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Non-linear k-e-v 2 modeling

with application to high-lift

By F. S. Lien 1 AND P. A. Durbin 2

The k - c - v--7model has been investigated to quantify its predictive performance on

two high-lift configurations: 2D flow over a single-element aerofoil, involving closed-

type separation; 3D flow over a prolate spheroid, involving open-type separation. A

'code-friendly' modification has been proposed which enhances the numerical stabil-

ity, in particular, for explicit and uncoupled flow solvers. As a result of introducing

Reynolds-number dependence into a coefficient of the e-equation, the skin-friction

distribution for the by-pass transitional flow over a flat plate is better predicted.

In order to improve deficiencies arising from the Boussinesq approximation, a non-

linear stress-strain constitutive relation was adopted, in which the only one free

constant is calibrated on the basis of DNS data, and the Reynolds-stress anisotropy

near the wall is fairly well represented.

1. Introduction

Eddy-viscosity models based on the linear Boussinesq relations are known to be

afflicted by numerous weaknesses, including an inability to capture normal stress

anisotropy, insufficient sensitivity to secondary strains, seriously excessive genera-
tion of turbulence at impingement zones, and a violation of realizability at large

rates of strain. Notwithstanding these defects, eddy-viscosity models remain popu-

lar, and their use in complex flows is widespread due, principally, to their formalistic

simplicity, numerical robustness, and computational economy. Second-moment clo-

sure, on the other hand, accounts for several of the key features of turbulence that

are misrepresented by linear eddy-viscosity models, but is considerably more com-

plex and can suffer from poor numerical stability due to the lack of dominance of

second-order fragments in the set of terms representing diffusion. As a result, the

CPU requirements for second-moment closure models can be high, especially in 3D

flows.

A potential alternative to second-moment closure, but one which retains advan-

tageous elements of the linear eddy-viscosity framework, is to use a constitutive

relation that equates the Reynolds-stresses to a non-linear expansion in powers of

the mean rate of strain and rate of rotation tensors. This may be cast in the form

of a sum of terms, each pre-multiplied by an apparent viscosity--hence the term

'non-linear eddy-viscosity models'. Examples include the models of Speziale (1987),

Shih et al. (1993), Durbin (1995a), Craft et al. (1995) and Lien et al. (1996). The
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main differences between the above modeling strategies can be summarized in the
following table:

Authors(s)

Speziale (1987)
Shih et al. (1993)

Durbin (1995a)
Craft et al. (1995)
Lien et al. (1996)

Model
form

High-Re
High-Re
Low-Re
Low-Re

Low-Re

Order in the stress-
strain relationship
quadratic
quadratic

quadratic
cubic
cubic

Number of turbulenct
transport equations
2, k-_
2, k-e

3, k - e - v2

The A2 value the second Reynolds-stress invariant -in Craft et al.'s k - e - A2

model is obtained by solving a related transport equation as follows:

OtA2 + [./" _'A2 = -2-_(dk + Pk - c)

+2- Z(d,j + p,j + - %), (1)

with fragments consistent with second-moment closure. In order to be free from

topological constraints, the unit vector in the wall-reflection term is replaced by the

length-scale gradient. The expansion of (1) in 3D curvilinear coordinate systems is

tedious and prone to error. Also, a major drawback of this model is the high level

of sensitivity to the near-wall grid parameters, including resolution, distribution,
and aspect ratio.

The v2-equation in Durbin's k - e - v 2 model, to be addressed in Section 2, was

simplified from second-moment closure on the basis of the IP pressure-strain model

in conjunction with elliptic relaxation. This approach is algorithmically simple,

applicable to the low-Re region, and naturally mimics the kinematic blocking effect
on the turbulence of a solid wall.

