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ABSTRACT

One of the active areas of computational aeroacoustics is the application of the

Kirchhoff formulas to the problems of the rotating machinery noise prediction. The

original Kirchhoff formula was derived for a stationary surface. In 1988, Farassat and

Myers derived a Kirchhoff Formula obtained originally by Morgans using modern

mathematics. These authors gave a formula particularly useful for applications in

aeroacoustics. This formula is for a surface moving at subsonic speed. Later in 1995

these authors derived the Kirchhoff formula for a supersonically moving surface. This

technical memorandum presents the viewgraphs of a day long workshop by the author

on the derivation of the Kirchhoff formulas. All necessary background mathematics

such as differential geometry and multidimensional generalized function theory are

discussed in these viewgraphso Abstraction is kept at minimum level here. These

viewgraphs are also suitable for understanding the derivation and obtaining the

solutions of the Ffowcs Williams-Hawkings equation. In the first part of this

memorandum, some introductory remarks are made on generalized functions, the

derivation of the Kirchhoff formulas and the development and validation of Kirchhoff

codes. Separate lists of references by Lyrintzis, Long, Strawn and their co-workers are

given in this memorandum. This publication is aimed at graduate students, physicists

and engineers who are in need of the understanding and applications of the Kirchhoff

formulas in acoustics and electromagnetics.

INTRODUCTION

When Ffowcs Williams and Hawkings published their now famous paper on the noise

from moving surfaces in 1969 [1], they used a level of mathematical sophistication

unfamiliar to engineers who would later be the main users of this work. Advanced

generalized function theory and differential geometry were employed by these authors

to derive the Ffowcs Williams-Hawkings (FW-H) equation and to obtain some important

qualitative results in this paper. The subject of generalized functions is very abstract,

particularly as described in books written by mathematicians. The level of differential



geometry needed in acoustics is, however, basic and at the level essentially fully

developed by the end of the nineteenth century. Both of these subjects are not

emphasized in engineering education. It is possible to teach advanced generalized

function theory to engineers if some of the abstractions are left out initially. One needs

to learn how to work with multidimensional Dirac delta functions and their derivatives

concentrated on moving surfaces, i.e. with support on moving surfaces. This goal can
be achieved.

This technical memorandum is on the derivation of the Kirchhoff formulas for moving

surfaces. The main part of this memorandum is the copies of the viewgraphs based on

lectures delivered by the author in the Workshop on Kirchhoff Formulas for Moving

Surfaces at NASA Langley Research Center on February 15, 1995 (see Appendix).

Attempt was made to present all the mathematical machinery needed in the derivation

of Kirchhoff formulas. One of the publications of the author [2], NASA TP-3428 (May

1994), should also be consulted, if needed, to fill in some details. The author and M. K.

Myers have published two papers on the derivation of Kirchhoff formula for moving

surfaces [3, 4] which should be easily comprehended by the readers reading the

material in the Appendix.

Below we briefly introduce the concept of Generalized Functions. Then we discuss

the derivation of the subsonic and supersonic Kirchhoff formulas. Finally we make

some remarks on the development and validation of codes based on the Kirchhoff

formulas.

GENERAUZED FUNCTIONS

Our main reference for this section is NASA TP-3428 [2]. To derive the Kirchhoff

formulas for moving surfaces, we need to learn how to manipulate multidimensional

Dirac delta functions and their derivatives. Some knowledge of differential geometry

and tensor analysis is also essential. In addition to [2], we give some other useful

references on generalized functions as well as on differential geometry and tensor

analysis in this paper [5-13]. To learn about generalized functions, we need a change of

paradigm in the way we look at ordinary functions. Ordinary functions are locally

(Lebesgue) integrable functions, i.e., functions that have a finite integral over any finite

interval. This change of paradigm is actually very familiar in mathematics. For
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example, learning about fractions, negative numbers and complex numbers involves a

change of paradigm although we are not told that the change is occurring.

