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Abstract

A new class of high-order monotonicity-preserving sclmmes for the numerical solution of conserva-

tion laws is presented. Tile interface vahle in these schemes is obtained by limiting a higher-order

polynomial reconstruction. The limiting is designed to preserve accuracy near extrema and to work

well with Runge-Kutta time stepping. Computational efficiency is enhanced by a simple test that

determines whether the limiting procedure is needed. For linear advection in one dimension, these

schemes are shown to be monotonicity-preserving and uniformly high-order accurate. Numerical

experiments for advection as well as the Euler equations also confirm their high accuracy, good

shock resolution, and computational efficiency.



Introduction

We consider higher-order schemes (at least third-order) for the numerical solution of the Euler

equations. Typical solutions to these equations have smooth structures interspersed with disconti-

nuities. The challenge is to develop schemes that are highly accurate in smooth regions and have

sharp nonoscillatory transitions at discontinuities.

Achieving this dual objective remains a daunting task. Among the first attempts, Colella and

Woodward [2] introduced a piecewise parabolic method (PPM), which employs a four-point centered

stencil to define the interface value; this value is then limited to control oscillations. The centered

stencil, however, results in a sclmme with a large dispersion error, and tile limiting procedure causes

accuracy to degenerate to first-order near extrema.

Tlle essentially nonoscillatory (ENO) schemes of tlarten el al. [3] were develot)ed via a different

line of thought. In these schemes, an adaptive stencil is used to select the "smoothest" data,

thereby avoiding interpolations across discontinuities. While an adaptive stencil does avoid spurious

oscillations near discontinuities, it does not make use of all the available data. The weighted-ENO

(WENO) schemes by Liu et al. [11] and Jiang and Shu [9] make better use of the available data

by defining the interface value as a weighted average of the interface values from all stencils. Tho

weights are designed so that in snlooth regions tile scheme nearly recovers a very accurate interface

value using all stencils but, near discontinuities, il recovers the value from the smoothest slencil.

The WENO schemes, however, are slill diffusive: they snlear discontinuities nearly as much as the

ENO schemes.

In this paper, we follow the limiting approach. The interface value is defined by a five-point

stencil. As a result, the leading error is dissipative, and the dispersive error is considerably smaller

than that of the four-point stencil. This interface value also comt)ines well with the three-stage

Runge-Kutta time stepping. Similar to PPM, oscillations are controlled by a limiting procedure.

The key differences, however, are that our limiting is designed to t)reserve accuracy near extrema

and to work well with Runge-Kulta time stet)ping. The resulting schome is accurate in smooth

regions, resolves discontinuities with high resolution, and is also ('f[icient.

Note that a piecewise linear sch(.me of this type was presented by lluynh [5]. Extensions to

piecewise parabolic schemes were t)resente<l by Suresh [18] and lluynh [7]. Tho present scheme



incorporatestheseideaswithin a Runge-Kuttatimeintegrationframework.

In §1,the spatialdiscretizationand the Runge-Kuttatime integrationarereviewed.Section2

describesthe reconstructionprocedure,whichis the keyfeatureof our scheme.Extensionsof this

schemeto systemsof equationsandmulti-dimensionsaredealtwith in §3.Numericalexperiments

appearin §4. Finally,conclusions are presented in §5.

1. Discretization

For simplicity, we describe the methods for tile advection equation with constant speed a,

ut+au_ = 0, (1.1o)

u(x,O) = u0(x) (1.1b)

where t is time, x is distance, and uo(x) is the initial condition. For the inoment, the solution is

assunled to be periodic in x so that no boundary conditions are needed.

Let xs be the cell center of a uniform mesh, Xs+l/2 the interface between the j-th and j + 1-th

cells, and h the cell width. Denote by 5j(t) the cell average of u at time t,

1

/_:s+,/2 u(x,t)dx. (1.2)

Integrating (1.1a) over the cell [X:_a/2, x)+1/2] yields

d---l-+ h _t(X3-t-1/2" t)- U(Xj_I/2,t ) = O. (1.3)

At time t'* = nr where r is the time step, assume that we know t;__ which approximates uj(t '_ ).

We wish to calculate vj9+l. For simplicity of notation, we omit the superscript ,_ when there is no

confusion, e.g., vj denotes vs"

An approximation to u(xj+l/2, t '_) is called the interface value and is denoted by V:+lf2. The

calculation of the interface value from the known cell averages is accomplished in two steps. In

the first or reconstruction step, nonoscillatory approximations of u(xj+l/2, tn) to the left and right

sides of the interface Xj+I/2 denoted by v L V Rj+1/2 and j+l/2 are constructed. This step determines

the scheme's order of accuracy and is the main concern of this paper. In the next or upu,ind step,

• =- _,L .the interface value is determined t)v the wind direction: If (i > 0, ?'j4-I/2 j+l/2' otherwise,

vj+l/2 = v_+l/2. Thus for advection, we need only one of the two values ,,L and ,_,Rj+1/2 _5+1/2" For lhe



Eulerequations,however,wewill needboth, andweemploywell-knownmethodsfor the upwind

step.

