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Prediction of the backflow and

recovery regions in the backward facing
step at various Reynolds numbers

By V. Michelassi 1, P. A. Durbln 2 AND N. N. Mansour a

A four-equation model of turbulence is applied to the numerical simulation of flows

with massive separation induced by a sudden expansion. The model constants are

a function of the flow parameters, and two different formulations for these functions

are tested. The results are compared with experimental data for a high Reynolds-

number case and with experimental and DNS data for a low Reynolds-number

case. The computations prove that the recovery region downstream of the massive

separation is properly modeled only for the high Re case. The problems in this case

stem from the gradient diffusion hypothesis, which underestimates the turbulent

diffusion.

1. Introduction

The Reynolds Averaged Navier Stokes equations (RANS) equations need a tur-

bulence model for computation of Reynolds stresses that stem from averaging the

non-linear convective terms. A large family of turbulence models exists in the liter-

ature. The models range from simple algebraic expressions for the eddy viscosity to

more elaborate formulations which introduce a separate transport equation for each

component of the Reynolds Stress tensor. Eddy viscosity models such as the k - e

model still represent a good compromise between accuracy and computational effi-

ciency and will be the subject of this investigation. Moreover, the results of a recent

workshop (Rodi et al., 1995) showed that, even though full Reynolds stress models

bring more physics into the model, the large increment in the computational effort

associated with these models is not always followed by a proportional improvement

in the quality of the predictions.

Two-equation models of turbulence have been recently tuned with the aid of

Direct Numerical Simulation (DNS) data (see e.g. Michelassi and Shih, 1991, Rodi

ei al., 1993). This tuning was mostly done to allow modeling of the near wall

region and to reproduce the profiles of the turbulent kinetic energy, k, and of the

dissipation rate e in this critical flow region. The tuning was done by using fully

developed or turbulent boundary layer flows (Rodi and Mansour, 1990). Most of the

so called "low Reynolds number modifications" (LR) to the two-equation models of
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turbulence were able to improve the model capability in tile flow layer close to the

wall. Nevertheless, little or no change at all was found in the core region of the flow
since most of the modifications were designed to vanish away from solid boundaries

(Zhu and Shih, 1993).

The LR models, which allow tile integration of the equations in tile near wall

region, can successfully model a wide range of flows, but often do not allow flows

with strong adverse pressure gradients and/or separation to be computed accurately.

This seems to be a general problem associated with the two-equation fornmlation

irrespective of the treatment of the near-wall region (Michelassi, 1993). In the

backward facing step flow, both an adverse pressure gradient and flow separation

are to be modeled, which makes this test case particularly challenging.

Durbin (1995) computed tile backward facing step flow at different Reynolds

numbers. His computations proved that downstream of the reattachment point the

computed velocity profiles tend too slowly to a boundary layer profile for the high

Reynolds number case, but not for the low Reynolds number case. A similar failure

was encountered by Rodi (1991) with a two-layer model of turbulence. Again,
the velocity profiles in the recovery region tend too slowly to a developed profile.

Durbin and Rodi use forms of the two-equation k - e model which, while based on

the Boussinesq assumption, have very little in conlmon with the treatment. This

indicates that the problems are stemming from the k - e frame and not from the
wall treatment.

This phenomenon is also of great importance in practical flows with engineering

relevance such as the flow in turbomachines. In fact, inlmediately downstream of

the trailing edge of a turbine or a compressor blade, two counterrotating vortices
interact with the wake in a very similar manner to that found for the backward

facing step. The modeling of the wake downstream of the two vortices is of pri-

mary importance in turbomachinery flows because of its impact on tile stator-rotor

interaction. In this case, the computed wake decay, which is similar to the flow

recovery region in the backward facing step, seems to be too slow compared to the

measurements as indicated by a uumber of computations for subsonic and transonic

turbines (Michelassi et al. 1995). These results were shown to be true regardless of

the assumption of a fully turbulent or transitional boundary layer along the blade

profile. In the turbomachinery flow case, it is not clear if the discrepancies are due
to the inherently unsteady nature of the experimental flow field, or to deficiencies

in the model as in the backward facing step where the steadiness of the flow is not
an issue.

