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Large-eddy simulation of a backward facing step
flow using a least-squares spectral element method

By Daniel C. Chan I AND Rajat Mittal 2

We report preliminary results obtained from the large eddy simulation of a backward

facing step at a Reynolds number of 5100. The numerical platform is based on a

high order Legendre spectral element spatial discretization and a least squares time

integration scheme. A non-reflective outflow boundary condition is in place to

minimize the effect of downstream influence. Smagorinsky model with Van Driest

near wall damping is used for sub-grid scale modeling. Comparisons of mean velocity

profiles and wall pressure show good agreement with benchmark data. More studies

are needed to evaluate the sensitivity of this method on numerical parameters before

it is applied to complex engineering problems.

1. Introduction

Many aerospace and commercial products operate in a dynamic flow environment.

The structural integrity, performance, and development costs of these products are

affected by the unsteady flowfields they encounter. In rocket propulsion systems,

dynamic loads are the cause of many life limiting and failure mechanisms. For

instance, a number of dynamic load related issues manifested themselves during

the development of the space shuttle main engine, resulting in hundreds of mil-

lions of dollars of program development costs in terms of hardware redesign and

testing. Unsteady flows can also be a very effective sound generating mechanism;

George (1990) states that the aerodynamically generated noise increases approxi-

mately as velocity to the 6 th power. Therefore, the aerodynamic noise generated

by vehicles traveling at high speeds can be very annoying to both passengers and

conmnmities located in the proximity of major highways and railroads. In some

European countries where trains can travel in excess of 200 MPH, the responsible

agency has to erect sound walls along the railroads to minimize the effects of noise

pollution. This requirement can drastically increase the construction and mainte-

nance costs of a railway system. For passenger cars, unacceptable noise levels inside

the compartment can have adverse effects on sales.

In light of the importance in characterizing the dynamic flow environment in

both aerospace and commercial applications, Rocketdyne has initiated a multi-year

effort to develop a general purpose computational fluid dynamics based analysis

system for dynamic load prediction. This system will provide high-fidelity pre-

dictive capability through the development of a novel numerical algorithm and
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utilization of distributed parallel computing. The numerical algorithm is a high
order spectral method which provides the unique capability to accurately model

complex geometries and rapidly varying flowfields. Parallel computing provides

the necessary memory capacity and speed required for large scale computations.

All these features have been incorporated in the Rocketdyne Unstructured Implicit

Flow (UniFlo) solver. The UniFlo code is capable of performing a hierarchy of fluid

dynamic analyses including direct numerical simulation (DNS), large eddy simula-

tion (LES) and Reynolds average Navier-Stokes solution (RANS). Only DNS and
LES can provide time accurate information that is needed for unsteady turbulent

simulations. LES models flow features that are not directly captured by the grid
resolution employed. This technique is also known as subgrid scale (SGS) modeling.

The LES approach (vs. DNS) can relax the requirement on grid resolution that is

normally very demanding for turbulent flow simulations making it an effective tool
for engineering analyses. However, one also has to be concerned with tile numerical

errors that increase as the grid is coarsened. If not controlled properly, these errors

can overwhelm the advantage offered by LES. Therefore, the purpose of this work

is to first evaluate the numerical accuracy of UniFlo in predicting time dependent

flows. Once this is accomplished, we then assess the capability of the Smagorinsky
SGS model in predicting turbulent flow. The backward facing step configuration is

chosen as the benchmark case since it mimics the flowfield in a rocket engine com-

bustor and existing numerical and experimental data are available for comparison.

In what follows, we describe the numerical method, boundary condition and

SGS model employed by UniFlo. Numerical results demonstrating accuracy of the
method and effectiveness of the Smagorinsky model are also provided.