Equation(1.3)canbe integratedby a standardRunge-Kuttamethod. Hereweusethe three-

stageschemeof ShuandOsher[15].With v representing {vj}, denote by L(v) the spatial operator

L(v)j = -(v)+l/2 - Vj-l/2). (1.4)

Then this scheme is given by

w (°) = v n

_v(t) = w(O) + aL(w (°))

Vn+ l = W (3)

(1.5)

where (7 = ar/h is the CFL number.

Observe that Runge-Kutta schemes like (1.5) are made up of repeated api)lications of a sing;l(,

stage scheme given by' u,(k) + (rL(u,(k)), k = O, 1, and 2. Moreover, each stage is an explicit Euler

scheme, e.g.,

W( 1 )
a = vj -(_(Vj+l/2 - vj_l/2). (1.6)

Therefore, we first design a monotonicity-preserviug scheme for (1.6) and then extend it to the full

scheme (1.5).

2. Reconstruction

Without loss of generality, we discuss tile reconstruction only for v L- _+1/2, i.e., we assume a > 0.

The reconstruction is carried out in two steps. In the first, step an accurate and stable formula is

used to compute the interface value which is called the original value. In the second step, this vahte

is then modified or limited appropriately to achieve a monotonicity-preserving scheme.

A straightforward choice for VL+l/2 using the five cell averages t,j-2 .... , vj+2 (the same stencil

as the third-order ENO scheme) is

vL+I/2 = (2Va-2 -- lat'a-I + 47V a + 27va+l - 3va+2)/60. (2.1)

Other choices inclu(le a low phase error fourth-or(let formula [8]

vjL1/2 = (9t'j-2 -- 5()t'j_ 1 + 194vj + 104v./+j - 11v5+2)/240 , (2.2)



or a fifth-orderaccurateimplicit formulagivenby,

L L
(3Vj_l/2 + 6VL+l/2 + 'V3+3/2)/10 = (Vj_ 1 + 19v o + 10va+a)/30. (2.3)

The implicit formula has tile advantage of low dispersive and dissipative errors; its disadvantage is

that tile tridiagonal matrix inversion costs more.

2.1 Monotonicity constraint

We derive constraints for the interface value so that monotonicity is preserved by' (1.6). First,

we need a few detinitions, l,el the median of three numbers be lhe number thai lies between the

other two. Let. minmod (x, y) be tile median of x, y, and 0. Equivalently,

' [sgn(x) + sgn(y)] ,nin (Ixl, Ivl).minmod (x, y) = (2.,1)

Conversely, the median function can be expressed in terlns of minmod,

median (x,y,z) = x + minmod (y - x,z - x). (2.5)

The minmod function can be extended to any numt)er of arguments. For k arguments, minmod (zl ..... za. )

returns the smallest argument if all arguments are positive, the largest if all are negative, and zero

otherwise. This function can be coded as

minmod (q,..., zk) = s min(lql ..... Iz_]) (2.6(I)

where

1 ½(sgn( )s= _(sgn(zl)+sgn(z2)) zl)+sgn(za))...½(sgn(zl)+sgn(zk) . (2.6b)

Also denote by' I[zl,..., zk] the interval [min(zl,...,zk),max(zl,...,zk)].

We can now derive a simple condition that preserves monotonicity. At interface j- 1/2, suppose

tile value vIf_l/2 lies between vj-1 and vj:

'_-_/2 e I [_-1, vj].

Next, for the interface j + 1/2, denote

,,_r = _,_+ a(vj -- t'j-l)

(2.7)

(2.s)
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Figure 2.1: Monotonicity-preserving constraint (2.7)and (2.9).

where UL stands for upper limit, and a > 2 (more on c_ momentarily). Suppose the value _,I,
-- " 3+1/2

lies between vj and v UL,

,L vUL].lj+l/2 _ I[vi, (2.9)

Then, after one stage via (1.6), the solution w (.1) lies between _,,_j and vj provided that the timo3

step satisfies the condition

_< 1/(1 + o). (2.10)

Indeed, for increasing data, (2.7) and (2.9) imply that the steepest slope tgL _ va_l satisfies

vUL - va-i _< (o + 1)(vj - t,a_ 1); therefore, (2.10) implies *'a-I -< "' 1) _< *'a' See t:ig. 2.1.

Note that for parabolic reconstruction schemes, a is typically 2. Fbr Runge-Kutta time stepping,

we find that a = 4 works well, while a = 2 tends to cause stair-casing. With o = 4, (2.10) leads to

a CFL number a _< 0.2 but, in practice, a = 0.4 still yields nonoscillalory results.