Although the vecovev_/ region problem with computing the backstep has been

often pointed out, very little has been done so far to identify the causes of the slow

recovery downstream of the reattachment point. Two-equation models are known to

have theoretical limitations which stem mainly from the eddy viscosity assumption.

Still, the ability of these simple turbulence models to mimic a flow with massive
separation and the wake decay needs to be improved.

With this in mind three different backward facing step data sets are used to
compare with the computations and to identify the reasons for the discrepancies
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between computations and measurements in the recovery region.

2. Tile turbulence model

The turbulence model uses the standard k - e equations:

o,_ + u. v_- = P,_- c + [(,.,+ _)V_-l,
drk

(1)

C_IPk -- C_2_ Ill
0to + U-Vc = + [(, + --)V_]. (2)

T 6_

The model constant C_I is computed as:

0.25

C(_ =1.3+(1+( / ))-d-2L -2-4' (3)

in which d is the minimum distance from the wall, and L is the turbulence length

scale. On no-slip boundaries, g --* 0,

k
k=0, e _ 2u--.

y2

Two additional equations are solved. The first tr__ansport equation determines the

velocity fluctuation normal to the wall, v 2. The v 2 transport equation is

Otv 2 + U. Vt, 2 = kf - t, _ + V-[(v + vt)K7v2],
(4)

where kf represents redistribution of turbulence energy from the streamwise com-

ponent. Non-locality is represented by solving an elliptic relaxation equation for

f:

in which

L2V,2 f f C1T 1 Pk.... C2 _, , (5)

T = Inax ,6 ) 1/2 , L : eL max , Cr/(-- 1/4 . (6)

The Boussinesq approximation is used for the stress-strain relation:

uiuj 25.. vt
(til = It" -- -3 U = ---'ff Sij,

where the eddy viscosity is given by

vt = C.v2T.
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The constants of the model are:

C_, = 0.19, ak = 1, a_ = 1.3, C_1 = 1.55, C_2 = 1.9

C1 = 1.4, C2 = 0.3, eL -_ 0.3, C, I = 70.

The boundary conditions are

(7)

m

v2 = 0, f(0)-,

m

20_2v 2

6(o)¢

on no-slip walls.

The original model formulation was modified by Durbin and Laurence (1996)

in the expressions for the length and time scales, L and T, and the definition of

the model constant C_1. The length and time scales are now computed to allow a

smoother switch from the core-flow values to the near-wall values as follows:

(s)

The selected values of the constants are C v = 0.2, C¢ = 70, and CT = 6.

In Eq. (3) the scaling of C¢1 in the near wall region is done by using the wall

distance y. The definition of the wall distance can be problematic in complex flows

so that Durbin and Laurence (1996) replaced Eq. (3) with another expression based

on v 2 which is suited to feel the proximity of the wall:

C,, = 1.44 (1 + 1/30(k/vY)'/2), (9)

This expression, like the one in Eq. (3), is s__upposed to increase the production of

dissipation in the near wall region, where v 2 goes to zero faster than k. Both the

original formulation, hereafter referred as form (1) of the model, and the modified

formulation, hereafter referred as form (2), have been applied with the same inlet

and boundary conditions.

3. The data sets and the computations

The turbulence model with the two different forms described in the previous

section was applied to the computation of three different backward-facing step ge-

ometries and different Reynolds numbers.

The first experimental data set considered here is that of Driver and Seegmiller

(DS) (1985) which allowed testing the model in a high Reynolds-number configu-

ration with a Reynolds number based on the step height of 37,500. Measurements

were taken by using laser velocimetry and include mean and instantaneous quanti-

ties and triple correlations.

