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Asymptotic solution of the turbulent
mixing layer for velocity ratio close to unity

By F. J. Higuera 1, J. Jim6nez 2 AND A. Lifi_n I

The equations describing the first two terms of an asymptotic expansion of the

solution of the planar turbulent mixing layer for values of the velocity ratio close

to one are obtained. The first term of this expansion is the solution of the well-

known time-evolving problem and the second, which includes the effects of the

increase of the turbulence scales in the stream-wise direction, obeys a linear system

of equations. Numerical solutions of these equations for a two-dimensional reacting

mixing layer show that the correction to the time-evolving solution may explain the

asymmetry of the entrainment and the differences in product generation observed

in flip experiments.

1. Introduction

Time evolving simulations of the mixing layer are believed to capture many im-

portant features of the dynamics of this flow, and are widely used because they

are simpler to implement, less expensive, and less subject to uncertainties coming

from approximate boundary conditions than the alternative space-evolving simula-

tions. Some features of the real flow, however, are outside the framework of the

time-evolving simulations. In particular, it is known that an incompressible mixing

layer does not entrain equal amounts of fluid from each of the two free streams (Di-

motakis, 1986 and references therein) and that, when the free streams carry passive

scalars, the average composition in the molecularly mixed fluid in the mixing layer

is nearer to the composition of the fast stream than to the composition of the slow
stream. While it is not clear to what extent the second of these features is a conse-

quence of the first or of some asymmetry of tile process leading to molecular mixing

inside the layer, none of the two can be captured by a time-evolving simulation,

owing to the intrinsic symmetry of this artificial flow.

The amount of molecular mixing and the variation of the mixed fluid mean con-

centration across the layer depend on the Reynolds number, the degree of develop-

ment of the layer, and the Prandtl or Schmidt number of the scalar; these factors

determining in particular the extent to which free stream fluid is transported across

the layer by the large scale motions before being molecularly mixed (Konrad 1976;

Batt 1977; Mungal & Dimotakis 1984; Kooehesfahani & Dimotakis 1986; Karasso

& Mungal 1996), but the asymmetries mentioned above occur in any case.
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The effect of the scalar field asymmetry is specially obvious when the species

carried by the two streams are reactive and lead to a diffusion flame inside the mixing

layer, in which a unit of mass of a stream (the fuel stream say) reacts with S units

of mass of the other (the oxidizer stream). Then, flip experiments, consisting in

exchanging the reactive species between the two streams and keeping constant their

concentrations and all the other operating conditions (Mungal & Dimotakis 1984;

Koochesfahani _: Dimotakis 1986; Karasso ,_ Mungal 1996), clearly show that the

amount of product generated by the chemical reaction is larger when the reactant

that is more consumed (the oxidizer if S > 1) is carried by the fast stream.

To study the effect of these asymmetries, a correction to the time-evolving mixing

layer formulation is worked out here using an asymptotic expansion for small differ-

ences of the two stream velocities. The analysis follows the lines of Spalart (1986,

1988). The new formulation is applied to a constant density two-dimensional reac-

tive mixing layer with an infinitely fast, diffusion controlled reaction. In this limit,

and assuming in addition that the Lewis numbers of the two reactants are equal to

one, the chemical reaction can be easily accounted for following the evolution of a

linear combination of the mass fractions of the reactants (the mixture fraction Z)

which takes the values 0 and 1 in the oxidizer and fuel streams and is transported as

a passive scalar. The mass fraction of the product (also with Lewis number equal to

one) is a piecewise linear flmction of Z given by (6) below (see, e.g., Williams 1985).

2. Formulation

The turbulent mixing layer is a statistically stationary flow and, asymptotically,

after an adjustment region, it is also statistically self-similar. Our aim here is to try

to take advantage of these two properties to simplify the numerical computations.

The large length and time scales of the turbulence are proportional to the stream-
wise distance x in the s('lf-similar state, and the variation of these scales is inex-

tricably linked to the dynamics of the layer, being brought about by the process

responsible for its evolution (vortex pairings in the classical view). This feature

makes the numerical simulation costly because a long and wide stretch of the layer

must be simulated in order to see the approach to its self-similar state.

The opening angle of the mixing layer is often small. Formally this is true when

the velocities of the two streams are close to each other, but in fact the angle is

fairly small in any case. On one hand, this feature makes the numerical simulations

even more expensive, because a very long stretch is needed to see the initial size of

a typical vortex grow by a given factor. On the other hand, this feature is the basis

of a well known simplification of the numerical treatment, based on the fact that

the changes of time and length scales are small, and can be taken into account as a

perturbation, over distances of the order of the size of one or a few vortices.