Next, assume that (2.7) and (2.9) hold for all 3. Expression (2.7) with index j replaced by 3"+ 1

takes the form

L I [t'j, t'j+l •Vj+I/2 E ] (2.11)

The above and (2.9) result in the condition that v L3+1/2 lies in lhe intersection of the two intervals

I[v a, vj+_] and /[va, t, UL]. Oil(" mid of this intersection is t,a. Th(, ollwr is the median of t,j, vj+a,

and v UL, and is denoted by v MP. Using vj as the pivot, v Au' can be expressed by using the miumod

function,

vMl" = _'a + minlnod [?'j+l - t,j, (_(l,) - t,2_ 1 )]. (2.12)

I I I I I I I

xj_ 1 zj+1 x



Thus, (2.9) and (2.11) imply

L vMP].Vj+l/2 E I [vj, (2.13)

The simplest way to satisfy this constraint is to replace the original @+1/2 bv the median of t L. . 3+1/2'

v i , and b'MP:

L L v. vMP_ (2.14)t)j+l/2 +--- median (vj+l/2, 3 :"

Expression (2.14) preserves monotonicity in the following sense: under the CFL restriction

(2.10) if the data {vj} are monotone, then after one stage, {- (1)__vj / are also monotone. This fact

follows because u,J1) lies between vj-1 and 'v3 for all j.

The monotonicity-preserving property extends easily to the full scheme (1.5). Indeed, given

monotone data {vi}, we have just shown that {w0)} are monotone provided the interface values

are given by (2.14) and the above CFL restriction is satisfied. Since {w (1)} are monotone, the

quantities {u, (1) + aL(w(l))} are also monotone because they result fl'om applying a single stage

scheme to {w(_)}. Next, for each j, wJ2) is a combination of vj and (w (_) + cr(L(tv(_)))j with positive

weights independent of j. Therefore, {u,J 2)} are monotone as well. Repeating this argument, it

follows that {wJ a)} are also monotolm. Thus, if the data {vj} are monotone, and the interface

vahms are obtained by (2.1.1), then the cell averages at. the next time level {'v_'+l} are monotone

under the CFL restriction (2.10).

The drawback of (2.14) is that near an extremum, it causes accuracy to degenerate to first-

order. Figures 2.2(a) and 2.2(b) show the loss of accuracy caused by the constraints (2.11) and

(2.9), respectively. Note that the data are on a parabola.

2.2 Accuracy-preserving constraint

To avoid the loss of accuracy, we enlarge the intervals in (2.11) and (2.9) in such a way that

these intervals remain the same for monotone data but, near an extremum, these intervals are

larger, and both contain the original @+1/2"

First, the interval in (2.11) is enlarged by adjoining the value v MD defined below (MD stands

for median). At interface j + 1/2, let v m* and v FR be the values extrapolated linearly from the left

and right, respectively,

1 , l' P't_ 1 (v m" = vj + _(_.j - vj-1), = t,j+l + 2 vj+l -v.j+2). (2.15)
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Figure 2.2: Loss of accuracy near extrema: (a) by (2.11) and (b) by (2.9).

With

where AV stands for average, set

t_'4 V 1= _(vj + v3+ l), (2.16

u MI) = median (v av, v I'll', t, FR). (2.1.

Constraint (2.11) is relaxed to

L , /,MD]l_j+l/2 E I [Vj, t'j+ 1 . ('2.1_)

One can verify that if the four pieces of data {v3_l,r3, vj+l,r3+2} are monotone, then, at lhe

interface j + 1/2, vMD lies between _,5and vj+l, and the above conslraint reduces to (2.11). Near

an extremum as in the case of Fig. 2.3 (a), however, vMD lies outside I[vj, vj+x] and provides room

so that the interval I[v3, vj+l t,'_ID] contains the original v L' j+_12"

The argument (2.15)-(2.18) conw, ys the idea. For the purpose of coding, it is more efficient if

we employ the second differences. Set

and

dj = L'j_ 1 -}- Uj+ 1 -- 2vj, (2.19)

3+1/2 = minmod (dj, dj+l ), (2.20)

where MM stands for minmod. Then, since vFL = vAv - ldj and similarly for v/''R, it follows that

rMl) vAV 1 ._AIAI
.... _aj+l/2 • (2.21)
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Figure 2.3: Enlarged monotonicity iuterval (a) t)y (2.1_) and (b) by (2.23).

Next, the interval in (2.9) is enlarged by adjoining the vahie 'vco: defined below (LC stands for

large curvature). Consider the parabola p determined by the cell averages l'j-l, vj, and the second

difference d (a. quantity similar to dj). A straightforward calculation gives the value at .rj+l/2,

1 , _d.p(xj+ll2) = vj + 7(v_ - Vj_l) +

2d MM givesThe parabola with d = j-l12

1_(v 4AMM?,LC _--Yj -+-2 3 -- t"3-1 ) + 3'_j-1/2" (2.22)

Constraint (2.9)is relaxed to

,L I,LC'].tj+l/2 E I [vj, V UL, (2.23)

Using the fact that o >_ 2, one can verify that if the four pieces of data {vj_2, vj-1, Uj, Uj+I}

are monotone, then, at the interface j + 1/2, v LC lies between cj and vUt-. The above constraint

therefore reduces to (2.9). Near an extremum as in the case of I:ig. 2.3 (b), however, t, l_c lies outside

I [vj, v gr] and provides room so that the interval I [vj, v Wc, v Lc] contains the original v c
j+l/2"

In practice, we reduce the amount of room so that near a non-monotoue discontinuity (such

as a sawtooth profile), constraints (2.18) and (2.23) reduce to (2.11) and (2.9) respectively. Thi_

reduction can be accomplished by replacing d MM byj+_/_ .