The low Reynolds-number case refers to the measurements by Kasagi and Mat-

sunaga (KM) (1995). In this case the flow Reynolds number, based again on the
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FIGURE 1. DS Velocity profiles, o experiments,

------model version (2).

-- model version (1),

step height, is 5540. Measurements were taken by using a particle image velocime-

try method (PIV) which allowed measuring instantaneous and average quantities.

The measured profiles were also carefully tested to verify mass conservation. A

similar Reynolds number (Re: = 5100) was achieved by Le and Moin (LM) (1994)

which produced a DNS data set for the backward facing step geometry. The large
amount of information on the flow field makes this DNS data set. very valuable for

testing and developing two-equation models of turbulence.

The investigation is carried out on three different data sets to test the model

under different Reynolds munber conditions. At the present stage of research it is

still impossible to perform the DNS of a backward facing step at high Reynolds

number, so the use of an experimental data set was compulsory. The two data sets

for the low Reynolds number case were selected to verify that model testing done

by using a classical experimental data set could be extended to the DNS data for

such a flow fieht.

The computational grids for the three test cases have 120 x 120 grid nodes clus-

tered near solid wa,lls. The inlet section profiles have been careflllly specified as

follows. For the DS case the inlet profiles have been computed by a boundary layer

code until the lnomentum thickness of 5000 was reached (Durbin, 1995). These pro-

files were then imposed at the inlet section of the computational domain. For the

K3I case the inlet profiles were those of a fully developed channel flow, as indicated

by t,:asagi and Matsunaga. (1995) in their discussion of the flow nature upstream of

the separation point. For the test case proposed by Le and Moin, the inlet profiles

were those computed by the DNS at the section upstream of the separation point

corresponding to the inlet section of the present computational grid. No other grids

were used for the calculations since the 120 x 120 grid was already found adequate

for this kind of computation by Durbin (1995).

The first, set of computations refer to the DS case. Fig. 1 compares the measured

profiles with those computed by using the two versions of the model. In all the
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FIGURE 3. DS Turbulent shear stress profiles. Symbols as in Fig. 1.

following plots the ordinate y = 1 corresponds to the step corner. The reattachment

point is not affected by the change in the model, but the different functions adopted

for the computation of the length scale L, the time scale T, and the coefficient of the

production rate of dissipation C_] show some effect in the backflow region. Here

version (2) of the model moves the computed profiles closer to experiments. A

sensitivity analysis made by changing the coefficients in Eqs. (8, 9) proved that the

model is sensitive to the value of C_, which was set equal to 0.2. The model can

be seen to predict velocity profiles which are steeper than the measured ones in the

backflow region. Moreover, in the recovery region the computations lag behind the

experimental boundary layer profile. The agreement is indeed quite good in terms

of turbulent kinetic energy (see Fig. 2) and turbulent shear stress (see Fig. 3).

Apparently, the models succeed in reproducing the correct level of turbulent kinetic

energy and shear stress with the only exception of a narrow region deep inside of

the backflow, where the maximum of turbulent kinetic energy and turbulent shear

stress are not correctly predicted and somewhat misplaced.
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When moving to the KM and LM test cases, a more careful analysis is possible

due to the large number of measurements. Figure 4 compares the measured and

computed velocity profiles in several stations starting from the separation point for

the KM test case. The agreement is again quite good, and apparently the two

versions of the model give almost identical results in this case. The recovery region

is well predicted here. Again, the backfiow region shows the steep velocity profiles

predicted in the high Reynolds number case, while the experiments show a profile

which seems to indicate quite a low turbulence level. Figure 5 shows the same veloc-

ity profiles for the LM test case. In this last computation the recirculation bubble

length was underestimated by approximately 4%. The backflow region length was

computed in almost perfect agreement with the experiments for the KM case. The

plots also show that the differences in the computation of the length and time scales

in the two versions of the code bring very little change to the computed profiles,

which are almost collapsing on each other, in the low Re case.
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Figures 4 and 5 show that there is very little difference between the L_/ and

KM data sets. Since the information given by the KM and LM cases do not show

significant differences, only tile latter will be described in detail in what follows.

