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Dynamic model with scale-dependent
coefficients in the viscous range

By C. Meneveau 1 &: T. S. Lund 2

The standard dynamic procedure is based on the scale-invariance assumption

that the model coefficient C is the same at the grid and test-filter levels. In many

applications this condition is not met, e.g. when the filter-length, A, approaches

the Kolmogorov scale, and C(A ---, *1) _ 0. Using a priori tests, we show that the

standard dynamic model yields the coefficient corresponding to the test-filter scale

((_A) instead of the grid-scale (A). Several approaches to account for scale depen-

dence are examined and/or tested in large eddy simulation of isotropic turbulence:

(a) Take the limit a _ 1; (b) Solve for two unknown coefficients C(A) and C(nA)

in the least-square-error formulation; (c) The 'bi-dynamic model', in which two

test-filters (e.g. at scales 2A and 4A) are employed to gain additional information

on possible scale-dependence of the coefficient, and an improved estimate for the

grid-level coefficient is obtained by extrapolation. (d) Use theoretical predictions

for the ratio C(aA)/C(A) and dynamically solve for C(A). None of these options

is found to be entirely satisfactory, although the last approach appears applicable

to the viscous range.

1. Introduction

One of the underlying ideas of the dynamic procedure (Germano et al., 1991) for

large eddy simulation (LES) is scale-similarity, which allows information obtained

from the resolved field to be utilized for modeling the subgrid scales. Typically,

this information consists of a dimensionless model coefficient (e.g. the Smagorinsky

coefficient) which is assumed to have the same value at the grid-scale A and test-

filter scale c_A, where _ = 2 in most applications. Concretely, within the context

of the Smagorinsky model, the Germano identity leads to

Lii = C(aA )Ai) - C(A)Bi*j, 1)

where Aij = -2(_A)21SI_ij, B*j = -2A_I._ISij, I._l = _, and Lij = f_if'_j -

uiuj is the resolved stress. The fundamental scale-similarity assumption of the

standard dynamic model is that the model coefficients C(A) = C(c_A) = C. With

this assumption, C is obtained by minimizing the error in Eq. 1 averaged over

the independent tensor components (Lilly, 1992) and, if it exists, over a region
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of statistical homogeneity (Germano et al., 1991; Ghosal et al., 1995). For fully

inhomogeneous flows, averaging can be performed over pathlines (Meneveau et al.,

1996).

As in other applications, it will be assumed here that the averaging operations

sufficiently diminish spatial variations of C, so that one can neglect the error in-

curred in extracting C from the test-filter operation (see Ghosal et al., 1995). Thus,

the second term in the rhs of Eq. (1) is replaced with C(A)Bij, where Bij = B* O.

Also, in this work we will examine the dynamic procedure in conjunction with the

Smagorinsky model. While other base-models such as similarity models have been

proposed (Bardina et al., 1980; Liu et al., 1994), they typically require an additional

eddy-viscosity term (mixed model, Bardina 1983; Zang et al, 1993; Liu et al., 1995).

Thus, it is of interest to continue to examine the Smagorinsky model in parallel to

other efforts on improved base models.

Under the assumption of scale-invariance, the dynamic Smagorinsky model yields

C- (MzjLo)
(Mij Mij) ' (2)

where

t_Iij = Aij - Bij, (2a)

and where () denotes an average over directions of statistical homogeneity or over

pathlines.

When applied to the simple problem of either forced or decaying isotropic tur-

bulence at large Reynolds number, the resulting coefficient is typically between

C -_ 0.02 and 0.03, independent of A. This agrees with the classical result by Lilly

(1967) which relates C to the universal Kolmogorov constant cK according to

7r-_ _- 0.027, for ch = 1.6. (3)
C = 23c_,']

This result is obtained from balancing the rate of SGS dissipation with the total

dissipation, and evaluating moments of the resolved strain-rate tensor by requiring

the resolved portion of the flow to display an inertial-range Kolmogorov spectrum.

When the filter-scale is within the inertial range, this argument indeed yields a

A-independent result.