dAl4
j+1/2 = minmod (4dj - dj+l, 4dj+a - dj, dj, dj+l ). (2.24)

To clarify lhe role of d M't, assuine that dj and (I3+ 1 are of lhe same sign. Then if da/(tj+l < 1/,1

or da/(lo+] > 4, the above lllililnod of four al'gllnlelltS returns O. Loosely put, whell the second



differenceschangesubstantially,then ,_m4.... j+l/2 = O, and the extended inlervals reduce to the silnple

ones in (2.9) and (2.11). We thus replace expressions (2.21) and (2.22) for each interface j + 1/2

by

w_iD vAV I dM4
= - _t,j+,/2, (2.25)

uLC 1 4 .tA,I4
= t,_ + _(vS - vs_l) + 5_,j_1/2. (2.26)

The intersection [v min, v m_×] of the two intervals I [vj, vs+a, v Me] and I [v3, v UL, v Lc] can be calcu-

lated by

V rain = lllax[ lllin( yj, Vj+l, VIVID), min( va, c t_L, v Lc) ], (2.27a)

vmax = nlin[ ntax(vj, Uj+I, uMD), max(%, t, t'L, t2LC ) ]. (2.27b)

Finally, to ensure thai _'j+I/2L lies ill [t, rain, t max]j, we replace t,La+l/2 by. the inedian of rLJ+_/2,

U rain, aIld l! max:

@+l/2 "- median (vL+l/2, v ram, t,m_x). (2.'28)

The above limiting procedure preserves monotonicity and accuracy. In addition, for most ceils

ill smooth regions, the original t L satisfies constraint (2.13) a priori. In this case, tile limitingj+l/2

procedure (2.24)-(2.28) does not alt(,r tile original t 'L'j+l/2" As a resll]I, we Call use (2.13) to (]etecl

such cells and bypass the lilniting procedure altogether. The condition that the original v L
j+lf 2

lies in tile interval I [15, v MR] is equivalent to (Ij+l/2 - 171)( I'j/_l/2 t ''_[I') _< 0. In practice, this

condition is coded with a tolerance vahle of c = 10-1°:

L ,L vTt,IP )(?)j+l/2 -- Uj)(bj+l/2 -- 5 (" (2.29)

We summarize tile computation of the interface value t)eh)w.

Algorithm for the interface value. Suppose the cell averages {cj} are given, and a >_ O. For

each interface j + 1/2, calculate the original value v Lj+l/2 fronl (2.1), and v _IP fronl (2.12). If(2.29)

holds, then Vj+l/2 = vL+u2, and we move on to tile next interface. Otherwise, calculate ds_l, d:,

ds+ 1 from (2.19), dM4j+l/2 and dM'ls-l/2 from (2.24), uUL from (2.£'), w 4v from (2.16), v M1) and V LC

from (2.25) and (2.26), and v ''i'' ....t,'''_x from (2.27). Fi,,alh', calc,,late cL)+l/2 from (2.2g), and the

interface value is then vs+l/, e = t Ls+l/?"

10



2.3 Remarks

Notethat constraint(2.13)on the interfacevalueis a sufficientconditionfor monotonedata

to remainmonotoneunderRunge-Kuttatime stepping.It maybeviewedasthe analogueof Van

Leer'sconstraint [19] which provides the same type of condition for monotonicity under exact time

evolution. Also note that the geometric framework, the use of the median function, and V MD were

introduced by Huynh in [5].

For advection with a < 0, the interface value v Rj+1/2 is obtained by reflecting the above expres-

sions about x j+l� 2. To be specific, the reconstruction algorithm is the same with {.v3_2, Vj_l, v 3 , vj+l,

vj+2} replaced by {Vj+3, Vj+2, Vj+I,Vj, b'j-1} respectively. Next, the stencil for computing both

@+1/2 and t,Rj+1/2 consists of the six points {Vj_e, ...va+3 }. Therefore, we could define both e'{ '_+1/2

and t,_+l/2 by the quintic fit of all six cell averages without enlarging the stencil (in the case of

Euler equations). The corresponding limited scheme, however, is prone to stair-casing.

lligher-order schemes can be derived using larger stencils. With the same stencil as the ruth-

order ENO scheme, a (2m - 1)th-order scheme can be obtained. For example, for m .... 1. we have

the seven-point formula

v L
'j+l/2 = (-3vj_3 + 25va-2 - 101t,a-1 + 319vj

+214va_l - 38va+2 + 4v)+3)/420,
( 2.30_1 )

and, for m = 5, the nine-point formula

t L
./+1/2 = (4va_,t - 41u./_3 + 199vj_2 -- 641v5-1 + 1879_j (2.30b)

+1375t'a+l - 30St,j+2 + 55'ua+3 - 5u2+4 )/2520.

The same limiting can lye employed for these original interface values. The resulting schemes achieve

high spatial accuracy but remain third-order in lime. For the fourth- and tilth-order Ilunge-Kutta

methods, in order to preserve monotonicity we need the calculation of the time-reversed operator

L [15], which is beyond the scope of this paper.

