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Abstract

Development of design tools to furnish optimal acoustic environments for lightweight

aircraft demands the ability to simulate the acoustic system on a workstation. In order to

form an effective mathematical model of the phenomena at hand, we have begun by study-

ing the propagation of acoustic waves inside closed spherical shells. Using a fully-coupled

fluid-structure interaction model based upon variational principles, we have written a finite

element analysis program and are in the process of examining several test cases. Future

investigations are planned to increase model accuracy by incorporating non-linear and
viscous effects.
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Introduction

An important problem in the design of commercial aircraft is noise reduction in both
the cabin and the outside environment. The need for a low level of noise both inside and

outside the airplane must be balanced with the need to maintain a light structure. We

have undertaken a program of computational modeling of this system in order to develop

the modeling tools necessary for design optimization of future aircraft.

A favorite computational scheme for studying problems of this type is the finite element

method. The finite element method was first used for multi-disciplinary applications in

the 1960's, when it was found to be appropriate for issues including heat conduction,

hydrodynamic lubrication, and eigenvalue solutions of the Helmholtz equation for fluids

vibrating in closed spaces [1], p. 274. One of the earliest instances of the employment of

finite elements in structural-acoustic problems was by the automotive industry. In 1982,

Nefske et al. [2] performed this kind of analysis for passenger car and truck cabins. In this

work they present representations of the acoustic modes within the compartments as well

as frequency response computations using modal synthesis.
Much other research has been done to establish a method of coupling the behavior of

an enclosed fluid to the dynamics of the surrounding structure. Usually this is simply done

by requiring that no fluid enters the solid surface. This implies that the surface normal

component of the relative velocity between the fluid and the structure must equal zero.

The equations of the solid and the fluid are thus solved seperately, and the matching of the
normal velocities at the surface forms the coupling. It is done this way because to start

with the equations of motion for the whole system and simply try to apply a finite element

method (such as a Galerkin method) results in difficult, asymmetric matrices. However,

the problem with separate solution of the equations is that certain terms drop out which

in fact would not drop out if a more complicated model of the interaction between fluid

and structure was used. These terms are the mass terms, and their inclusion would make

for more precise mathematical predictions.

Instead of starting from the equations of motion, we have started from a variational

formulation of Hamilton's principle, and included the fluid-structure interaction as a con-

straint on the system. This formulation is based upon the work of Kock and Olson [3].

In our first case we have ignored gravitational and viscous effects. Though this is not an

improvement upon previous methods, we wanted to use this simplest case as a method of

comparison. It should produce exactlT the same result as solving the equations separately.

and matching velocities. If it does so, the stage is set for the inclusion of additional terms

into the statement of Hamilton's principle which will improve the accuracy of the model.

Variational Formulation

Hamilton's principle is a general statement about the conservation of energy of a system

of particles (see, e.g. Bedford [4]). It states that the value of the integral over time of the

kinetic minus potential energy of the system takes a minimum value. Using the common

notation of variational calculus (see e.g. Courant and Hilbert [5]), this can be written as

_5 (T - U)dt = O
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in the case of a conservative system, where T is the kinetic energy and U is the internal

energy. By using the principle of virtual work, Hamilton's principle is easily extended to

apply to nonconservative systems (in which some force adds energy to the system), and

also to systems where the generalized coordinates are not independent. Physically, this

corresponds to the case where the quantities in question are related by some equations,

and those equations are known as constraints. With the addition of constraints C and

virtual work terms W, Hamilton's principle becomes

6 (T- U + W + C)dt = O. (1)

For the problem at hand, we will use equation 1, with a virtual work term supplied by a

surface force on the sphere, a constraint that enforces velocity matching on the boundary,

and constraints that enforce local and global conservation of mass.

The solid shell contributes kinetic energy, potential energy and a surface force term.

Ts= ,_Ps • -- d_s, j[ 1Us = • _ -g C -gdQs

i"

Ws = ]_ U" fsdrs. (2)
Jl $

Here _s is the solid volume, Us, the solid boundary, U, the displacement vector, _, the

strain vector, C, the material stiffness tensor, and fs is the surface force acting on the

solid.

By taking into account the assumption that the shell is thin, we can change the volume

integrals to surface integrals. This is due to the fact that we assume the displacements are

linearly distributed throughout the thickness of the shell, so that the normal to the element

is preserved - it remains normal and does not change in length under the deformation.