While the above analysis is useful as a guide, it is not generally applicable to

LES of complex flows, where the filter (grid) scale A may not fall inside a pure

inertial range. For instance, in certain parts of the domain, A may approach the

flow's integral scale, or the flow may be undergoing rapid distortions so that the

inertial range is perturbed. In other regions of the flow, the grid scale may approach

the viscous scale. In such situations, the coefficient may dependent on A, and the

assumption C(A) = C(aA) used in the dynamic model is not strictly applicable.

The objective of this study is to examine the dynamic model when the coeffi-

cient depends on scale. A convenient application in which to examine this issue
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numerically is forced isotropic turbulence, when A _ r/, where ? is the Kolmogorov

scale. We will study coefficient scale dependence using filtered DNS data (a priori

test) and perform LES at varying viscosity, so that A/r/, or the mesh-Reynolds

number (McMillan & Ferziger, 1979), defined as ReA = A 2 ISI/v, decreases towards

Re_ _- 1.

First, a review of the expected behavior of C(A ---, r/) is given in §2. In §3,

we analyze highly-resolved DNS data at moderate Reynolds number and compare

the real Smagorinsky coefficient to that obtained from the dynamic model under

the assumption that C(A) = C(c_A). The effect of varying a is also examined.

In section §4, we report on several attempts to generalize the dynamic model to

explicitly take into account the scale-dependence of the coefficient. Conclusions are

outlined in §5.

2. Smagorlnsky coefficient in the viscous range

Before considering the dynamic Smagorinsky model, it is useful to establish the

expected behavior of the Smagorinsky coefficient as the grid-scale approaches the

viscous range. The analysis is based on a generalization of the argument by Lilly

(1967) and was recently carried out by Voke (1996) who expressed the results in

terms of the mesh-Reynolds number Re_. We shall also need results in terms

of A/r/, so the analysis is briefly repeated below. Examination of the equation

for resolved kinetic energy in isotropic, statistically steady, and forced (force fi)

turbulence yields

= + (4)

where (} denotes a volume average. The last term above is viscous dissipation of

resolved motion, which was neglected in the traditional Lilly (1967) analysis as

A >> r/. Using tile fact that in steady turbulence the injection rate (fifii) equals

the overall rate of dissipation e, replacing the Smagorinsky model with a possibly
3

scale-dependent coefficient C(A), and using the approximation (ISI 3} __ <loci2} _,
one obtains

= c(A)2 / a +

The moment <S_j) - <SijSii) can be evaluated from the energy spectrum of the

resolved field,which isassumed here tofollow the Pao spectrum up to a sharp cutoff

wavenumber kA = 7r/A. The Pao spectrum, given by

3 ,-4/3"_E(k) = CKe2/3k -5/3 exp ---_ck_ " )

is one of the cases considered by Voke (1996), and we use it here because resulting

expressions are simple. Solving for C, one obtains

= - (6)
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FIGURE 1. (a) Smagorinsky coefficient as calculated from the dissipation balance

using the Pao spectrum (Eq. 6). (b) Same result but expressed in terms of mesh

Reynolds number (solid line), obtained by solving Eq. 7. (see also Voke (1996), who

expresses the same result in terms of the ratio of eddy to molecular viscosity). The

dotted line is a convenient fit, namely Cfit(Rea) = 0.027 x 10 -3"23R.2°92.

The predicted variation in C is shown in Fig. la (for c_- = 1.6). As expected,

the above estimate shows a rapid decrease in C as tile grid-scale approaches the
Kolmogorov scale.

For future reference, it is also useful to express the coefficient in terms of the

mesh-Reynolds number ReA = A2JSI/u which (as opposed to Air/) is a variable

that can be computed locally in LES. Using 7#= (u3/e)l/4 and replacing e with the
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r.h.s, of Eq. 5, one obtains

C(ReA ) = sinh- ] 7 e -_/2, (7)

_ ReT, 12 ReA_//C(ReA) +

where
3 4 1

_Re 2 (C(ReA) + Re2')-_
"7 = _ e h "Tr

1

In deriving this result it has been assumed that <ISI> -_ <1_¢12) 3. Solving for C(/_ )
numerically (c_,- = 1.6) one obtains the curve shown in Fig. lb. This curve is not

too different from the empirically obtained result of McMillan &: Ferziger (1979).