The above reconstruction depends continuously on the data in the sense that a small change in

the data causes a small change in the interface value. This property, is shared by WENO (but not

by ENO) reconstruction.

3. Extensions

In this section, we describe the extensions of the above schemes to the l';uler eqnations. While

these extensions are standard, the monotonicity-preserving property may not hold because the equa-

ll



tions are nonlinear. Nevertheless, the nnmerical solutions obtained below are generally nonoscilla-

tory.

3.1 Euler system in one dimension

The Euler equations of gas dynamics for a polytropic gas can be written as

ut + f(u)x = 0 (3.1)

where

u = (p, pu, E) T,

f(u) = uu + (O,p, up) T , (3.2)
p = (-_- 1)(E- _ 27PU ).

Here, T represents the transpose; p, u, p, and E are tile density, velocity, pressure, and total energy

respectively; and 7 = 1.4, is tile ratio of specific heats. The speed of sound c is given by (3p/p)l/2.

The eigenvalues of the Jacobian matrix A(u) = 0f/0u are u - c, u and u + c. The matrices of

left and right eigenvectors of A are needed in the reconstruction. These are given by ([3])

L

( b2/2 + _,1"2_ -_,1"2-11"2_ b,l'2
1 - b2 bl u -bl )b2/2- u/2c --511,/2. + 1/2c 51/'2

and

1 1 1
R = u- c u u + c

l 2
H - uc _u H + uc

1 2where bl = ('_- 1)/c 2 and b2 = u2bl/2, H = c2/(7 - 1) + 5u .

Integrating (3.1) over the (:ell [xj_t/2, x_+x/2] yields

)
(3.3)

(3..1)

dfiJdt+ hl [f(u(xj+,/2, t) )- f(u(xj-'/2"t)) ] = O, (3..5)

where fij(t) are the cell averages. The first step in calculating fj+l/2 _' f(u(xj+l/2, U)) is to

reconstruct u on both sides of the interface Xj+l/2.

It is well known that the reconstruction is best carried out in local cha,'acteristie variables [3]. If

{vj} are the approximations to the cell averages at time level n, these local characteristic variables

for the cell [Xj_l/2, Xj+I/2] are given by

wt,: = L(v_)vj+k, for k = -2,2. (3.6)

12



The scalar reconstruction algorithm is now applied to obtain point values w_R1/2 and wit/2 at X2+l/2

and x j-l�2, respectively. The corresponding conservative variables vL+l/2 and V__l/2 are obtained

by the inverse of (3.6)

L = R(vj)wf/2, V__l/2 = R(vj)wRI/2. (3.7)v j+1/2

At each interface j + 1/2, the two values v L and v R3+1/2 j+1/2 are used to calculate fj+l/2 via Roe's

flux-difference splitting [12]. This splitting is implemented here with Huynh's entropy fix [6].

Equation(3.5) is then integrated by the Runge-Kutta scheme (1.5). The time step is given in

terms of tile CFL number a by

rr h
At =

Max (I,,jI + ca)'

Note that the extension described above is standard, but it does not take advantage of the fact

that our reconstruction algorithm leaves the left, and right interface values unchanged in smooth

regions away from extrenla. In these regions, the reconstruction applied to the local characterislic

variables yields a result identical to formula (2.1) applied to the conserved variables {vj}. Thus, the

expense of characteristic decomposition may be avoided for such regions if they could be detected

in a simple manner a.s in [6]. However, we do not pursue this approach here.

3.2 Euler system in two dimensions

An immediate extension of the above scheme Io multi-dinlensions can be accomplished in the

same manner as the finite difference ENO schelnes of Shu and Osher [15] [16]. The idea is to

avoid calculating the mixed derivatives of the reconstruction from cell averages by applyillg the

reconstruction directly on point values of the fluxes. The reconstruction then reduces to two one-

dimensional reconstructions along the coordinate lines. The same Runge-Kutta scheme (1.5) is used

to integrate the equations in time. Here we have chosen the Lax-Friedrichs version (ENO-LLF) in

our numerical experiments. The 2D extension of the schemes derived here are obtained by substi-

tuting our algorithms for reconstruction in place of the scalar one-dimensional ENO reconstruction

therein. Coding aspects of these schemes can be found in [17].

4. Numerical experiments

For simplicity, we present nulnerica] results only for the scheme combining the quartic fit (2.1)

and the accuracy-preserving constrainl (2.2S). We refer to this scheme as the MP5 scheme (MP
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for monotonicitypreserving).Somecomparisonswith ENO3andWENO5schemesareprovided.

ThethreeschemesMP5,WENO5andENO3havethesamestencil,andthefirst twoarespatially'

fifth-orderaccurate.Listingsof the thesethreereconstructionproceduresin Fortranaregivenin

AppendixA. Alsonotethat weemployonly,uniformmeshesand,unlessotherwisestated,the CFL

numberis 0.4.

All computationsarecarriedout ona 100Mtlz R4000SGIIndigoWorkstation,with e = 10 -10

and a = 4. In all cases, the compiler options -r8 -03 were used. We have observed that computing

times vary widely depending on the hardware and compiler options used. Therefore, computing

times are to be viewed only, as an approximate measure of the ef[iciency of the various schemes.