Another important feature which distinguishes Durbin's model from most others

is the expression of eddy-viscosity ut, which plays an important role in determining

the correct level of shear stress. In Craft et al.'s model,

t't = 0.734 r"[1 - exp{-0'145exp(l'3@/6)}l x/_{1 - 0.8exp(-Rt/30)}
1 + 1.8q 1 + 0.6,42 + 0.2A_ 5 (kT) (2)

where

and S and (2 are strain and vorticity invariants. While in Durbin's model,

ut = (4)
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One distinct difference between Eqs. (2) and (4) is that the latter does not require

any damping function: a result of using v 2 as the velocity scale in the direction of
the wall. The former, on the other hand, sensitizes ut to S, _, /)t (i.e., Reynolds

number) and A2, with the functional dependency being carefully calibrated on a

range of flows, including straining flow, channel flow, impinging jet, and transi-

tional flow. However when this model was tested for turbomachinery flows at (and

near) off-design conditions, the size of the leading-edge separation bubble was over-

estimated, and in some cases no converged solution could be obtained. This is due

to _1 (strain and vorticity) and A2 being too large along the curved shear layer. As

a result of both parameters appearing in the denominator of ut expression, the level

of shear stress was significantly und__er-predicted (Chen, 1996).

In the present work, the k - e - v 2 model of Durbin (1995b) is applied to high-lift

configurations, both 2D and 3D. In the course of this study, numerical instability

arising from the boundary condition at wall was encountered, due to our use of a

solution algorithm that uncouples the v 2 and f-equations. A 'code-friendly' mod-

ification is introduced, which not only circumvents this numerical difficulty, but

also gives better predictions for transitional flows. This variant is then combined

with the non-linear stress-strain constitutive equation with the aim of improving

the near-wall behavior of normal-stress anisotropy.

2. k-e-v 2 model

The turbulence model uses the standard k - _ equations:

o,k + u. vk = Pk - _ + [(_,+ _)w], (5)

Ore + U • Ve = C_IPk - C_2eT + [(_ + _')Vd. (6)
O"e

k
k = O, e _ 2v--. (7)

y2

On no-slip boundaries, y ---* 0,

The v 2 transport equation is

Otv 2 + U Vv 2 k f --e-- • --= -,_v_+v.[(,+,,)v_], (8)

where kf represents redistribution of turbulence energy from the streamwise com-

ponent. Non-locality is represented by solving an elliptic relaxation equation for

f:

[1 v 2
L"V2f - f = _ (el - rt)T - (el - 1) - - C2-_. k , (9)

where

T=max ,6( )1/2 , L=CLinax ,Cq(T)l/4 . (10)
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The Boussinesq approximation is used for the stress-strain relation:

uiuj 26. vt Sii,
- k 5 - k (11)

where the eddy viscosity is given by

m

vt = C_,v2T. (12)

The constants of the model are:

C, = 0.19, ak = 1, a_ = 1.3,

C,1 : 1.55, C_2 = 1.9

C1 = 1.4, C2 = 0.3, CL : 0.3, C_ = 70. (13)

As y ---+0 -- y being the minimum distance to walls -- and k ---* (1/2v)ey 2,

Eq. (8) becomes:

vO_-_7 - 2nv_7 = k f . (14)

The viscous and kinematic conditions at the wall show that v 2 should be O(y 4) as

y ---+0. In the original k - e - v _ model, n = 1, yielding the boundary condition for
f

f(0) --, (24 - 4n)v2v -i 20v2v--7
- T(o--T ":'- (15)

on no-slip walls.

2.1 Code-friendly modification

Equation (15) works fairly well for coupled, implicit solvers [e.g. INS2D code

of Rogers & Kwak (1990)]. However, for explicit and uncoupled schemes, numer-
ical instability arising from y4 in the denominator of Eq. (15) sometimes occurs.

Therefore, a code-friendly modification is made here by setting n = 6, which allows

f(0) = 0 to be imposed as the boundary condition. In addition, C_1 and C_ are

replaced by

C_1 = 1.55 + exp(-A,R_)lA,=O.OO2SS, C,2 = 1.92, (16)

where Ry = yv'_/v, and the other model constants are:

C, = 0.19, ak = 1, a_ = 1.5,

C1 = 1.4, C2 = 0.3, CL = 0.17 C, = 70. (17)

2.1.1 Fully-developed channel flow

The model constants, in particular A_ = 0.00285 and CL = 0.17, were first

calibrated with the channel-flow DNS data of Kim et al. (1987) and then optimized
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FIGURE 1. Channel flow: (Left) mean velocity; (Right) k and v 2. DNS: • velocity;

A k; o v 2.

on the basis of 2D/3D separated flows to be presented later. As seen in__Fig. 1,

both the mean-velocity and turbulence profiles, the latter including k and v 2, agree

reasonably well with the data.