How do we think of an ordinary function f(x)? We think of this function as a table of

ordered pairs (x, f(x)). A graph of a function is a plot of this table. In generalized

function theory, we need to work with mathematical objects such as the Dirac delta

"function" g(x) with the sifting property

= e (o) (1)

It can be shown that no ordinary function has this property. The Dirac delta function is

an example of a generalized function which is not an ordinary function. To include &(x)

and other such useful but strange objects in mathematics, we change our method of

thinking about functions as follows. Suppose we take a space of functions D which will

be called test function space. We will be more specific about D below. Now given an

ordinary function f(x), let us define the functional

F[_] = .L*".,,f_ dx, _ _ D. (2)

If we take the space D large enough, then there is a possibility that the table of

functional values F[_] where _ _ D can identify f(x). This is actually true if we take

the space D as the space of all c= functions which are identically zero beyond a

bounded interval, i.e., with compact support. Therefore, the new paradigm of viewing a

function is: think of the function [(x) in terms of the table { F[ _ ], _ E D}. We can

show that this table includes an uncountable number of elements.

Next, one shows that the functional F[_] given by eq. (2)is linearand continuous for

an ordinary function f(x) [2, 7-9]° We ask whether all continuous linear functionals are

produced by ordinary functions from eq. (2). The answer is no. For example, the

functional

S[#] = _(0) # _ D (3)
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is linear and continuous. Therefore, the class of linear and continuous functionals is

larger than the class generated by ordinary functions through eq. (2). Now, using our

new paradigm of thinking of a function as a table generated by the functional rule we

say:

a generalized function is identified by the table produced using a continuous linear

functional on space D.

By an abuse of terminology, we say that:

generalized functions are continuous linear functionals on space D.

By this definition the functional in eq. (3) is (represents) the Dirac delta function! Note

that each continuous linear functional on space D produces (represents, identifies,

gives) one generalized function. Ordinary functions then become a subset of

generalized functions called regular generalized functions. Other functions are called

singular generalized functions.

Next the operations on ordinary functions are extended to all generalized functions in

such a way that they are equivalent to the old definitions when applied to ordinary

functions. To do this, one should write the operation in the language of functionals on

space D. For example, the derivative of generalized function F[_] is defined by

= -P[¢] (4)

In this way, many operations on ordinary functions can be extended to generalized

functions [2, 5-9].

Finally, we mention here that the space of generalized functions on D is called D'.

For any singular generalized function F[_], we use eq. (2) with a symbolic function

f(x) under the integral sign. Here the integral does not represent an ordinary integral

but stands for the rule specified by F[_]. For example, g(x) is a symbolic function

which is interpreted as follows. Interpret i' 6(x)t_(x) dx as &[_] = _(0) for all _ _ D,

i.e., in our new way of looking at functions as a table of functional values on space D
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g(x)- {_(0), _ _ D} (5)

Of utmost importance to us are delta functions and their derivatives with support on a

surface f = 0. Here f = f(2) or f = f(._, t). We give the following two results [2]

assuming that IV[I = ] on [ = 0, which is always possible:

(6)

I _(_),_'(f)d_ = Jf=o -_ + 2Ht_ aS (7)

where Hf is the local mean curvature of the surface [ = 0 with dS the element of the

surface area. Also if the function [(._) has a discontinuity across a surface g(._) = 0

with the jump defined as

A f = f(g = 0+)- f(g = 0_), (8)

then

Vf = Vf + Af Vg &(g) (9)

where Vf is the generalized gradient of f(_) (see [2]). Finally, we mention here that

the Green's function method is valid for finding solutions of differential equations with

discontinuities (weak solutions) provided that all derivatives in the differential equation

are viewed as generalized derivatives.

THE KIRCHHOFF FORMULAS FOR MOVING SURFACES

Assume that [(._, t) = 0 is the moving Kirchhoff surface defined such that IVfl = t

on this surface. Let ¢ satisfy the wave equation in the exterior _ of f = 0, i.e.,

132¢ = o _ _ _ (Io)

Extend ¢ to the entire unbounded space as follows, calling the extended function
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The governing equation for deriving the Kirchhoff formula for moving surfaces is then

found by applying the generalized wave operator (D'Alembertian) to 0 to get [2-4]:

_'2_ =-l¢n + l Mnct) &(f)--_c
10
c at [M"*_(:)] -V. [¢, _(f)] (12)

where M n = vn Ic is the local normal Mach number on f = 0, On = B0/ an and

Ot = ao / at.