The computing time for the scheme with constant reconstruction and the three-stage Runge-I(utta

time stepping is also provided as a reference. Since the reconstruction is trivial for this scheme,

this computing time reflects the cost of all other calculations except reconstruction.

4.1 Adveetion of a smooth function

We solve (1.1) with u(x, 0) = sin(rrx) 4 with periodic boundaries. We are particularly interested

in the behavior of the errors of the cell averages under mesh refinement. Since the function is

smooth, the most accurate and ef[icient scheme with the given stencil of five cell averages is the

unlimited scheme (2.1). We compare the results of the WENO5 and MP5 schemes to this unlimited

scheme for a = 0.05 in Table 2 (a) and cr = 0.,1 in Table 2 (b). The results from ENO3 arc less

accurate and are not shown.

Note that the errors ot)tained by the unlimited scheme and those by the MP5 scheme are

essentially identical. This confirms that the limiting procedure leaves the quartic fit unchanged

at smooth extrema. At low CI"L numbers, the MP5 scheme approaches the theoretical order of

accuracy of five as can be seen in Table 2(a). In both cases, the MP5 scheme compares favorably

with the WENO5 scheme in both accuracy and efficiency.
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Table - 2: Advectionof sin(Trx)4 by severalschemes,t = 2, Ax = 2/N, CPU time quoted is for

all grids.

Table 2(a): At/Ax = 0.05, CPU time for constant reconstruction: 4.30 sec.

Scheme N

16 2.39(-1)

32 3.45(-2)

WENO5 64 3.51(-3)

128 3.44(-4)

256 1.15(-5)

16 1.17(-1)

32 1.4o(-2)
MP5 64 5.05(-4)

128 1.63(-5)

256 5.2,5(-7)

16 1.17(-1)

32 1.40(-2)
Unlim. 64 5.05(-4)

128 1.63(-5)

256 5.25(-7)

L_ error Loo order La error L1 order CPU time -sec.

2.79

3.29

3.35

4.90

3.06

4.80

4.96

4.95

3.06

4.80

4.96

4.95

1.07(-1)

1.73(-2)

1.75(-3)

8.88(-5)
2.54(-6)
8.o5(-2)
8.14(-3)

3.01(-4)

9.74(-6)

3.14(-7)

2.62

3.31

4.30

5.13

3.31

4.76

4.95

4.96

8.05(-2)
8.14(-3)

3.01(-4)

9.74(-6)

3.14(-7)

3.30

4.76

4.95

4.96

22.33

11.86

6.18

Table 2(b): At/Ax = 0.4,

Scheme N

16

32

WENO5 64

128

256

16

32

MP5 64

128

256

16

32

Unlim. 64

128

256

CPU time for constant reconstruction: 1.05 sec.

L_ error L_, order L1 error Ll order CPU time -sec.

2.39(-1)

3.74(-2)

3.26(-3)

3.00(-4)

1.25(-5)

1.21(-1)

1.77(-2)

1.10(-3)

9.50(-5)

1.04(-5)

1.21(-1)

1.77(-2)

1.10(-3)

9.50(-5)

1.04(-5)

2.68

3.52

3.44

4.58

2.77

4.01

3.54

3.19

2.77

4.01

3.54

3.19

1.07(-1)

1.87(-2)

1.79(-3)

1.11(-4)

6.17(-6)

8.01(-2)

1.03(-2)

6.15(-4)

5.05(-5)
5.42(-6)

8.01(-2)

1.03(-2)

6.17(-4)

5.04(-5)

5.42(-6)

2.52

3.39

4.01

4.17

2.96

4.06

3.61

3.22

2.96

4.06

3.61

3.22

3.30

2.02

1.29
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4.2 Advection of a piecewise continuous function

Next, the initial condition is given by

Uo(X) = exp(-log(2)(x + 0.7)2/0.0009) if - 0.8 _< x _< -0.6,

Uo(X) = 1 if -0.4_<x <-0.2,

uo(x) = 1-[10(x-0.1)] if 0< x < 0.2,

Uo(X) = [1 - lO0(x- 0.5)2] 1/2 if 0.4 _< X <_ 0.6,

Uo(X) otherwise.

(4.1)

=0

This initial condition includes a Gaussian wave, a square wave, a triangular wave, and a semi-

ellipse. We use 200 cells with cr = 0.4. The solutions at t = 2 (after one period or 200 cells) and

t = 20 (ten periods) are shown in Figs. 4.1 and 4.2 respectively. The solid line represents the exact

solution. Also shown are the computing times of the various schemes. Again, note that the MI'5

solutions compare well with those by ENO3 and WENO5 schemes.

Resolution at discontinuities can be enhanced by using steepening techniques as in [4], [21], and

[6]. These techniques are expensive and, while they are effective in one dimension, il is slill not

clear how well they perform in multi-dimensions. Here, we will limit our study to the base schemes

only.

4.3 Euler system in one dimension

In the following three problems, the CFL number is 0.4. and the spatial domain is [-1.1].

For the initial conditions, unless otherwise stated, the subscril)t L denotes -1 <_ x <_ O, and R.