2.1.2 By-pass transitional flow over a fiat plate

The second case examined here is the flow over a flat plate with free-stream turbu-

lence intensity Tu = 3% and dissipation length scale g_ = 10 ram. The experimental

study was conducted at Rolls Royce Aeroengines in Derby, UK. The__ skin-friction

distributions, obtained with the original and code-friendly k - ¢ - v 2 variants and

Lannder-Sharma model (1974), are shown in Fig. 2(L). As seen, introducing the

Ry-dependency in C,1 for the code-friendly variant improves transition predictions.

Although the resulting onset of transition is slightly earlier than that returned by

the Launder-Sharma model, the length of transition is better represented. As the

flow becomes fully turbulent, the velocity profiles obtained with both k - ¢ - v 2

variants are almost identical as demonstrated in Fig. 2(R).

2.2 Non-linear constitutive relation

A general constitutive relation of the type proposed by Pope (1975) can be written

as:
10

uiu j 2 _. .

a,j - k 5 u = Z Ga(SO'ftO'-_/k'T)T_" (18)
A=I

1

where T/lj = Sij, T 2 = Sik_kj --_ikSkj, T_ = SikSk) - g6i)StkSkt" ". Truncating
at the third term for simplicity gives rise to

tQ

aij : --_Sij + G2(Sik_kj -- _'_ikSkj) + G3(SikSkj -- 1--_iJSIkSkt)'3 (19)

where
OUi OUj

OU, OUj f_,i - • (20)
S_j = Ox---_+ Ox--_' O_j Oxi
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Two constrains for parallel flow will be imposed:

a22 ---- (t_--_, all = aa22 = aa-gr, (21)

_2 2 These yieldwhere av--_- = k 3"

G2 _ 1 (1 -S__)a_T2, Ga _ 3 (1 + a)a-_T 2 (22)4 2 S 2 '

k OU k
where S = ; -g-_y[ or (= ;v/SijSij/2, in general) and T is defined in Eq. (6). The

remaining unknown, a, can be evaluated from DNS data of channel flow (Kim et

al., 1987), boundary-layer flow (Spalart, 1988) and flow over a backward-facing step
(Leet al., 1993). As seen in Fig. 3,

6S

a = -1 15+ 10S (23)

fits DNS data reasonably well. The algebraic model was initially used by Durbin

(1995a) as an a postiori formula for evaluating uiuj. In order to apply Eq. (19) to

mean flow prediction while preventing computational intractability, the coefficients
G 2 and G 3 are modified as:

1 (1 -- -- G3 3 (1 + a)a-_-T2"
4 S 2a)a'2 T2 ' _ S 2

G 2 (24)
+1 2 +1

3. Numerical method

All flows have been computed with the STREAM general geometry, block-struct-

ured, finite-volume code (Lien _z Leschziner, 1994a). Advection is approximated

by a TVD scheme with the UMIST limiter (Lien & Leschziner, 1994b). To avoid

checkerboard oscillations within the co-located storage arrangement, the "Rhih and

Chow" interpolation method (1983) is used. The solution is effected by an iterative

pressure-correction SIMPLE algorithm, applicable to both subsonic and transonic

conditions (Lien & Leschziner, 1993).
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FIGURE 4. A-aerofoil: geometry and partial grid

4. Results and discussion

4.1 Aerospatiale A-aerofoil

Computations for the A-aerofoil have been performed at 13.3 ° incidence, with

transition on the suction side prescribed at 12% of chord. The geometry and a

partial view of the grid are given in Fig. 4. The Reynolds number, based on free-

stream velocity and chord length, is 2.1 x 106. Solutions have been obtained on a

grid containing 177 f 65 lines, extending to 10 chords into the free stream.

In total, four turbulence-model variants have been applied to this case [compar-

isons to second-moment closure can be found in Lien &: Leschziner (1995)]:

(1) the low-Re k - e model of Lien & Leschziner (1993);

(2) the original k - e - v 2 model of Durbin (1995b);

(3) the code-friendly variant;

(4) the above variant combined with the non-linear stress-strain relation.

The skin-friction and wall-pressure distributions obtained with three linear eddy-

viscosity models, one k - e and two k - ¢ - v 2, are compared in Fig. 5. These, as

well as the associated profiles of streamwise velocity and shear stress on the suction

side in Figs. 6-7, clearly demonstrate the superiority of k - ¢ - v 2 variants relative
to the conventional k - ¢ model.