While the precise nature of these curves depends strongly on the assumed Pao

spectrum, which is not entirely realistic, the general trend is quite robust: The

coefficient begins to drop from the asymptotic value starting from scales significantly

greater than the Kolmogorov scale. Evidently, at the transition between inertial and

viscous range, the assumption that C does not depend on scale is not accurate.

3. A priori tests

The aim of this section is to evaluate Smagorinsky coefficients computed with the

dynamic model operating on filtered DNS data of forced isotropic turbulence. The

dynamic coefficient is then compared with the 'real' coefficient obtained by requiring

that the model dissipate the correct amount of energy. Velocity fields at microscale

Reynolds number R_ = 85 were generated with the pseudo-spectral code of Rogallo

(1981) on a 2563 mesh. This data base has a very well-resolved dissipation range

and was used previously by Lund and Rogers (1994) in their study of the topology

of dissipative motions. This feature is important for the present study since we are

interested in the behavior near the Kolmogorov scale. The maximum wavenumber

scaled in Kolmogorov units is kma,71 = 3, which corresponds to a mesh spacing of

Am = 3/Trq __ lr/.

From the DNS, we evaluate the coefficient from the large-scale portion of the

spectrum using the dynamic model (Eq. 1), assuming that C(A) = C(aA). The

analysis is repeated at various filtering scales A (cutoff wavenumbers rr/A) and sev-

eral values of a. For comparison, the coefficient can be obtained from the condition

that the model dissipates the proper amount of energy,

C(A) = <roSo)

Results are shown in Fig. 2. As can be seen, the 'real' coefficient is near C _-

0.02 ---* 0.04 when A > 30r/, i.e. for scales above the viscous range. At smaller A, the

coefficient decreases rapidly, qualitatively in accord with the theoretical prediction

based on the Pao spectrum (Fig. la). We do not ascribe much significance to

the discrepancies between Fig.la and 2 since we have verified that they are due

to minor differences between the Pao and the actual spectrum, and also due to
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FIGURE 2. Coefficients obtained from a priori tests using well resolved DNS

(2563 simulation at Rx _- 85 and l'max9 _-- 3). O , 'true coefficient' obtained from

dissipation balance (Eq. 8). Other symbols: dynamic model coefficient (standard

formulation) at various test-filters: a, _ = 2; _ , a = 3; o, o_ = 4.
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FIGURE 3. Same as Fig. 2, but plotted as function of (_A/9. The near collapse

means that the dynamic model yields the coefficient appropriate to the test-filter

scale instead of the grid-scale.

residual unsteadiness in tile simulations due to a limited sampling of velocity fields

in time. At large scales a drop in coefficient can be seen, probably due to the e_'ects

of forcing.

The dynamic model predictions yield a similar trend for the coefficient, only that
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the scale range appears to be shifted. Since the dynamic model samples the scales

at the test-filter level, it is reasonable to expect that the resulting coefficient is

the one corresponding to the test-filter scale instead of that of the grid-scale. To

verify this idea, in Fig. 3 we plot the results of the dynamic model as function of

the respective test-filter scales instead of the grid-scale (except for the coefficient

obtained from Eq. 8). The collapse is quite good, indeed verifying that in this case

the dynamic model yields the coefficient corresponding to the test-filter scale.

Similar results were obtained when using the strain-rate contraction (Germano

et hi., 1991) for the dynamic model (for which C = (LijSij) / (MijSij)), or the

least-square error approach to determine the 'real' coefficient (for which

C -= -(rijISlSij)/2 A2 (]_[2_?j)). Therefore, the results are quite robust with

regard to how the coefficients are determined.

At this point we conclude that the dynamic model is capable of reproducing the

important trend that the coefficient should decrease as the filter-length approaches

the Kolmogorov scale. Nevertheless, some discrepancy is observed between the

'real' and dynamic coefficient for scales at which the coefficient is strongly scale-

dependent. From a practical perspective, this discrepancy is quite benign in the

current application, since the dominant mechanism of energy drain when the filter

is near the Kolmogorov scale is the resolved viscous dissipation. Indeed, simulations

with resolutions in the viscous range run with the dynamically obtained coefficient

(which according to Fig. 2 may be too high) did not show any significant differ-

ence from one using a lower coefficient, essentially because the SGS dissipation is

negligible in these cases.