This is so because for a layer growing by pairings of the large vortices, for which

each vortex nmst undergo a nmnber of these discrete events to approach the self-

similar state, a small angle amounts to a small ratio of the size of a vortex to the

distance it travels between successive pairings. But then, since the spacing of the

large scale vortices is not nmch larger than their size, there are many neighboring
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vortices to the left and to the right of a given vortex with sizes not very different

from its own size, and it seems reasonable to think that the evolution of a vortex

and of its nearest neighbors between successive pairings depends on the details of

the evolution of only a number of other neighbors, whereas the effect of the rest of

the mixing layer can be taken into account using a kind of mean field approximation

without regard for individual features of the far vortices.

Since the vortices move with a velocity intermediate between the velocities of

the two streams, these conditions can be better put to use in a reference frame

moving with that intermediate velocity. In this reference frame the evolution of

a vortex can be described following the detailed dynamics of the flow over a span

containing only a limited number of neighbor vortices. Here, using periodicity
conditions in the stream-wise direction amounts, of course, to a temporal simulation

of the flow, but the equations describing the small perturbations due to the growth

of the turbulent scales can be easily worked out and solved along with those of

the temporal simulation. It is worth recalling, however, that a definite error of

a different type is always associated to the use of periodic conditions because the

self-similarity and stationarity of the flow are statistical properties not applicable

to individual realizations. Hopefully, the importance of this error decreases as the

number of vortices included in the simulation increases.

Restricting the computations to a finite span in the moving frame imposes a

limitation on the time during which the evolution of the flow may be followed,

owing to the growth of the vortices. In principle, a long span is required if the
initial conditions are not close to the final self-similar state and a large number of

pairings is necessary to approach that state. In practice, such a long span could

perhaps be avoided carrying out computations on a shorter one for a moderate

lapse of time and then replicating the results one or a few times in new adjacent

spans, introducing appropriate phase shifts and a slight decrease of resolution before

continuing the computation.

Consider then a plane self-similar mixing layer between two incompressible streams

with velocities U1 and U2 < U1. Assume that e = (U1 - U2)/(U1 + U2) << 1 to en-

sure that the angle of the layer, defined in any convenient way, is small of O(e),

though, as was mentioned before, this angle is probably small for any e. The aim

is to follow the evolution of a few adjacent vortices, of initial characteristic size

say, during a time of order tc = 2_5/(U_ - U2) corresponding to a few pairings. The

growth of the mixing layer thickness is taken into account switching to the variables

(x*, r/, z*), where q = y*/(ex*) and (x*,y*, z*) are the usual Cartesian coordinates.

The statistical properties of the flow imply then that the x-averages coincide with

the time averages and both are functions of q only. Next, introducing a reference

frame moving with velocity Um = (U1 + U2)/2, the solution is sought in the form

v* = Um(i + ev), p* = pU2meep, with x ° = Umtc(t + eX), (1)

where the non-dimensional variables (v,p) are of order unity and the distances

and time are scaled with 6 and tc, respectively. In terms of these variables the
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Navier-Stokes equations and the equation for the mixture fraction are

eq 0, u = 0 /Givi t + ex

1 2
Otvi + (viGi)vi = -Gip + --_eV vi

OtZ + (LG.)Z - 1
RePr V2Z

(2)

where G = (0x, 1/(t + e.r)Ou, Oz) is a symbolic vector, "7, = (u,v - q(1 + ¢u),w),

the Laplacian operator acting on each component of the velocity is V 2 = 0x, + (1 +

d_)/(t + ex)_O,, + 0_ - 2e,7/(t + ex)O,, + 2d_/(t + ex?O,, Re = (U, - U_)6/2v,

and Pr is the Prandtl number. The solution of (2) can be sought as a power series

in e, of the form (v, p, Z) = (v0, p0, Z0) + e(vl, pl, Z1) + ....

Carrying this expansion into (2) we find, at leading order,

G0iv0i _ 0 /

1 2
Otvo, + ( 5o_Go_ )vo, = -Go,po + -_e V°v°'

OtZo + (_0jG0j)Z0 - 1 V_Z0
RePr

(3)

where Go = (0_, 1/tO_, 0..), _'o = (uo, vo -q, w0), and V 2 = c3_, + 1/t20,, + O_z.