We can now apply the Green's function method for the wave operator in the

unbounded space to eq. (11) to find the Kirchhoff formula for subsonically moving

surfaces [3]. The formula involves a Doppler singularity making it inappropriate for a

supersonically moving surface. For supersonic surfaces, we derive the Kirchhoff

formula for an open surface (e.g. a panel). The reason is that the Kirchhoff surface is

usually divided into panels and the formula is applied individually to each panel. The

subsonic formula, applies to both open and closed surfaces. However, the supersonic

formula differs for open and closed surfaces. If the formula for an open surface is

known, obtaining the formula for a closed surface is trivial.

The governing equation for deriving the supersonic Kirchhoff formula for a panel is

- -(0n+-'c ]
(13)

where H(jT) is the Heaviside function, j7 is a function such that 37 > 0 on the panel and

f = j_ = 0 defines the edge of the panel. The derivatives on the right side of eq. (13)

are brought inside to get three source terms involving H(_f)&(f), H(.f)&'(f) and

&(.f) &(f) [4]. The solutions of the wave equation with these kinds of sources are

given by the author [2]. The Kirchhoff formula for a supersonically moving surfaces

using the above method was derived and presented by Farassat and Myers [4]. It is a
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particularly simple and straightforward result and easy to apply. This formula requires

the mean curvature H F of the surface _:: F(_; Y, t) = [f(_, "c)]ret. We give the formula

for calculation of H F in the Appendix in terms of the geometric and kinematic

parameters of the Kirchhoff surface f = 0.

SOME REMARKS ON DEVELOPMENT AND VALIDATION OF KIRCHHOFF CODES

The development of a Kirchhoff code requires a good subroutine for retarded time

calculation if the Kirchhoff surface is rotating. The possibility of multiple emission times

for a supersonic panel complicates retarded time calculation, particularly for two nearly

equal emission times. If the Kirchhoff surface is not selected properly for the supersonic

formula, there is the possibility of a singularity [4]. This singularity can be avoided as

suggested by Farassat and Myers [4] or by using two different Kirchhoff surfaces for

different intervals of the observer time. There is a fool-proof test of the Kirchhoff code

that must not be ignored by code developers. Both of the Kirchhoff formula for moving

surfaces, as well as that for a stationary surface, are written such that _ = 0 inside a

closed surface. Therefore, to test a Kirchhoff code, use a point source inside the closed

surface and specify _, _ and _n analytically on the Kirchhoff surface f = 0. If the

observer is now put anywhere inside f = 0 and _ _ 0, then there is a bug in the code.

One must rule out conceptual misunderstanding of the parameters in the formulation

first. It is recommended that one should be familiar with the complete details of the

derivation of the Kirchhoff formulas to avoid conceptual misunderstanding.

There have been many derivations of the Kirchhoff formula for uniform rectilinear

motion of the Kirchhoff surface [14, 15]. These formulas do not have the generality of

Morgans formula derived and rewritten in a new form using modern mathematics by

Farassat and Myers [3]. Myers and Hausmann [16] were among the first to use the new

Kirchhoff formula in aeroacoustics. Other researchers include Lyrintzis, Long, Strawn

and Di Francescantonio [17]. We give separately the publications of Lyrintzis, Long,

Strawn and their co-workers.

CONCLUDING REMARKS

The availability of high resolution aerodynamics and turbulence simulation make the

Kirchhoff formulas discussed here attractive in aeroacoustics. The mathematics for

derivation of these formulas have been under development in the last decade and are
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well within the reach of modern engineers. The final form of the formulas are simple

and relatively easy to apply. The present paper is written as a guide to understanding

the mathematical derivation as well as application of these results.

The viewgraphs in the Appendix give all the necessary mathematical background for

the derivation of the Kirchhoff formulas. Note that the mathematical part of the

Appendix is also suitable for understanding the derivation and the solutions of the

Ffowcs Williams-Hawkings equation. This publication is aimed at graduate students,

physicists and engineers who are in need of the understanding and applications of the

Kirchhoff formulas in acoustics and electromagnetism.
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