In what follows, we examine several reformulations of the dynamic model that

attempt to explicitly include the scale-dependence of the coefficient. Because it

affords relative ease of implementation and interpretation, the analysis is still con-

ducted within the context of the viscous range, even though the impact of using
different values for the coefficients is rather small.

4. Alternative formulations

In this section, we consider several alternative formulations of the dynamic model.

None of tile options considered will be found to be completely satisfactory, but the

observations made along the way provide useful insights into the workings of the

dynamic model.

4.1 The limit c_ _ 1

Since we have found that (for c_ >_ 2) the standard dynamic model yields the

coefficient C(o_A) instead of C(A), an obvious possible remedy would be to allow

the test filter scale to approach the grid scale. This issue was briefly addressed theo-

retically by Gao & O'Brien (1993), who noticed that while the resulting expressions

would be indeterminate, the limit may be written in terms of higher-order gradi-

ents of tile resolved velocity, thus emphasizing the scales closest to the grid-scale.

A possible disadvantage of this approach is that the scales closest to the cutoff are

often strongly affected by numerical errors.
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FIGURE 5. Correlation coefficient between the model tensors Aij and Bij measured

from filtered DNS as function of filter scale. The correlation coefficient is computed

according to p(A,B)= (AijBij}/¢(Afj)(B'_j).
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To see if the limit c_ --_ 1 can be used to advantage in this case, we repeat the

a priori test of the previous section and compute the dynamic model coefficient at

the smaller filter-width ratios of c_ = 1.5 and a = 1.3. Figure 4a shows the results

for a grid-scale A = 8q, and 4b for A = 12q. In both cases, it is apparent that for

a > 2 there is a smooth trend of the dynamic coefficient tending towards the 'true'

coefficient as obtained from the dissipation balance. However, for a < 2, there is a

change in behavior and the coefficient increases again and does not tend towards the

expected value as c_ _ 1. While such a result may be specific to present conditions

of analysis, it suggests that as the width of the band between grid and test filter

becomes small, the procedure can yield unphysical results. For this reason, we do

not consider this approach further.

Before proceeding however, we notice from Fig. 4 that for c, > 2 the approach

towards the 'true' coefficient appears to be exponential. This observation will be

used in §4.3.

4.2 Solving for two coefficients

Here we return to the case c_ = 2. Instead of assuming that C(A) = C(2A),

we investigate the proposal of Moin &: Jim6nez, (1993) where the least-square-error

approach is used to solve for the two coefficients. Upon solving the linear set of

equations, one obtains (using, say, volume averaging)

C(A) = (AijLij) (B2j) - (BijLij) (AijBij), (9a)

(A_j} (B_j) - (AoBij) 2

C(2A) = (AijLij} (AijBij) - (BijLij) (A,_} (9b)

(A,5)(B?,)- (A,jB,,)

The averages can be evaluated from the DNS (as in §3) at different scales, and the

coefficients computed fl'om the above expressions. However, the results appear to

be unphysicah both C(A) and C(2A) were found to be negative, with large scatter

from one scale to another.

The cause for this problem can be traced to the fact that the two tensors Aij

and Bij (or a2lS[Sij and [S[S-_-ij) are strongly correlated. The correlation coefficient

between them is evaluated from the DNS and plotted in Fig. 5, for different scales.

Due to the strong tensor-alignment, the system of equations is ill conditioned. It is

interesting to point out that in the standard dynamic model, the coefficient is deter-

mined mainly by the fact that both tensors have significantly different magnitudes

(due to the coefficient a_). However, to use additional (directional) information

from the Germano identity, at least in the context of the Smagorinsky model, ap-

pears not feasible.