0 < x < 1. The final time is denoted by' tl, and the total number of cells, by ¥.

1. Sod's problem [13.]

(pL,UL,PL) = (1,0, 1),

(PI¢,uR,pR) =(0.125,0,0.1),

tf = 0.4,

N = 100.

Since this problem starts from a singularity, smaller tiine stet)s are used initially' as described in

[6]. The density field from the MP5 scheme is shown in Fig. 4.3. Note that the contact discontinuity

and the shock are resolved with high resolution.
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2. Lax's problem [10]

(flL, UL,PL) = (0.445,0.698,3.528),

(PR, UR, PR) = (0.5,0,0.571),

tf = 0.32,
N = 100.

The density field from tile MP5 scheme is shown in Fig. 4.4. Again, the contact discontinuity

and the shock are well-resolved.

3. Shu's problem [14]

In this problem, a moving shock wave interacts with a density' disturbance and generates a flow

field with both smooth structure and (tiscontinuities. ltere, L stands for -1 _< x _< -0.8, and R,

-0.8 _< x < 1. The initial conditions, final time, and number of mesh points are

(PL, UL,PL)

(PU, um Pn )

tf
j_r

= (3.857143, 2.629369, 10.3333),

= (1 + 0.2 sin(5_rx), 0, 1),

= 0.36,

= 300.

Since tile exact solution is not known, tile solution by ENO3 with 800 cells is used in its place.

The results of MP5 and WENO5 are shown in Fig. ,1.,5. The MP5 scheme cat)tures the shock

with high resolution and resolves all local extrema accurately.

4.1 Euler system in two dimensions

We present results for two well known t)roblems.

1. Oblique shock reflection [1]

The domain [0, 4] × [0, 1] is covered by a uniform mesh of 60 × 20 cells. The boundary conditions

are: at the bottom, solid boundary; at tile right, supersonic outflow; at the left, the conditions are

fixed with

(p,u,v,p) = (1,2.9,0, 1/_);

and at the top,

(p, u, v,p) = (1.69997, 2.61934,-0.50632, 1.52819).

Under these conditions, an oblique shock forms from the top left corner and is reflected by the

bottom boundary. Initially, flow conditions at the left. boundary are set throughout the whole

19



domain. After 10,000 iterations, the solution essentially reaches steady state. The residual drops

roughly 2 orders of magnitude for MPS, WENO5, and ENO3, while for the minmod and first-order

upwind schemes the residual drops to machine zero. (Note that tile minrnod scheme is defined by

wL/2 = w0 + ½minmod (wl - w0,w0- w_l), where w is the characteristic flux in this case.)

The pressure along the line 9 = 0.55 (j=ll) is shown in Fig. 4.6. Concerning accuracy, it

can be seen that the higher-order schemes have small oscillations about the exact solution. These

oscillations are reduced on finer grids for all three schemes. Note that the MP5 scheme yields a

highly accurate solution.

The computing times of the various schemes are also shown in Fig. 4.6. The first-order and

minmod schemes are coded here with the local characteristic decompositions over the full five-point

stencil. This first-order scheme represents the most efficient reconstruction in this framework, and

its CPU time reflects the overhead of the characteristic decomposition. It can be seen from Fig. 1.6

that the overhead is more than half of the total computing time. In other words, unlike the case of

advection, the computing time of the reconstruction step for the Euler equations is less than one

third of the total time.

2. Double Mach reflectioT_ {20]

The computational domain is [0,4] x [0, 1]. The reflecting wall is from (1/6,0) to (4,0). Inilially,

a Mach 10 shock is incident on this wall at (1/6,0)making an angle of sixty degrees with the .r-axis.

To the right of the shock is undisturbed fluid of uniform pressure 1 and density 1.4. To the left of

the shock, the conditions are

(p. u, t',p) = (8.0, 7.14,17,-.1.125, 116.5).

As the shock reflects off the wall, a diffraction pattern is formed. The final time is t/ = 0.2. A

detailed description of the prol)lem and various solutions can be found in [20].

The boundary conditions are: at the bottom, from (0, 0) to (1/6,0), linear extrapolation; fi'Onl

(1/6, 0) to (4, 0), solid boundary: at the right, linear extrapolation; at the left, supersonic inflow;

at the top, time-dependent conditions determined by the exact motion of the Mach 10 shock.

The MP5 and WENO5 solutions, obtained using a 2,'10 x 60 mesh, are shown in Fig. 4.7. It can

be seen that both schemes caplure all the significant fealures of the solut}on such as the two Math

stems and the wall jet.
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5. Conclusions

A newclassof high-order schemes for the numerical solution of hyperbolic conservation laws was

introduced. The key feature of these schemes is the reconstruction procedure which combines an

accurate interface formula with a monotonicity-preserving constraint. The constraint is designed

to preserve accuracy and to work well with Runge-Kutta time stepping. It is shown that, for

advection, if the data are monotone, then the solution is also monotone under a time step restriction.

Numerical experiments confirm that the resulting scheme is accurate in smooth regions, resolves

discontinuities with high resolution, and is also efficient. The new scheme compares favorably with

state-of-the-art schemes such as ENO3 and WEN05.