2. Numerical method

The Navier-Stokes equations are written as a first order system and can be repre-
sented as Eft = fin a domain f/C _nd which is subjected to the condition Bff =

along a piecewise smooth boundary F. L: is a first-order partial differential operator:

nd Off

L:: E +A0,:
i=1

na = 2 or 3, depending on the spatial dimensions, z_s are the Cartesian coordinates,

fi" has a length n, where n is the number of dependent variables, f is the forcing

function, and both B and ff describe the appropriate boundary conditions..A's are

m x n matrices which describe the characteristics of the system of equations being

solved. The idea behind the least squares spectral element method (LSSEM) is to
minimize the residual

R=£ff-f

in a least squares sense within the domain of interest and construct the functional
as

1 (£ffi(:)-- IIL:- 2 -- -L f-)



Backward facing step flow 349

By setting 6I = 0 and 6ff = _7, one can reduce the problem to

_6S

where, S = {ff 6 H01(_);Bff = g on F}, and H01 is the Sobolev space with a

compact support. For incompressible viscous flows, the working variables are ve-

locity, pressure, and vorticity. By using this system of equations, one can employ

any of the C o functions to approximate the spatial variation of the dependent vari-

ables. UniFlo employs isoparametric mapping to transform the governing equations

from the Cartesian coordinate system to a generalized coordinate system where the

spatial discretization is performed. The domain of interest is divided into a set

of non-overlapping elements and within each element, basis function derived from

Legendre polynomials is used for spatial discretization. The spatial accuracy de-

pends on the choice of the order of Legendre polynomial basis function and can vary

from element to element. This approach, also known as spectral element, has been

formulated by R0nquist and Patera (1987). LSSEM uses a common interpolating

function to approximate all of the dependent variables. Even with the presence of

the convective terms, the resulting set of algebraic equations are positive definite

and symmetric. LSSEM maintains a tight coupling among all of the governing

equations and provides a set of well-defined boundary conditions that are consis-

tent with flow physics and mathematical constraints. It does not require any user

defined artificial damping factor to maintain numerical stability. To maintain high

spatial accuracy at the domain boundary, UniFlo does not need special treatment

such as the utilization of ghost points. The convective terms are linearized with the

Newton-Raphson procedure so that the spatial derivatives can be discretized im-

plicitly. Sub-iterations are required at each time step for the purpose of minimizing

the effect of linearization errors. For most problems, the residual can be reduced

by four orders of magnitude in less than three iterations. The accuracy is second

order in time with the application of a backward differencing scheme. For instance,

the temporal derivative of the velocity component, u, can be discretized as

OU Us-1 -- 4U s + 3U "+1

Ot 26t

where superscripts represent different time levels. The resulting algebraic equations

are solved by the conjugate gradient method with Jacobi preconditioning. The

structure of the coefficient matrix is completely arbitrary and the solution procedure

does not rely on any pre-defined order. More details of this method is given by

Chan (1996).

The boundary conditions are: (1) specified velocity at the inlet, (2) no slip along

solid walls, (3) stress free and vanishing normal velocity component along the plane

of symmetry and (4) 'free boundary' along an outflow plane. For a Cartesian grid,

stress free condition is imposed by setting the horizontal vorticity components to

zero. Points located on a 'free boundary' are treated as unknowns and solved

directly.
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FIGURE 1. Streamlines behind a backward facing step at Re = 389; top half:

result for long domain; bottom half: result for truncated domain.

For turbulent flows, we relate the subgrid scale stresses to the strain rate of the

resolved velocity field via Boussinesq approximation. The diffusion term of the

Navier-Stokes equations then becomes

_( 1__ ,
Re + lJt)eijk OX'--_j axj 2si1

where vt is the eddy viscosity, Sij is the strain rate, and w is the vorticity. The value

of eijk is equal to zero unless each of the number 1,2, and 3 occurs as a subscript.