4.3 The bi-dynamic model

This version of the dynamic model is motivated by our observation that the model

provides the coefficient at the test-filter level aA. While this suggested taking the
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limit a -* 1, it was shown in §4.1 that then the Germano identity relied on less

and less modes between test and grid filter, modes that are often most affected by

numerical errors. Another alternative formulation is to compute coefficients from

two different test filters and use these to extrapolate to the grid scale. Briefly, one

assumes that the dynamic coefficient obtained by the traditional method (with M 0

given by Eq. 2) is a smooth function of the test-to-grid filter ratio a. In fact, noting

the exponential behavior in Figs. 4 for a > 2, it is more convenient to write that

C is a smooth function of fl, where _A = 2;_A. The usual case c_ = 2 corresponds

to/3 = 1, while the limit c_ --_ 1 is obtained as fl --_ 0. Let us therefore denote the

coefficient obtained from the traditional method as C(fl). Next, we expand C(fl)

in Taylor series around fl = 1,

dC

c(#) = c(fl = i) + - i). (lO)

To evaluate dC/d/3 we introduce a secondary test-filter at scale, say, 4A (/3 = 2),

evaluate the corresponding coefficient C(J3 = 2), and compute the coefficient deriva-

tive using one-sided finite-difference, (dC/dt3)l, __ C(2) - C(1). The information

employed has been obtained at and above scale 2A, where according to the results

of §4.1 robust results call be expected. Since we are interested in the limit /3 --* 0,

we now propose to simply evaluate Eq. 10 at fl = 0. The resulting coefficient can
be written as follows:

(MoLij) (N, jFi))

C = 2(MoMij ) (NijNij)' (11)

where the tensors F 0 and Nij are defined exactly as the tensors L 0 and M 0 re-

spectively, only using a test-filter scale equal to 4A instead of 2A.

This basic formulation is first tested a priori: The DNS data is filtered at an

additional test-filter scale to compute Fij and N,j. The coefficient C is evaluated

according to Eq. 11 using volume averaging, and the analysis is repeated at several

grid-scales A. Figure 6 shows the results. As can be seen, the 'bi-dynamic' model

is very noisy since it is based on extrapolation. Nevertheless, the procedure does

improve the prediction of the standard dynamic model. Importantly, this approach

preserves the basic foundation of the dynamic model which only uses information

from the resolved scales, instead of relying on equilibrium arguments to calibrate

the coefficient and its dependence on scale.

The approach is implemented in LES of forced isotropic turbulence on 323 modes.

The code and methodology is the same as that described in Meneveau et al. (1996),

but using volume averaging. The primary and secondary test-filtering are performed

using cutoff filters at scales 2A and 4A, and 14 simulations are run with various

viscosities to vary the mean mesh Reynolds number. The results are shown in Fig.

7, where the volume averaged terms C(1) = (LM) / (MM), C(2) = (FN} / (NN)

and the extrapolated result C(0) = 2 (LM) / (MM) - (FN) / (NA T} are shown.

The latter coefficient is used in the subgrid model. As can be seen, the results

appear to display the correct trend, although some features are noteworthy: At
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FIGURE 7. Coefficients obtained in LES of forced isotropic turbulence at various

Reynolds numbers, using the bi-dynamic model with volume averaging. --- ,
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'Bi-dynamic' coefficient obtained by extrapolation to scale A, 2 (LM)/(MM> -

(FN) / (NN). This coefficient is used in the LES. As reference, the Taylor-microscale

Reynolds number Rx : V/15u'4/(z,e) (where e is the total dissipation) ranges from

Rx = 17 to Rx = 2,300.
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large Reynolds numbers, the coefficient value asymptotes to a slightly smaller value

than tile standard dynamic model. No simple explanation for this trend has been
found.

Qualitatively, one expects the model to be quite stable because if, say, C(fi = 1)

falls below its appropriate value while C(fi = 2) remains fixed, the extrapolated

coefficient will drop significantly. This will cause more 'pile-up' of energy near the

grid-scale, raising the value of C(1) and raising tile extrapolated coefficient. This

in turn damps the smallest scales. The opposite occurs if C(1) is initially increased,

with excessive damping causing C(1) to diminish. However, the equilibrium point

of this version of the model appears to establish itself at a slightly smaller value

than that of the traditional approach, even at very large Reynolds numbers where

viscosity does not affect tile results. Another observation is that at very small

ReA, the extrapolation process yielded negative coefficients. This is essentially an

extrapolation error. In this application, this error had no impact on the simulation

due to the smallness of the SGS term at such low mesh Reynolds numbers.