Then the displacement compoments U = (U1, U2, W) can be written as

u1( 1, ¢) = + 0),
= +

where crl,a2,_ are general curvilinear coordinates, ul,u2, w are the components of the

displacement of a point on the reference surface and ill, f12 are rotations. The thin shell

assumptions also allow us to write the rotations in terms of ul, u2, and w. We can write the

strain vector E in terms of the displacements _ by using the strain-displacement relations

in general curvilinear coordinates. These relations will not be reproduced here as they are

lengthy and can be found in many references, see e.g. Kraus [6], p. 31. We will write them

as E = AT, where A is a matrix operator.

We now substitute all of these relations into equations 2 and integrate over the normal

component _. Then the contributions of the solid become

-y- dr=, Us =/r (A_)TQA_dFs "
$
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Q is the matrix t2 after the integration - it is multipied by some combinations of powers

of h. This h is the thickness of the sphere, and Ws, of course, is unchanged. The solid

functional, then, is

Taking the first variational, and integrating by parts in the Ts term gives

/, f

tbI-Is =/Fs(A_) T QA_ dFs + IFs

The fluid contributes the following terms:

hps 02_ iF -2 c_ 2 " 15_dFs - fs • ,S_drs = 0. (3)
$

U/-= ill pf e dfl/,
I

1T/ = "_PI v . v df_I ,
!

where f_f is the volume of the fluid, and e is the specific internal energy of the fluid.
The constraints of local and global conservation of mass, as well as the fluid-structure

interaction , are part of the fluid functional. Hence, this functional is of the form

/,;1[/o{ , ) }II I = pie-- _pfv'v--A1 A-V.(pIg) --A2pf df_f
I

]+ la ----N- + v. dr, + 12 My dt
8

where A1, A2, Aa are Lagrange multipliers, Un is the normal displacement of the fluid bound-

ary, Vn is the normal velocity of the fluid boundary, and My is the mass of the fluid.

Taking the first variation with respect to g and setting each integral to zero gives a

series of equations. These equations reveal the true meanings of the Lagrange multipliers.

This has been done in detail by Kock and Olson [3], p. 467. We will reproduce only their

results. The Lagrange multiplier A1 = _, where _ is the scalar potential (that is,g = V_ ).

In addition, 13 = py _, and A2 is still unknown, so it shall be renamed A. After integration

by parts, the fluid functional becomes

L' { 'ns = s Pse - _ Ps(v_') 2 - _' + v. (Psv_,)

• ) ]0_
- ps+osN aas +IMs dr.

In the linearized case it is assumed that the change in fluid density is only a small

pertubation from the inital density po. By taking Pl = po + p and linearizing about

the initial domain, that is, f/f =*>fifo and Fy =*, rI0, the functional simplifies further.

Following Kock and Olson ([3], p. 485), the expression becomes

2 1 po(V_)2} dflfo, o0
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where Co is the speed of sound. In this case taking the first variation and setting each part

to zero gives

I0

[L oo p0 u, dFf0 ]

[ [( OUnpo Ot + _n 6_ dI".,,-o O,
+ ,/F--t0 -_ =

_A=O. (4)

Finite Element Analysis

We implement the finite element approximation using standard isoparametric elements

(see, e.g., Huebner et al. [1], Ch. 5) to discretize the domain. Since the boundaries of each

element will, of necessity, be curved, the boundary itself must be approximated. For each

coordinate we will write an expression of the form

m

x(r/,_, _',t) = Z Yi(rh_'_)xi(t)" (5)
i--1

Here r/, _, _ are the natural coordinates of the element. Ni are the interpolation functions,

in natural coordinates, and m is the number of nodes per element. We approximate

all of the coordinates in this way. In addition, we use the same interpolation functions

N i to approximate the variables in the problem, that is, u, v, w, qo, andA. Displacement

coordinates axe now (u, v, w) instead of (ua, u2, w) to prevent confusion.

