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Evaluation of a vortex-based subgrid

stress model using DNS databases

By Ashish Misra 1 AND Thomas S. Lund 2

The performance of a subgrid stress (SGS) model for large-eddy simulation (LES)

developed by Misra & Pullin (1996) is studied for forced and decaying isotropic

turbulence on a 323 grid. The physical viability of the model assumptions are

tested using DNS databases. The results from LES of forced turbulence at Tay-

lor Reynolds number R_ _- 90 are compared with filtered DNS fields. Probability

density functions (pdfs) of the subgrid energy transfer, total dissipation, and the

stretch of the subgrid vorticity by the resolved velocity-gradient tensor show rea-

sonable agreement with the DNS data. The model is also tested in LES of decaying

isotropic turbulence where it correctly predicts the decay rate and energy spectra

measured by Comte-Bellot & Corrsin (1971).

1. Introduction

The aim of this study is to use DNS data of isotropic turbulence to evaluate the

performance of a new subgrid-stress model. LES is performed for both forced and

decaying turbulence, and statistics are compared with appropriately filtered DNS

fields and with some experimental results. The SGS stresses are calculated from

a structural model of the subgrid vorticity proposed by Pullin & Saffman (1994),

henceforth PS. This model has some similarity to the eddy-axis structure model for

one-point closure proposed independently by Reynolds & Kassinos (1995). PS as-

sume that the subgrid structure consists of an ensemble of straight stretched vortex

structures each with an arbitrary internal vorticity distribution. Some support for

this type of structure of the fine scales is provided by the observed tendency, in sev-

eral numerical simulations, for the alignment between the vorticity vector and the

eigenvector corresponding to the algebraically intermediate value of the principal

rate-of-strain. Moreover, stretched-vortices have been used to make quantitative

predictions for a range of fine-scale turbulence properties (Lundgren 1982, Pullin

& Saffman, 1993, 1994). Misra 8z Pullin (1996) have examined and implemented

several different versions of the locally anisotropic model of PS. In this report we

will discuss one such model and examine its performance when measured against

experiment and filtered DNS.
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2. Vortex orientation model

In the PS model, the orientations of the structures are given by a pdf of tile distri-

bution of Euler-angles describing the transformation fr()n_ laboratory to structure-

fixed axes. The Reynolds stresses are proportional to tile turbulent kinetic energy

of the vortex collection times a tensor-moment of the pdf. For example, a delta-

function pdf in which all vortices in a subgrid domain have a common direction

described by the unit vector _ gives Reynolds stresses,

rii = (_ij-_i_j) E(k)dk (1)
c

where kc is the cutoff wavenumber and the subgrid kinetic energy is given by A" =

f£7 E(k)dk. PS proposed a simplified version of the model using a rapid-distortion-
like approximation in which the orientation of the subgrid vortices have a two-

delta function pdf defined by the eigenvectors corresponding to the largest two

eigenvalues of the resolved rate-of-strain tensor S_j. It Call be shown that such

a model can not produce backscatter. In this report we study the performance

of a slight variant of their original model wherein there is alignment between the

eigenvector corresponding to the maximum eigenvalue of the rate-of-strain tensor,

ea, and the resolved vorticity vector, £. The Re.ynolds stresses are then given by

/?-%_'" E(k)dk (2)Z,) = (t_(_,j-i3ii3_)+(1-p)(_ij -ei j J)
c

where IL is the fraction of structures aligned with t.ho maximally extensive eigen-

vector and e _ is the unit vector along &. As partial justification for (2) we renlark

that one should expect complete alignment with _2, in the DNS limit. We currently

take j, = 0.5. In order to calculate the subgrid energy, K, a local balance be-

tween production by the resolved scales, and the sunl of subgrid and resolved scale

dissipation is assumed. When coupled to an assumed Kohnogorov subgrid energy

spectrum produced by the (unknown) internal structure of the vortices with a cut-

off at kq = 1, where 7? = (va/e) 1/4 is the locaJ Kolmogorov length, an equation

sufficient to determine the dissipation is obtained. This is given by

e = 2vSijSzj 3 Ik" 0 _.2/3
2 k2_/a 1 - (kdl) "2/a Sij

(_ ld ),× - + :/( ,, - (3)

where K0 is the Kolmogorov constant. When the model parameter K0 is specified,

(3) can be solved for the total dissipation e and the subgrid energy determine(t from

the Kolmogorov spectrum. This gives closure.

Equation (3) has the dimensions of L2T-a; we therefore divide (3) by k_u 3 which

results in two non-dimensional parameters (see Misra & Pullin for details),

S1 -- 2SijSij
1,. v2 ,

(4)

2k v
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where $1 represents the resolved scale dissipation while $2 represents the stretch

experienced by the subgrid vortices by the resolved velocity-gradient tensor. The

SGS dissipation may be written as,

= -s,j - e3, 3j)

-32 K,

1 6 e, ej )_ K,
/ (5)

where "Sst r is the component of S,j aligned with the vortex. Hence backscatter,

defined by Csgs < 0 occurs whenever $2 > 0 - the subgrid vortices are being com-

pressed on the average - while $2 < 0 - the vortices are axially stretched - gives
cascade.

This model has been implemented for both forced and decaying box turbulence

by Misra &: Pullin. They examine several alternative scenarios for determining the

instantaneous orientations of vortices in a given cell.