Finally, an attempt was made to replace the volume averaging with Lagrangian

averaging (Meneveau et al., 1996). The motivation is to enable applications of

the dynamic model to LES of complex-geometry flows, where no directions of sta-

tistical homogeneity exist, but where some averaging must still be performed. In

the 'Lagrangian bi-dynamic model', one would compute four variables ZLM, _MM,

:/-,_N, and :INN, which correspond to the pathline averages of the source terms

Lij,'tl_j, 512_, F, jNij and N_j respectively. They are obtained by integrating re-
laxation transport equations with a prescribed relaxation time-scale (Meneveau et

al., 1996). To be consistent with this reference, we must choose two relaxation

time-scales, T1 = 1.Sz-_(:ILM:IMM) -1/8 and T2 = 1.5Z-_(:TFNZNN) -1/s. T1 is used in

the equations for /'LM and IMM, while 7'2 is used for ZFN and _mN. With these

time-scales it is assured that the numerators :TLM and 2"FN never become negative.

Then, the coefficient at the grid-scale is computed by extrapolation at every point

according to C(0) = 2_LM/_MM -- _FN/_.NN.

Overall, this approach resulted in several difficulties due to the spatial variability

of the local coefficient coupled with the extrapolation procedure. Even though

the method guarantees the individual coefficients at the two test-filter levels to

be positive, there were many instances in which ZF'N/ZNN > 2ZLM/ZMM, and

therefore the extrapolated coefficient was negative causing instability or unphysical
results.

To stabilize the simulation it was necessary to perform an additional pathline

averaging of the coefficient C(0) itself, with an appropriately selected relaxation

time-scale so that it would not become negative. Denoting the Lagrangian average

of the coefficient by/:c, the time-scale chosen was Ta = 1.5/k[(ZCIMM)_MM] -1/8.

On average, this time-scale is of the same order as TI and T2. Results are shown

in Fig. 8. The average of the coefficient shows the appropriate trend, although the

extrapolated coefficient is not much smaller than the value at scale 2A, and at low

Rea is considerably higher than the expected values (compare with Fig. 5). Given

the extra expense (carrying five relaxation-transport equations instead of two) and
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FIGURE 8. Coefficients obtained during LES of forced isotropic turbulence at var-

ious Reynolds numbers, using the bi-dynamic model with Lagrangian averaging of

numerators and denominators, and additional averaging of extrapolated coefficient.

Shown is the volume average of the coefficient (which varies locally), o , Value at

scale 4A, (_FN/_NN); A , Value at scale 2A, (ZLM/ZMM). 0 , Mean 'bi-dynamic

coefficient' obtained by extrapolation to scale A.

the small improvement, this approach does not seem to constitute a method of

choice.

4.4 Using non-dynamic estimates for scale-dependency

A more robust method is to explicitly build scale-dependence into the dynamic

model. This is accomplished by rewriting Eq. 1 (for a = 2) as follows

C(2A) ,
L,, = C(A) ( - b, 0 , (12)

and solve for C(A) as in Eq. 2, but with Mi# given by

Mij = f(A)Aij - Bit, (13)

where

f(A) = C(2A)
C(A)

The idea is to solve for the coefficient C(A) but to use prior knowledge about the

possible scale dependence to evaluate the function f(A). In the present case of ap-

proaching the viscous range, this function depends on the dimensionless parameters

A/T} or ReA. As mentioned previously, the latter case is more convenient during

LES since it is based on the strain-rate magnitude, which may be evaluated locally.
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FIGURE 9. Coefficients obtained in LES of forced isotropic turbulence, using

the Lagrangian dynamic model in which scale dependence is incorporated non-

dynamically. Shown are the mean values of the coefficients. Average mesh Reynolds

number is varied systematically by changing u. zx , mean coefficient using standard

formulation, Eq. 2 and 2a; o , modified dynamic model, in which M 0 is given by

Eq. 11; .... , prediction based on Pao spectrum (Eq. 7).