Appendix-A

In this appendix, we give tile listings of the three higher-order reconstruction algorithms in l:or-

tran. V(J) are the cell averages vj and VL(J) are the computed interface values vL I)MM(X.Y)
j+l/2"

is the minmod function of two arguments while DM4(W,X,Y,Z) is the minmod function of four

arguments.

c-MP5 RECONSTRUCTION

DMM(X,Y) = 0 5"(SIGN(1 ,X/ + SIGN(I ,Y))*

& M1N(ABS(X LABS(Y))

c DM4(_,V,X,Y,Z) = 0 125*(SIGN(1 ,W) + SIGN(I ,X)}*

3.,. ABS( (SIGN(I ,w) + SI(;N(1 ,Y))"

& (SIGN(1 ,W) + SIGN{1 ,Z)) )

& =MINI ABS/W),ABS(X),ABS(Y ),AI_S(Z))

BI = 0 016666666667

B2 = 1 333333333333

ALPHA = 4

EPSM = 1E-10

VOlt = Bl*(2 "V(J-2)-13*V(J-I)

3_ + 47*V(J) + 27.*V(J+I)

Sz - 3.*V(J+2) )

VMP= V(J) + DMM(V(J+I)-V(J),ALPHA*(V(J)-V(J-1)))

IFI(VOR-V(J))*(VOR-VMP).LE EPSM) TtIEN

VL(J) = VOR

ELSE

ELSE

DJM1 = V(J-2)-2*V(J-1)+ V(J )

DJ = V(J-1)-2,*V(J )+ V(J+I)

DJPI = V(J )-2.*V(J+I)+ V(J+2}

DM4JPH= DM4(_ *DJ-DJP1,4 *DJP1-DJ,DJ,DJP1)

DM4JMII= DM4(4.*DJ-DJM1,4 *DJM 1-DJ,DJ,DJM1)

VUL = V(J) + ALPHA'(V(J)-V(J-I))

VAV = o 5*(V(J) + v(J+_))

VMD = VAV - o 5*DM4JPH

VLC = V(J) + 0 5*(V(J)-V(J-1)) + B2"DM4JMH

VMIN = MAX(MIN(V(J),V(J+I ),VMD),

& MIN(V(J),VUL,VLC))

VMAX = MIN(MAX(V(J),V(J+I),VMD),

MAX(V( J ),VIJL,VLC))

VL(J) = VOB + DMM(VMIN-VOFI,VMAX-VOR)

ENDIF

C-WENO5 RECONSTBUCTION
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EPSW = 1.E-6

B] = 1083333333333

B2 = 0,166666666667

DJM1 = V(J-2)-2"V(J-I)+ V(J )

EJM1 = V(J-2)-4"V(J-1)+3=V(J )

DJ = V(J-1)-2=V(J )+ v(J+l)

EJ = V(J- 1)- V(J+l)

DJP1 = V(J )-2*V(J+l)+ V(J+2)

EJPI = 3*V(J)-4 *V(J+I)+V(J+2)

c

DISO = BI*DJMI*DJM1 + 0.25=EJMI'EJM1 + EPS',,V

DIS1 = BI*DJ*DJ + 0,25*EJ*EJ + EPSW

DIS2 = BI*DJPI=DJP1 + 0 25=EJPl=EJP1 + EPSW

C

Q30 = 2.*V(J-2).7.*V(J-1)+ lliV(J )

Q31 = -V(J-1)+5.*V(J )+ 2.*V(J+I)

Q32 = 2.*V(J )+5.'V(J+l) -V(J+2)

C

D01 = DIS0/DIS1

D02 = DIS0/DIS2

A1HA0 = 6.=D01*D01

A2BA0 = 3.=D02*D02

W0 = 1./(1. + AIBA0 + A2BA0)

Wl = A1BA0*W0

W2 = 1 - W0 - Wl

VL(J) = B2"{ %V0=Q30 + _,VI*Q31 Jr V_'2=Q32 }

C

C-ENO3 RECONSTRUCTION

DATA CM(1,1),CM(1,2),CM(1,3)/2 ,-7 ,11 /

DATA CM(2,1),CM(2,i),CM(2,3)/-1,5,2./

DATA CM(3,I),CM(3,2),CM(3,3)/2 ,5 ,-I 1

B1 = 0 166666666667

SP = ABS( V(J+I)- V(J ) )

SM = ABS( V(J )- V(J-1) )

DJ = ABS(V(J+I) - 2=V{J } + V(J-I) )

C

IF(2.=SP .GT. SM) THEN

DJM1 = ABS( V(J )- 2*V(l-I) -t- V(J-2) )

IF(DJ GT 2 =DJM1 ) THEN

ID=I

ELSE

ID=2

ENDIF

ELSE

DJPI = ABS(V(J+2)-2*V(J+I) + V(,] ) )

IF(2.*DJPI .GT D J) TtIEN

ID=2

ELSE

ENDIF

ENDIF

C

VL(J)= (CM(ID,1)*V(J-3+ID) + (:M{ID,2)'VIJ-2+ID) +

& CM{ID,3J'V(J- 1 +ID) )*BI
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