of the Euler equations by finite volume methods with Runge-

Kutta time stepping schemes. AIAA paper 81-1259, January
1981.

R. Kennelly. Improved method for transonic airfoil design-by-

optimization. AIAA paper 83-1864, AIAA Applied Aerody-

namics Conference, Danvers, Massachusetts, July 1983.

V. M. Korivi, A. C. Taylor ffl, G. W. Hou, E A. Newman,

and H. E. Jones. Sensitivity derivatives for three-dimensional

supersonic Euler code using incremental iterative strategy. In

Proceedings of of the 12th AIAA computational fluid dynam&s

conference, pages 1053-1054, July 1993.

V. M. Korivi, A. C. Taylor HI, and P. A. Newman. Aero-

dynamic optimization studies using a 3-D supersonic Euler

code with efficient calculation of sensitivity derivatives. A/AA

paper 94-4270, 5th AIAA/USAF/NASA/ISSMO Symposium

on Multidisciplinary Analysis and Optimization, Panama City,

Florida, September 1994.

V. M. Korivi, A. C. Taylor HI, E A. Newman, G. W. Hou, and

H. E. Jones. An incremental strategy for calculating consis-

tent discrete CFD sensitivity derivatives. NASA TM 104207,

Langley Research Center, Hampton, VA, February 1992.

G. Kuruvila, S. Ta'asan, and M. D. Salas. Airfoil optimization

by the one-shot method. In AGARD- VKI Lecture Series, Opti-

mum Design Methods in Aerodynamics. von Karman Institute

for Fluid Dynamics, 1994.

J.M. Lacasse and O. Baysal. Design optimization of single-

and two-element airfoils on multiblock grids. AIAA paper 94-

4273, 5th AIAA/USAF/NASA/ISSMO Symposium on Multi-

disciplinary Analysis and Optimization, Panama City, Florida,

September 1994.

J. Lewis and R. Agarwal. Airfoil design via control theory

using the full-potential and Euler equations. Technical report,

The Forum on CFD for Design and Optimization, (IMECE 95),
San Francisco, California, November 1995.

J. L. Lions. Optimal Control of Systems Governed by Par-

tial Differential Equations. Springer-Verlag, New York, 1971.

Translated by S.K. Mitter.

11

[351P.A.Newman, G. W. Hou, H. E. Jones, A. C. Taylor Ill, and

V. M. Korivi. Observations on computational methodologies

for use in large-scale gradient-based, multidisciplinary design

incorporating advanced CFD codes. NASA TM 104206, Lang-

ley Research Center, Hampton, VA, February 1992.

[361 O. Pironneau. Optimal Shape Design for Elliptic Systems.

Springer-Verlag, New York, 1984.

137] O. Pironneau. Optimal shape design for aerodynamics. In

AGARD-VKI Lecture Series, Optimum Design Methods in

Aerodynamics. yon Karman Institute for Fluid Dynamics, 1994.

[381 J. Reuther, S. Cliff, R. Hicks, and C.P. van Dam. Practical de-

sign optimization of wing/body configurations using the Euler

equations. AIAA paper 92-2633, 1992.

[391 J. Reuther and A. Jameson. Control theory based airfoil design

for potential flow and a finite volume discretization. AIAA

paper 94-0499, 32rid Aerospace Sciences Meeting and Exhibit,

Reno, Nevada, January 1994.

[40] J. Reuther and A. Jameson. Aerodynamic shape optimization

of wing and wing-body configurations using control theory.

AIAA paper 95-0123, 33rd Aerospace Sciences Meeting and

Exhibit, Reno, Nevada, January 1995.

[411 J. Reuther and A. Jameson. A comparison of design variables

for control theory based airfoil optimization. Technical report,

6th International Symposium on Computational Fluid Dynam-

ics, Lake Tahoe, Nevada, September 1995.

I421 J. Reuther and A. Jameson. Supersonic wing and wing-body

shape optimization using an adjoint formulation. Technical re-

port, The Forum on CFD for Design and Optimization, (IMECE

95), San Francisco, California, November 1995.

[431 J. Reuther, A. Jameson, J. Farmer, L. Martinelli, and D. Saun-

ders. Aerodynamic shape optimization of complex aircraft con-

figurations via an adjoint formulation. AIAA paper 96-0094,

34th Aerospace Sciences Meeting and Exhibit, Reno, Nevada,

January 1996.

[44] J. Reuther, C.P. van Dam, and R. Hicks. Subsonic and transonic

low-Reynolds-number airfoils with reduced pitching moments.

Journal of Aircraft, 29:297-298, 1992.

[45] J. J. Reuther. Aerodynamic shape optimization using conlrol

theory. Ph.D. Dissertation, University of California, Davis,

Davis, CA, June 1996.

[46] J.P. Steinbrenner, J.R. Chawner, and C.L. Fouts. The GRID-

GEN 3D multiple block grid generation system. Technical

report, Flight Dynamics Laboratory, Wright Research and De-

velopment Center, Wright-Patterson Air Force Base, Ohio, July
1990.

[471 S. Ta'asan, G. Kuruvila, and M. D. Salas. Aerodynamic de-

sign and optimization in one shot. AIAA paper 92-0025, 30th

Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan-

uary 1992.

[48] J.F. Thompson, Z.U.A Warsi, and C.W. Mastin. Numerical

Grid Generation, Foundations and Applications. Elsevier Sci-

ence Publishing Company, New York, NY, 1985.

[49] D.P. Young, W.P. Huffman, R.G. Melvin, M.B. Bieterman,

C.L. Hilmes, and F.T. Johnson. Inexactness and global con-

vergence in design optimization. AIAA paper 94-4286, 5th

AIAA/US AF/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, Panama City, Florida, September
1994.

12

Block II Center

!

Block III

I I I I _: .-" i " - /
, m i i -- - - -,]
, , , i i]]]

i , J.,.J...Jiii,,Z,,.,i
, ,r: _ : i i_"i'.'"'"_
i i i , i

Center

"1" "1" "1
I I I

"1" -I" -I

I I I

/
Block I

Block I Center

Solid

Including Double Halo

Boundary

Figure 3:4 Block interface using a double halo of cells around each block.
Each block's double halo of cells contains information from internal cells in

adjacent blocks.

13

!

0

II

||

tin

I

o_

I

_ _.Jf'_ _ It

("4

,r"4

I

l

16

.tmt

Q_ ,-,

QI'3 _ it

N
o_

o_

0

I

17

_ _ inilill_tan

8a: span station)1= 0.116 8b: span station 7/= 0.374

_ _ inkial _okNiolt

8c: span station z = 0.632

_ _ inRial Iokltiott

it

8d: span station z = 0.871

Figure 8: SYN87-MB Fixed Lift Drag Minimization.
180-Block Mesh, 1,500 K mesh cells, M = 2.2

90 Camber Hicks-Henne variables.

...... , Initial Pressure Coefficient

--, Final Pressure Coefficient.

18