Furthermore, eijk is equal to 1 if the order of subscripts is cyclic, it becomes -1 if

the order of subscripts is not cyclic. The eddy viscosity is computed as

= (c,z ) l&ilf,

= ( x@6z)ll s

where C8 = 0.1 and f8 is the Van Driest damping function defined as

__+

f, = 1.0 - exp(-_--)

In reality the value of C_ is not constant and can change in time and space. Near a

corner, _+ is determined with the shortest normal distance from the adjacent walls.

This procedure is somewhat ad hoc and is problem dependent.
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FIGURE 2. Predicted profiles at an axial distance of 5 inlet heights behind a

backward-facing step with Re = 389, -- results obtained with long domain

results obtained with truncated domain, (a) axial velocity profile and (b)

vorticity profile.

3. Numerical results and discussion

To demonstrate the effectiveness of the current outflow boundary condition, we

apply it to compute the laminar flow behind a backward facing step studied ex-

perimentally by Armaly et al. (1983). The Reynolds number, based on the inlet

height and average velocity, is 389. The ratio between the inlet and step heights

is 0.94. Flow separates behind the step and reattachcs at an axial distance that is

equal to about eight step heights from the plane of expansion. Two exit domains,

one long and one short, are used. For the long domain case, the axial length be-

hind the step is 17, the flow has room to reattach after separation and recover to a

fully-developed flow; therefore, the downstream influence on the flowfield near the

step is small, and for comparison we can use the predicted profiles as the baseline.

For the short domain case, the outflow plane, which cuts through the separated

region, is located at 5 inlet heights behind the step. Because of this, accuracy

of the predicted profiles is strongly influenced by the outflow boundary condition.

For time dependent turbulent flow, this situation is similar to having an eddy pass

across an outflow boundary. A parabolic profile is imposed along the inlet plane

which is located at 2 inlet heights upstream of the expansion. Figure 1 shows the

grid systems and streamlines predicted by UniFlo for both the short and long do-

mains. In both cases, 5 collocation points are placed within each element. The

total number of elements is 72 for the long domain and 36 for the short domain.

The flow pattern is almost the same in both cases. For the short domain case,

having a reverse flow on part of the outflow boundary does not present numerical

convergence problem, and this further demonstrates the robustness of the current

numerical me_hod and outflow boundary condition. The predicted reattachment is

8.0 times the inlet height and is in good agreement with the test data. Armaly et

al. also reports that at Re = 389, the flow begins to separate from the upper wall

and becomes three-dimensional, but the separation region is so small that its size

2.0
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FIGURE 3. Predicted profiles behind a backward-facing step with Re = 800;

-- Gartling's results, o 5 th order, A 6 th order, and D 7 th order; (a) axial location

of 7 and (b) axial location of 15.

could not be measured. This phenomena is correctly predicted by UniFlo. Figure 2

shows the axial velocity and vorticity profiles at an axial location of 5 inlet heights

behind the step. The trend in both cases is identical, with only less than 10 percent

discrepancy on the magnitude.

The next test case is due to Gartling (1990) and Gresho et aI. (1993). The pur-

pose of this exercise is to answer some of the questions raised by Gresho et al. as
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to whether spectral methods can handle flow geometries with a sharp corner and

predict the correct flow behavior. Through careful numerical studies and stability

analysis, they conclude that at a Reynolds number of 800, the flow behind a back-

ward facing step with 1:2 expansion ratio is indeed steady. With this in mind, we

first perform the simulation as a steady state problem by turning off the transient

terms in the Navier-Stokes equations. The rectangular flow domain is 17 units long

and 1 unit high. The flow enters the domain along the top half portion of the left

boundary with a parabolic profile. The Reynolds number based on the step height

and mean velocity is 800. Figure 4 shows the grid skeleton employed; there are
4 elements in the vertical direction and 11 elements in the streamwise direction.