We will use two-dimensional elements to model the sphere, and three-dimensional

elements for the fluid. The approximations are of the form

171

_(r/,_,t) = Z giJ(rl'()uJ (t)'

i,j=l

m

i"-1

m

a(t) = _ _i(0. (6)

where Nij is the 3 x 3m matrix of interpolation functions

and _ is the vector

N ( 100N1 0 . .. 0 Nm

0 N1 . .. 0 0 Nm

_=[u, ,, w, ... um vm Wm].
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The choice of Lagrange polynomials as interpolation functions allows the nodal values

ui, vi, wi, qoi, Ai to have the physical meaning of being the value of the function at that

node. In our problem the nodal values are functions of time. Since we will be forcing

the sphere sinusoidally, we will use Fourier transforms to transform out time and solve

the probelm in the frequency domain. This will, of course, have no effect on the spatial

integrals.
To substitute the approximations into the variational principles derived, it is necessary

to address the issue of differing coordinate frames. Ths interpolation functions are in local

coordinates 7#,_, ( , whereas the variational form is in global coordinates - cartesian x, y, z

in the case of the fluid, and a generalized curvilinear oil, ct2 for the solid. To compound

the problem, in our case all of the nodal coordinates and element information is obtained

from the neutral file output of the commercial finite element code PATRAN. The PATRAN

output has the coordinates of all nodes listed in a global cartesian system. So it is necessary
to undertake various coordinate transformations before the integrals in the variational

expressions can be evaluated.

The fluid expressions give no difficulty in this area. Equation 5 gives the form of
the tranformation fl-om cartesian to natural coordinates. It is known from calculus that

dxdydz = IJIdrld_d( , where IJI is the determinant of the Jacobian matrix of partial

derivatives. Thus the integrals will transform in the following manner:

iv f(X y, z) dx dy dz = iv' f'(rl' _' () IJI d_ d( dC ,

"=/777
where the primes denotate the trasformed function and volume. Substituting equations 6

into the fluid equations 4 yields the following expressions.

m

Z
i,j=l

[d2:i fv po N_ IJI drl d( d( +gj--dV cq

d.Xi i P2 IV i IJI dn d( d(
du n

dt JV C2o dt

o VNi VN s Ial do d_ d(

=0,

L dt poNi(rl,0Nj(r#,OIJIdnd_-,_i poNi(o,_)lJIdr#d_ _u_=O,
1,3=1

m[k __, Ai -cg IJIdrld(d(
l,J-_l

d_i fv po N_ IJI drld_ d(+ -d?

- ,,7 isPo gi(iT, 0 lal d'Td(] '%Xj=0.
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Note that this integration is over the area or volume of the element in natural coordinates,

so that the range of each variable is (-1, 1). Following Kock and Olson [3], we will write

these integrals in shorthand, where subscripts denote vector and matrix components:

" [a_ a_ c_,_ aun _,,,]E t d,_M,}+_,u_- ,7; _, % =o,
lu]=l

i,j=_ [ dt Cij - Ai = O,

k[ t- A_K _ + -_ - = o
i,j=l

The solid elements demand an additional coordinate transformation. This will not

be written out in detail here. The strain-displacement relations written in generalized

curvilinear coordinates are first transformed to a local arc length coordinate system. Then

they are fairly simple to transform into natural coordinates using a Jacobian matrix. The

final result is that equation 3 written with indicial notation in terms of a finite element

approximation becomes

m[/,E ui Nki

1,3=1

d_ui /c h psApk Opq Aqr Nrj IJI drl d( + --_ "---4- Nki gkj IJI d,7 d_

where A is the matrix of strain-displacement relations in natural coordinates.
write this as

]E uiK_+_M_-Fi =0.
1,..7= 1

We can

Then, putting all of these equations together and taking the Fourier transform of both

sides, the linear system to solve becomes

-w2 0 -K _ 0 + iv.,

-K au 0 -K _ A

C ¢pu 0 C _'_T

0 C_,_ 0

+ o o/[ 10 -M _° 0 = 0

0 0 0 0

where the vector [g _ A ] is the vector of nodal values. The next step is to use a complex

solver suitable to this system of equations to solve for the nodal variables. We will use a

linear system solver taken from the fortran subroutine library LAPACK.
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Summary and Conclusions

We have formuated and begun to implement a finite element analysis program based

on variational principles for the problem of sound wave propagation in a spherical shell.

At the time of the writing of this report results were not yet available. The program

has yet to be completely debugged, and several more weeks of work are necessary before

accurate, complete solutions can be obtained. This work will continue over the course of

the next year as we incorporate additional effects into our model in our effort to develop

an improved computational method for structural acoustics problems.
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