Figure 6 compares the measured and computed turbulent kinetic energy profiles

at several stations starting from the separation point. Tile agreement between com-

putations is generally satisfactory, even though the models overpredict the turbulent

kinetic energy in the backflow region. Of the two, version (2) of the model seems to

reduce the overpredietion. This was also found in the high Reynolds number case.

This overprediction spreads in the shear layer as the flow proceeds downstream.

The overprediction of k seems to have an effect in terms of turbulent shear stress

also, as shown in Fig. 7. Here the turbulent shear stress is overestimated by both

the formulations in the backflow region and underestimated in the recovery region.

The change from overestimation to underestimation takes place gradually across

the reattachment point and the fit between DNS and computations improves only
far downstream.
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Tile LM data set also includes the dissipation rate. Figure 8 shows that tile

computed dissipation rate level is larger than that given by the DNS in tile backflow

region. The e levels are well predicted in the recovery region.

The skin friction coefficients in Figs. 9 and 10 show that version (2) of the model

tends to reduce the recirculation bubble length in the low-Re number case (a similar

trend was also found for the ICM test), whereas the same model seems to increase

the backflow region length in the high-Re case. In the KM case, also, a reduction

of the recirculation bubble length was observed.

4. Discussion and conclusions

The brief description of the computations done in the previous section evidences

how the computed overall flow pattern agrees with the high-Re and low-Re cases,

although some discrepancies between the computations and the measurements (and

DNS) arise in terms of turbulence quantities.

In the recovery region, as already pointed out by several authors, (e.g. Durbin,

1995), the computations recover to a boundary layer profile much more slowly than

experiments would indicate at high Reynolds numbers. This disagreement fades

away for smaller Reynolds numbers, as those typical of the DNS. In the backflow

region the computed profiles seem too steep, which would indicate too large a tur-
bulence level.

Version (2) of the model was found to work slightly better than the original

version of the model in the backflow region. This can be attributed to the different

choice of the length scale formula. In version (1) the model chooses between two

different values of the length scale, whereas in version (2) the expression for the

length scale allows a smooth switch from the two values. Observe that the same

smooth switch is guaranteed for the computation of the time scale. This seems to

play a significant role in the improvement of the results where, due to the small

local Ileynohts n,dnlber, the expressions for the length and time scale are switching

between the two values. In the recovery region the local Reynolds number is larger
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and the beneficial effects of the smooth transition between the two values of the

time and length scale formulas disappear.

In terms of turbulent shear stress, the backflow region again shows some slight

inaccuracies for both the high-Re and low-Re cases. This fits with the shape of the

computed velocity profile, which indicates that the mean velocity gradient and the

turbulence levels are too high. From the DNS data set it is possible to compute

a turbulent viscosity ttt via the definition of the turbulent shear stress given in

the Boussinesq assumption. This sort of computation does not guarantee that the

turbulent viscosity is positive, since there is no guarantee that the mean shear

and the turbulent shear stress always have opposite sign: in fact Fig. 11 shows that

turbulent viscosity computed from the turbulent shear stress by DNS gives negative
values.

The turbulent viscosity is small deep inside the backflow region and grows toward

the reattachment point. The two versions of the model are found to overestimate

the turbulent viscosity in the backflow region. There is very little difference be-

tween the computations all through the computational domain. Observe that a

large turbulent viscosity would imply a large momentum diffusion, which should

decrease the recirculation bubble length. Surprisingly, this is not the case in the

computations: the overestimation in #t is followed by an excellent agreement be-

tween the computed and measured reattachment point. The figure also shows that

the disagreement between the computations and the DNS fades away downstream

of the reattachment point. But the same figure also shows that in the recovery

region the turbulent viscosity is underestimated. The smaller momentum diffusion

in the computation could partially explain why the computed velocity profiles tend

to the boundary layer profiles too slowly. The discrepancies between DNS and com-

putations are mainly in the backflow region and the shear layer, since above the

latter the computations seem to follow the DNS profiles quite well.