Attention is turned next to comparisons between linear and non-linear k - e - v 2

models in Figs. 8-10 for profiles of streamwise velocity and Reynolds normal-

stresses. It is found from these figures that the Reynolds-stress anisotropy is fairly

well predicted by the non-linear model at x/c=0.5, which is consistent with the con-

straints in Eq. (21) imposed on the constitutive equation. As the flow approaches

the trailing edge, streamline curvature arising from secondary strain becomes impor-

tant and the omission of its production term (,-_ 0__7) in the v2-equation is no longer

valid, resulting in large discrepancies between predictions and data at x/c=0.9.

4.2 DLR prolate spheroid

The shape of this body and a partial view of the numerical grid surrounding it

are shown in Fig. 11. The Reynolds number, based on the chord, is 6.5 x 10 _.
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Computations have been performed at 30 ° incidence in which transition is free.

The solution domain, containing 65 x 65 x 65 lines, extends 10 chords into the outer
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stream.

Numerical solutions have been obtained with two models [comparisons with second-

moment closure can be found in Lien & Leschziner (1995b)]:

(1) the low-Re k - e model of Lien & Leschziner (1993);

(2) the code-friendly k - c - v 2 variant in conjunction with Launder and Kato's

modification in the turbulence production Pk (1993).

A well-known defect of any conventional, linear eddy-viscosity model is that it

predicts excessive levels of turbulence energy in impingement regions, due to the fact

that the irrotational strains appearing in the turbulence-energy equation (,-- Sij Sij)

act to generate turbulence irrespective of their sign. The rationale behind Launder

& Kato's proposal is to partially replace the strain by the vorticity, i.e.

Pk : 0.5VtSij_'_ij. (25)

A similar idea, based on 'realizability' constraints on the turbulence time scale,

has been suggested recently by Durbin (1996), in which a upper bound to k/e

proportion to v/2/SijSij was introduced. As a result, the rate of turbulence-energy

generation in the vicinity of stagnation regions becomes linear, which is similar to

that returned by most of the non-linear eddy-viscosity models mentioned in Section
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FIGURE 11. Prolate spheroid: geometry and partial grid

1; those models use

C', _ . (26)
1 + _ v/0.5S_j S,j

Azimuthal variations of skin-friction magnitude and direction at four streamwise

locations are shown in Figs. 12 and 13, and the circumferential distributions of wall

pressure are given in Fig. 14. As seen at x/2a = 0.223. the _'-.- - _,_ model in

conjunction with Launder & KatCs modification returns a transition-like behavi()r

in the boundary layer close to the windward side. Although the model is unable

on fundamental grounds to predict, any aspect of natural transition, the predicted

transitional phenomenon is mainly due to a strong supl)ression of turbulence energy

at the impingement regions, in which the flow becomes 'laminar', comt)ined with the

fact that the free-stream turbulence diffuses into the boundary layer and ultimately

triggers transition. It is clear from Fig. 14 that the extent, of 1)ressure plateau

regions, signifying the azimuthal extent of separation zone, at .r/2a > 0.564 are

under-estimated by both models. This observation is consistent with the azimuthal

distributions of skin-friction direction "_ shown in Fig. 13; 2, = 0 denotes either

the separation or the reat.tachment point. The performance of I,' - _ - t,2 model

is slightly better than that of k - e in terms of the extent of the separation zone.

Some of the discrepancies between predictions and experiment might be due to the

grid density adopted here; in particular, close to the rear end of the spheroid it is

too coarse and a grid-refinement test is required.

5. Conclusions

A computational study has been undertaken to investigate the predictive capa-

bilities of 1¢ - e - v: variants when applied to high-lift configurations, including

2D aerofoil and 3D prolate spheroid. Both the linear and non-linear stress-strain

constitutive relations are examined. The outcome of the present study may be
summarized as follows:
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modified k - e - v2;

j
, _ i i I ' ' i , I ' _ i i I ' i i

50 100 150

o expt.; .... k - e;

m

(1) The k-_- v 2 model and its variants, whether linear or non-linear, return superior

predictions relative to the conventional k - e model.