Within each element, we apply 5 th, 6 th, and 7 th order polynomials, respectively, in

each of the two directions. Figure 3 shows the comparison between the predicted

profiles and benchmark data at two different streamwise locations. All except the

vertical velocity profile at the axial location of 7 show an excellent agreement with

the benchmark data of Gartling. Figure 4 shows the vorticity distribution, which

is proportional to shear stress, along the bottom and top boundaries. By examin-

ing these plots, one can determine both the separation and reattachment points.

Along the lower wall, UniFlo predicts a reattachment length of 6.1, whereas along

the upper wall, it predicts a separation at the streamwise location of 4.8 and a

reattachment at the streamwise location of 10.5. These predictions are in excellent

agreement with the benchmark data. These results also indicate that for steady

flow computation, numerical error incurred from using an under-resolving grid is

very localized.

We then compute the same problem by treating it as an unsteady flow. Initially,

the flow is stagnant inside the domain. Figure 5 shows the temporal evolution of

the streamlines for the case where 6 th order polynomials are used inside each el-

ement. Overall this grid resolution produces satisfactory results for steady state

calculation, however, this is not the case for time accurate simulation. A transient

process, which involves a sequence of vortex shedding, takes place along the upper
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FIGURE 5. Streamlines showing tile time evolution of the flowfield behind a

backward facing st.cp at a Reynolds number of 800; contputation performed with a

11 x 4 grid and 6 °_ order Legendre polynomials; final state is a temporally periodic

flow; from top to bottom: time=10, 20, 30, 50, 80, 100, and 140.

wall at the streamwise l()cation where the steady state result show a discrepancy

in the vertical velocity profile prediction. This result demonstrates that numeri-

cal error that develops in a small region can grow ()w,r time and contaminate the

entire flowfield. We then refine the grid by increasing the mmlber of elements in

the streamwise direction to 18 while maintaining 6 u' or(ter polynomials in each ele-

ment. The result shown in Fig. 6 indicates that the initial transient flow features

decay rapidly in time and the flow evolves asymptotically towar(ts a steady state.

This prediction agrees with the finding of Gresho _:t al. It is apparent that the

transient flow predicted above is a numerical artifact. Unfortunately, the flow fea-

tures generated by this numerical error look so real, making them ditfi('ult to detect.

Therefi)re, for unsteady flow sinmlation one nmst l)('rf,)rm grid dependence study
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before attempting to explain the underlying flow physics.

Having addressed some of the relevant numerical issues, we then use UniFlo to

simulate the three-dimensional backward-facing step configuration where experi-

mental data of Jovic and Driver (1994), DNS data of Le and Moin (1994), and LES

data of Akselvoll and Moin (1995) are available for comparison. The grid system

employed is shown in Fig. 7. There are 13 elements in the streamwise direction, 6

elements in the vertical direction and 6 elements in the spanwise direction. Within

each element, 6#' order Legendre polynomials are used in each of the three direc-

tions. The expansion ratio is 5:6. The geometry is scaled with the step height, H.

The inlet plane is located at 5H upstream of the expansion, and the outflow plane is

located at 17H downstream of the expansion plane. The spanwise width is 4H and
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FIGURE 7. Grid systeIn for the tlhreCl(lin]en._i(,nal t)ackward facing step, top:

tiirough flow plane, bottom: cross-sectional plane.

a periodic t)oundary condition is imi)osed in this direction. Stress free condition is

imposed along the top boundary, and no slip condition is imposed along the bottom

wall. At the inlet plane, we take the time dependent tur|)ulent boundary layer pro-

files computed by Akselvoll and Moin and interI)olat(' them onto the current grid.