The DNS data set also contains all the terms of the transport equation for the

turbulent kinetic energy. With these data it was possible to evaluate the accuracy

of each term of the modeled transport equation for k. A full comparison of all the

terms (i.e. convection= Ck, viscous diffusion= Vd, turbulent diffusion= Td, pres-

sure diffusion= Pd, production= Pk, and dissipation= e) showed that the viscous

diffusion Vd has nearly no effect. The computed conw_ction of/_', Ck, is in very good

agreement with both the measurements by KM and the DNS by LM. The dissipa-

tion rate, although not in perfect agreement with the data in the backflow region,

closely resembles the DNS profiles in the shear layer. So, the terms which need a

further check, and that are not often compared with the experiments for models

based on the eddy viscosity, are the production rate Pk and both the turbulent and

pressure diffnsion terms Td and Pd respectively.

Figure 12 compares the DNS production rate versus the profiles obtained by using

the two different versions of the model. The agreement between computations and

the DNS profiles is good. Observe that the peak in the production rate, which is

probably caused by the very high mean shear downstream of the separation point,

is well captured. The production rate is somewhat overpredicted in the backflow
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region, but this overprediction seems to fade away as the reattachment point is

reached. The same agreement was found in the high-Re case.

Before comparing the turbulent and pressure diffusion terms, one should recall

that the gradient diffusion hypothesis, done in the k - e model, does not distinguish

between Pd and Td, which are just lumped together. Still, it is possible to compare

the sum of Td and Pd from the DNS calculations with the computed turbulent

diffusion of turbulent kinetic energy, which should be the sum of the two. Observe

that the comparison is done for the diffusive terms (second order derivative of k for

the k - e model and first order derivative of Td and Pd for the DNS data). Figure

13 compares the computed diffusion of k with the sum of the turbulent diffusion and

pressure diffusion from the DNS. The agreement between computations and DNS is

quite good. The up-down shape of the profile from the DNS is closely reproduced by

the calculations. The agreement remains good in the entire computational domain

and does not deteriorate when making the same comparison for the KM data set.
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When making the same comparison by using the DS data base at a higher

Reynolds number, some problems arise due to the scatter of the measured data.

Figure 14 compares the turbulent diffusion of turbulent kinetic energy for the DS

case. Although there are not as many data as in the DNS case, the figure clearly

suggests that the turbulent diffusion is largely underestimated in the shear layer

from the separation point till far downstream. The underestimation is quite severe

and clearly limited to the flow region where the mean shear is high. However, the

experimental data are probably not accurate enough to differentiate, as in Fig. 14.

Figures 13 and 14 indicate that as long as the Reynolds number is small, the

gradient diffusion hypothesis gives the correct estimate of the turbulent plus the

pressure diffusion, especially in the high shear layer. The two figures also show that

the same closure hypothesis fails when the Reynolds number is large. Apparently at

large Re there is a large scatter of turbulence time and length scales. This scatter

is probably not modeled when using a linear eddy viscosity model. The scatter is

reduced at smaller Reynolds number, and the turbulence model then agrees much

better with the experiments and DNS.

In conclusion, the computations show that the slow recovery downstream of the

reattachment point occurs only in high Reynolds number flows and is probably

caused by the gradient diffusion hypothesis, which is not able to model the large

turbulent diffusion typical of the high shear layer. In the backflow region the com-

putations and the comparison with the experiments and the DNS do not allow

identification of any specific deficiency of the model. Still, the plots indicate that

in the backflow region the models predict too high a turbulence level and too much

velocity gradient, which are interrelated deficiencies.
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