At the next higher order linear equations are obtained for (vl, pl, Z1 ) having some

forcing terms proportional to x (arising from the expansion of the denominators in

(2)) and other that do not contain x explicitly. The solution of these equations

is of the form (v_,pl,Zl) = X(VlO,plo,Zlo) + (vll,pll,Zll), where, as can be

easily verified, (vl0,pl0, Z10) = Ot(vo,po, Zo) in order for the time averages to be

independent of x, and (vl 1, P11, Zll ) satisfy

G0iVll, + OtUo - _i)_uo = 0

1 2
OtVlli + (VoiG % )viii q- (viii aoj )yo i : -Go,p11 + R--_eV0v11, + Fi

OtZl I .._ ( _)oi Goj )Zll At_ (1311jGo i )Zo nt- uoOtZo - ff-_-O,IZo =

1 2 27
R----e-e-e-e-e-e-e-e_r(VoZ,l+20_tZo--_-O_Zo)

(4)

whereF = -u00tv0 +, uolt O,Vo 0.,v0)+(-0,p0 +,7It O,po, O,0).
The velocity at this order is therefore v = v0 +e(x 0tv0 +vii ), which can be written

as v0(x,q,t + ex) + evil, and the pressure and mixture fraction are analogous.

The first term admits a simple interpretation: as far as it. is concerned the state of

development of the flow is proportional to x, being slightly more evolved downstream

of a point than it is upstream. Thus, even if periodic boundary conditions are used

as an approximation for the leading order problem (3), as will be done in the
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following section, this first term is not periodic. The effect of the second term will
be discussed later.

Applying x- and t-averages in suitable order to Eqs. (3) and to the continuity

d_0
--=0

d_

d d-_0

_(_--_) - ,-_ =0

(_+ _01= 0

_(uoZo) - , d-_°=0dT;

dVl 1 d_o

&/ 7/--_- = 0

equation in (4) yields

(5)

where the bars denote averaged variables. The first of these equations gives T0 = 0

(a constant v0 has no effect on the dynamics; it can be set equal to zero by an

O(e) change in the orientation of the x axis). The last equation in (5) implies

that the mean normal velocity is of order e relative to the variation of the stream-

wise velocity, as could have been expected for a region of O(e) aspect ratio. Using

the second equation to eliminate yd_o/dq and integrating, this equation yields

_11 - uovo = constant. Since uovo = 0 for r/--_ -t-oo, the normal velocity vii tends

to the same constant value on both sides of the mixing layer, and this constant can

be set equal to zero as for v0. Therefore the mixing layer does not introduce any

perturbation in the free streams to this order and the ingestion of fluid by the layer

is due only to the linear growth with x of its upper and lower apparent boundaries.

Since the orientation of the x-axis is well determined by the conditions v0 = vl = 0

outside the mixing layer, the upper and lower boundaries can be defined on the

basis of the usual thicknesses. For example, using the scaled momentum thickness

am = f__ ( U1 - u*)(u* - U2) dy*/[ex*( Vl -U2) 2] and the scaled product thickness

/Xv = f__ Yv(Z)dy*/(ex*), where Yp(Z)is the product mass fraction given by the

piecewise linear function

Z/Z_ for 0 _ Z <_ Z_G= (1- z)/o- z,) for z,<z<l (6)

with Z_ = 1/(1 + S), the scaled upper and lower boundaries are

/o - -a_ =+_ (1- _)d, = +_ (1- u_)d, _: _ .0u_ d, +-

a_ = + _;(Z)d,

(7)

and a m = a+m -}- a_-n, Ap = /_p+ q-/_;.
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FIGURE 1. Sketch of the apparent boundaries and entrainment process.

3. Results

The two-dimensional forms of Eqs. (3) and (4) were numerically solved to find

the effect of the first order corrections on the growth rate and the asymmetry of the

layer. For this purpose the variable y = r/t, which is the non-dimensional normal

distance divided by the factor 1 + ex/t, was used instead of r/. The equations then
take the form

V.v01 =0}2

Otv0 + V. (v0v0) = -Vp0 + _-Tev v0 (8)

1 2
OtZo + V. (v0Z0) - R--TfiTrv Z0

V • vii = -OtUo "]

1 2
OtYll "1- V" (V0Vll "l- YllV0) : --'_"Tpl 1 "]- _'TeV VII "Jl- O,R (9)

1 V2Z,,+O,(_.oZo+R_rOxZo )OtZll + _Y" (v0Ztl + v, lZ0) - RePr

with R = -u0v0 + 2/Re 0xv0 - (p0, 0), and were solved with the boundary con-

ditions v0 q=i = vll = Zll = 0 and Z0 = (1,0) for y -+ -t-oo, and periodicity

conditions in the stream-wise direction. The use of periodicity conditions is an

approximation for which the only possible justification seems to be that in the

present variables they are compatible with the spatial growth of the turbulence

scales, and that, hopefully, they do not distort the solution too much if the period

is sufficiently larger than the size of the vortices during most of the simulation. The

initial conditions for the leading order variables were the hyperbolic tangent profiles

u0 = tanh2y and Z0 = ½(1 + tanh2y) plus perturbations proportional to the most

unstable linear mode and one or two sub-harmonics with different amplitudes and

phases. The variables Vll and Zll were initially zero. In the simulations Pr = 1

and Re = 500-1000, based on the initial vorticity thickness.