Using Eq. 7, we evaluate the ratio C(2A)/C(A), which can be fitted quite well by

the following expression:

-o 92 -o 92

f(Re_)= 10 -a2aiR%A -R_A l (14)

where Re2zx = 4A_ISI/t,. When the mesh Reynolds number is evaluated based

on the local strain-rate magnitude, it may locally approach zero. Then Eq. 14

diverges, which can cause numerical difficulties. Thus, the expression is clipped

at f(ReA) = max[f(Re_, ), 100]. This approach was tested a priori and gave good

results in the sense that the coefficient obtained by this modified method is indeed

smaller than the value that would have been obtained by assuming C(A) = C(2A).

The approach was then implemented in LES of forced isotropic turbulence on

32 a modes using the Lagrangian method of averaging (Meneveau et al., 1996),

accumulating two variables _LM and _MM instead of five as in §4.3. The code and

methodology was the same as that described in the above reference, except for the

definition of ._Iij. The local values of Mij were computed from Eq. 13, and the local

mesh Reynolds number ReA was based on the local strain-rate magnitude. In order

to span a significant range of ReA, 14 simulations with different values of u were

carried out. For comparison, simulations were also done with the standard definition

of _lli), i.e. assuming that C(A) = C(2A). Results are shown in Fig. 9 as flmction

of the average value of the cell Reynolds number. Each symbol represents the result

of a simulation that was run to a statistically stationary state. For comparison, the
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dotted line shows the theoretical prediction of Eq. 7. As can be seen, the approach

provides improved prediction of the coefficient compared to the standard dynamic

model. As stated before, the difference in coefficient had no appreciable effect on

the resolved scales or their energy spectrum.

This approach provides robust predictions of the coefficient for this case (in the

viscous range), and is very easy to implement. However, it requires input based oil

theoretical arguments. It can thus only be applied to cases in which one knows a

priori the dependence of the ratio of coefficient on scale. Therefore, this approach

is not entirely dynamic, in the sense that important information about model coef-

ficients must be specified and is not determined during the simulation.

5. Conclusions

The dynamic Smagorinsky model has been examined in a case where it is known a

priori that the coefficient depends on scale, namely in the viscous range. Theoretical

arguments were reviewed giving the coefficient's expected dependence on scale or

on mesh Reynolds number. A priori tests using well-resolved DNS data revealed

an important property of the standard dynamic model as applied to such a case:

The method gives the coefficient corresponding to the test-filter scale instead of the

grid-scale.

Several possible reformulations of the dynamic model were examined and/or

tested in LES of isotropic turbulence. In the first, the limit _ ---* 1 was consid-

ered. Using a priori tests at test-filter scales near the grid scale (o_ = 1.5 and

1.3), it was shown that unphysical behavior can result. This limit is also expected

to be susceptible to numerical errors. Another proposal was studied in which the

Germano identity is used to solve for two unknown coefficients C(A) and C(2A)

in the least-square-error sense. For implementations with the Smagorinsky model,

this procedure was shown to be ill-conditioned essentially because the eigenvectors

of the two basis tensors I_l_ij and ]SISi j are almost 'co-linear' (their correlation

coefficient is about p __ 0.96).

A new procedure, the bi-dynamic model, was proposed and tested. It is based

on extrapolating coefficients obtained at two test-filters. When implemented with

volume averaging, the method gave fair results. Some complications arose when

the method was coupled with Lagrangian averaging. We conclude that while the

idea of using more than one test-filter scale to sample the resolved field in more

detail appears to be promising in principle, in the present application the added

complications outweigh the benefits. Finally, we tested a modified formulation in

which one solves for a single coefficient at the grid-scale but must prescribe the

ratio of coefficients at test and grid scales non-dynamically. This method proved

quite practical, and it gave good results. However, it is not completely dynamic

since prior theoretical information about scale-dependence must be employed (a

similar approach was employed to account for grid anisotropy in Scotti et aI.-in

this volume).
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