The freestream velocity is taken to t)e one, and th(, tim(, it takes for tile flow to

travel one step height is also one. Since our implicit flow solver is not restricted

by the CFL condition for numerical stability, we ('an take a larger time step size

of 0.1, which is five times higher than that emph)yed t)y Akselvoll and Moin. As a

result, each through flow takes 220 time steps. Time averag(, quantities are colleete(1

after the flow has evolved through the domain 5 times. For comparison, we flu'ther

average the data in the spanwise direction and show them in Fig. 8. The predicted

wall pressure distribution is in good agreement with th(' ('×perimental data inside

the recirculating region behind the step. However, in the re('ow'ry region, all the

numerical methods, including UniFlo, predict a faster r('('()very rate than that of the

ext)erimental measurements. The velocity i)rofiles arc ('ompared to tile DNS data

of Le and Moin. The agz'eement is good for all five streamwise locations.
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result of Akselvoll & Moin, and o experimental result of Jovic & Driver; bottom:

axial velocity profiles at selected streamwise locations; -- UniFlo, o DNS result
of Le & Moin.

4. Summary

We have demonstrated that a spectral based flow solver can be used to simulate

the flow behind a backward-facing configuration. The weak singularity located

at the corner does not present numerical problem to the least squares method.

Numerical error can generate unsteady flow phenomena that could be mistaken as

'real' flow physics. Therefore, grid dependence study is paramount (more so than
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tile steady state flow cah'ulation) in unsteady flow simulation. The t)reliminary

results obtained from the LES show good agreement with both experimental data
and numerical data. Further studies are needed in order to understand the role of

the subgrid scale model in these sinmlations. The Smagorinsky model with Van

Driest wall damping is, however, difficultto implement for complex geometries.

Future work willinclude the implementation of dynamic models that do not require

wall damping function and user specified model constant.

5. Acknowledgments

The first author is supported by the Rocketdyne IR&D t)rogram and he would

like to thank Mtmir Sindir and Steve Barson for ttwir continuing interest in his

work. Technical discussion with Charles Meneveau, Ken Jensen, and Dan Haworth

provided many insightflfl ideas on LES. Parviz Moin made all this i)ossible and his

hospitality is greatly api)reciated.

REFERENCES

AKSELVOLL, KNUT & MOIN, PARVIZ 1995 Large eddy simulation of turbulent

confined coammlar jets and turbulent flow over a backward facing step, TF-63,

Del)artment of Mechanical Engineering, Stanford University.

AR.MALY, B. F., DL'RST, F., PEREIItA, J. C. F.. & S(:ItONL'NG, B. 1983 Ex-

perimental and theoretical investigation of backward-facing step flow. J. Fluid

Mech. 127, 473-496.

CHAN, DANIEL C. 1996 A least squares spectral element method for incompress-

ible flow simulations. Proceeding_ of the Fifteen International Conference on

Numerical Method,_ in Fluid Dynamical. Springer-Vorlag.

GARTLING, DAVID 1990 A test problem for outflow boundary conditions Flow

over a backward-facing step. Int'l. J. for Num. Meth. in Fluid_q. 11,953-967.

GEORGE, ALBEBT R. 1990 Automobile Aerodynamic Noise. SAE Tran._action._.

99-6, 434-457.

GRESIIO, P. M., GARTLING, D. K., CLIFFE, K. A., GARRAT, T. J., SPENCE.

A., WINTERS, K. H., GOODRICH, J. W. & TOR(:ZYNSKI, T. R. 1993 Is the

steady viscous incompressible 2D flow over a backward-facing step at Re=S00

stable? Int'l. J. for Num. Meth. in Fluids. 17, 501-541.

,JovIc, S. & DRIVER, D. M. 1994 Backward-facing step measurement at low

Reynolds number Reh = 5000, NASA Technical Memoranduin 108807, Ames

Research Center, Moffett Field, CA 94035-1000.

LE, HUN(; & MO1N, PARVIZ 1994 Direct numerical simulation of turbulent flow

over a backward-facing step, TF-58, Dept. of Mechanical Engr., Stanford Uni-

versity.

RONQUIST, EINAlt M. ,_ PATERA, ANTtlONY 1987 A Legendre spectral element

method for the Stefan Problem. Int'l. J. for Num. Meth. in Engr. 24, 2273-

2299.