With these conditions, v0, Z0 - 1/2 and pll change sign under the transformation

(x, y,t) ---+ (-x,-y, t) while v11, Z11, and p0 are left invariant. The mixing layer

grows symmetrically in first approximation, leading to A+,0 = A_, ° = A,n0/2,

whereas the correction to the growth rate is antisymmetric: A +,,,_= -A_,_ , = A,,,,

say (the same relations hold for the product thickness when S = 1). Here A,, 0 and
1 oo

Amt are the slopes of straight lines fitted to _=o = _ f__o¢( 1 - u20)dy and 6,,,t =
1 oo

-$ f0 u0u11 dy. The fluxes crossing the upper and lower apparent boundaries of
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FIGURE 2.

( .... and----
and Pr = 1.

Momentum thickness (_) and upper and lower boundaries

, respectively) for e = 0.45 (r = U2/U1 = 0.38), Re = 500

the layer, scaled with eUmx*, are (see Fig. 1) ¢+ = (1 4- e)Ai m = [Am 0 "4- e(Am 0 -[-

2Am,) + " "]/2, where the momentum thickness is used for definiteness, and the
entrainment ratio, defined here as E = ¢+/¢-, is

A,.,1E=l+e 1+2_--:- l +O(e2). (10)
rn0J

The total momentum thickness _Sm = _m0 and the upper and lower apparent

boundaries, 6+ = t5mo/2 + e6m_ and i5m = 6mo/2 -e6ml respectively, are given in
Fig. 2 for a representative case displaying a pairing• The numerical results show

that the layer opens more towald the slow stream (Am1 < 0), but this effect is over-

balanced by the higher speed of the fast stream resulting in a E slightly greater
than one.

Figure 3 shows the product thickness for S = 1 and for S = 8 and 1/8. The

last two values correspond to a flip experiment in which the fuel and the oxidizer

streams are exchanged. The results show that the generation of product is higher
when the reactant that is more consumed is carried by the fast stream.

Both results are in qualitative agreement with the experimental data. Quantita-

tive comparisons are meaningless given the two-dimensional character of the present
simulations.

The explanation of these results can be traced, of course, to the form of the

forcing terms on the right hand sides of Eqs. (9). These terms depend only on
time derivatives of the leading order solution, and the signs of some of them can

be easily guessed. Thus, since the antisymmetric profile of u-0(Y) (the bar meaning

here x-average) gets thicker with time, -cgtuo in the continuity equation is more
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FIGURE 3. Product thickness for S = 1 (-- ; not affected by the asymmetry)
and for S = 8 (-----) and 1/8 ( .... ), corresponding to a flip experiment, for

e = 0.45, Re = 500 and Pr = 1. -....... : common value for S = 8 and 1/8 when

often positive than negative in the upper part of the layer, which amounts to a

distribution of sources, and vice versa in the lower part, which amounts to sinks.

For the same reason, -Otu2o should be positive, on average, everywhere in the

layer, and the numerical results show that this is also true of the whole forcing term
-Ot(u2o + Po) + 2�Re O_:tUo in the z-momentum equation. This amounts to a force

pushing the fluid in the stream-wise direction and leading to a u_l predominantly

positive. Therefore the average velocity _0 + _-11 approaches its asymptotic value
+1 in the upper stream faster than its asymptotic value -1 in the lower stream,

which explains the results in Fig. 2.

The forcing term in the equation for Z_ has a complicated structure with bands

of alternate signs. On average, however, it is positive (as could have been expected

of the term -c3t(uoZo), due to the increase of thickness of the profile of Z0 with

time), leading to a Zll with a banded structure but predominantly positive. Hence

the region of Z near 1 in the upper part of the layer is wider than the region of

Z near 0 in the lower part. This provides an explanation for the results in Fig. 3
because the upper region is responsible for a larger fraction of the product than

the lower region when S is small and the average position of the flame is shifted

toward the upper side, while the lower region is responsible for a larger fraction of

the product than the upper region when S is large and the average position of the
flame is shifted toward the lower side.

Since the forcing terms depend only on the leading order solution, they could

perhaps be evaluated from the results of a three-dimensional time-evolving simula-

tion (as that of Roger & Moser 1994), which would give indications on whether the
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above observed trends hold also for that more realistic case.

Finally it may be noted that the condition e << 1, used here as the basis of a

formal expansion, may not be necessary for some of the results to hold. As was

mentioned before, the angle of the layer is moderately small for any value of e

because the eddy turn over time is always shorter than the time between pairings,

and this alone provides the required scale separation.
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