(2) This superiority can be attributed to the use of v 2 as the velocity scale in the

eddy-viscosity expression without resorting to an ad hoc damping function.

(3) The v-7 is obtained from a simplified form of Reynolds-stress transport equation,

governing the turbulence intensity normal to streamlines, the pressure-strain term

of which is represented mathematically by an elliptic relaxation model.

(4) A code-friendly modification is proposed here, including the assurance of the

near-wall behavior v 2 ---* O(y 4) as y --+ O, the introduction of R_-dependency in

C_l, and the use of f = 0 as the boundary condition on no-slip boundaries. As a

result, the numerical stability, in particular, for the uncoupled solution procedure

used herein is greatly enhanced.

(5) The introduction of Ry in C_] yields improved results for the transitional flow.

However, it requires the minimum distance to walls, which can be difficult to

apply to complex geometries.

(6) Following a similar idea suggested by Durbin & Laurence (1996), a first attempt
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has been made by adopting

C,1 = 1.44(1 + 0.0333 k_¢_), C,2 = 1.85, CL -: 0.188,

and preliminary results for flows over a flat plate and the A-aerofoil, described in

Sections 2.1.1-2.1.2, are given in Figs. 15-17. As seen, the use of _/k/-v -ff returns

f---

very similar mean-velocity profiles for the A-aerofoil case. However, the onset of

transition for the flat-plate case is too early and the length of transition is too

long.

(7) In order to improve the performance of k -e -v 2 model for both transitional and

fully turbulent flows, in particular, in complex geometries, instead of adopting
t"--

R_ and _/k/-v -if, there is a need to devise a new parameter, depending on the local

Reynolds number and avoiding the use of the minimum distance to walls.

(8) The level of normal stress anisotropy returned by the non-linear model is fairly

well represented at the mid-chord of A-aerofoil, where the curvature effect is

unimportant. Close to the trailing edge, however, both u 2, v 2 and, consequently,

k and its production Pk are under-predicted. Since Pk .... t °_-_U 4- 0_._u]0__v +...
-- v_k Oxj -- OXi i OX_

and the mean-velocity profile and, hence, its gradient atx/c = 0.9 are in good

agreement with the data, this indicates that ut is too low, which is consistent
with the under-estimation of v 2 at the same location.
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x/2a= 0.835

-1

Cp

1;
_2a= 0.232

0 , r _ I _ I I _ I = I I _ --

-1

FIGURE 14. Prolate spheroid: pres__sure coefficient.

k - e; -- modified k - e - v2;

x/2a= 0.937

1

OOOOo Ot:_ot:K_DO Oo-

-1

1 i p x/2a= 0.564

7
o._-.%_.,_,

o expt.; o inviscid solution;

Iog,o (C,)

-2.0-

-2.25 0"_.

-2.5

t -_J"
O O O

-q .... , .... , .... °?Y,
4.0 4.5 5.0 5.5 6.0

FIGURE 15. Flat plate: skin friction. • expt.; --

on V/k-/_

based on Ry; ----- based

(9) For open 3D separation, the size of separation zone, reflected by the__azimuthal ex-

tent of pressure plateau, is slightly under-predicted by the k - c -v 2 model, which

might be partially attributed to the grid density adopted here being insuffÉcient.

(10) To ensure a wide range of applicability of the non-linear model, the free coefficients
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,/c x/c= 0.50

0.1

y/c x/c= 0.70

0.1

0.05 0.05

t i

0.0 f r _ _ i 0.0 i .... I I _

0 1 U/Uo 0 1 U/Uo

y/c x/c= 0.90

oli

o.o5 1

o.o i,
0 1 U/U.

FIGURE 16. A-aerofoil: profiles of streamwise velocity, o expt.; --

Rv; ----- based on V/L'/_

based on

1000xCf lO00xCf
x/2a= 0.825 x/2a= 0.936

7.5-

5.0

2.5-

7.5

50 100 150

5.0-

2.5

0.0 0.0

0 0

_ i , I i l 1 i I [ _ i F [ i i i

50 100 150

FIGURE 17. Prolate spheroid: skin-friction magnitude, o expt.; --
t-'--

Ry; --'-- based on _/k/_'_ 2

based on

and their associated functionals need to be more carefully optimized by reference

to different types of flow, featuring separation, impingement, swirl, rotation, and
transition.
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