3. Results and discussions

The incompressible, filtered Navier-Stokes equations are solved in a 323 box, with

and without forcing, using periodic boundary conditions in all three directions. A

Fourier-Galerkin pseudo-spectral method is used with '3/2 dealiasing rule' for the

non-linear terms, i.e. 32 Fourier modes in each direction were advanced in time, the

computation of the non-linear terms were done using 48 modes in each direction.

A second order explicit Runge-Kutta scheme is used for time advancement.

3.1 Decaying turbulence

We study decaying isotropic turbulence in order to compare our results to the

experiment of Comte-Bellot and Corrsin. They measured the energy spectrum at

three downstream locations in grid turbulence. One can relate this to decaying

isotropic turbulence by invoking the Taylor approximation. We mimic their exper-

iment by studying turbulence in a cubical box with periodic boundary conditions.

In a frame of reference moving with the mean flow speed,

n

where x is the downstream distance from the grid and U(x) is the mean flow ve-

locity over the cross-section of the tunnel. We have non-dimensionalized the ex-

perimental data by the following characteristic velocity, length and time scales:

U_ef = {3U02/2, Lrey = L/2r and trey = L_ey/Urey. In their experiments the

velocity fluctuation at the first measuring station is V_ 2 = 22.2 cm/s, the free-

stream speed is U_ = 103 cm/s and the spacing of the turbulence generating mestl
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FIGURE 1. Decay of resolved (--) and subgrid ( .... ) kinetic energy. No
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FI(;URE 2. Time evolution of spectra in decaying turbulence. Experiment: D

t=42; ,, , t=98; o , t=lT1. Simulation at corresponding times: --

is M = 5.08 cm. The size of the computational box, L = llM, was chosen to

contain roughly four integral scales. The times at the three stations were measured

in terms of Uoot/M. The initial Taylor Reynolds number is R:_ _- 80. In order

to compare the resolved and the subgrid part of the turbulent energy produced by

the computation, the measured spectra have been integrated over the relevant scale

ranges.

Figure 1 shows the decay of the resolved energy with time. The LES gives good

agreement with experiment. The dotted line is the result of running the simulation

with the model switched off. It is evident that the model plays an important role in

predicting the correct decay of the kinetic energy. Aside from the parameter tl (set

to 0.5), the model requires a value of the Kolmogorov constant. While acceptable

results were obtained with the standard value of K0 = 1.5, a slight improvement

was observed when higher values were used. The results in Fig. 1 were obtained

with K0 = 1.8. While this value is on the edge of the uncertainty band from

experimental measurements (Sreenivasan 1995), it is well within the predicted rang(,
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from numerical simulation; Jimdnez et al. report a value of K0 _ 2 in a 2563 DNS

of isotropic turbulence at Rx = 94.1. It is possible that elevated values of the

Kolmogorov constant in numerical simulations is a low Reynolds number effect. If

this is the case, it stands to reason that a larger value should be used in the present
simulations which are also performed at relatively low Reynolds number.

The decay of the subgrid energy with time is also shown in Fig. 1. Note that

the subgrid energy is obtained from the model without the solution of additional

field equations. The subgrid energy is a quantity derived from a knowledge of
the resolved field and the chosen subgrid energy spectrum; it therefore can not be

initialized to match the experimental value. Figure 2 shows a plot of the resolved
energy spectra with the measurements at the initial time and then at the two later

instants. The initial spectrum is generated to match the experimental data, while

the later two curves are the predicted spectra arising from the LES calculation.

Figure 1 gives the area under the curve of Fig. 2 at the three time instants, over
the resolved range of scales.

3.2 Forced turbulence

Forcing is achieved by exciting low wavenumbers such that the total energy in-
jection rate is constant in time. A certain selected number of Fourier modes are

chosen from a wavenumber shell Ik[ = k0. The Fourier coefficient of the forcing
term is then written as,

_k__ Uk^5 (6)
g 10kl

for all modes in the s.pecified shell. The above choice of fk ensures that the energy

injection rate, _ fk" Ok, is a constant and equal to g. We have chosen k0 = 2, N =

20, and 6 = 0.1 for all the runs. (See Carati et al. 1995)
Simulations with forcing were performed such that a statistical steady state is

reached when statistics are collected. Results in this report are presented for Taylor

Reynolds number, Rx _ 85 in order to make comparisons with 1283 DNS results at
approximately the same Taylor Reynolds number.

Figure 3a-b shows scatter plots of $1 versus $2 from the LES as well as from

filtered DNS data. These plots show the intensity of the vortex stretch as a function

of the resolved dissipation rate. Notice that the DNS data displays a significant

fraction of points with positive stretch parameter, ,_2, (backscatter) whereas the

model rarely predicts these events. Quantitatively, the DNS shows roughly 30%

backscatter, which is consistent with previous measurements (Piomelli et al. 1991).

In contrast, our model yields only ,-_ 3% backscatter. While there is clearly a large
discrepancy in the prediction of backscatter in Fig. 3, it should be noted that the

percentage of backscatter can be controlled through the parameter p in Eq. 2. # = 1

corresponds to complete alignment with fi3 and results in no backscatter, while
p = 0 corresponds to complete alignment with & and gives about 40% backscatter.

When 0 < p < 0.4, the decay of the kinetic energy appears correct, but the decay of

the energy spectra is somewhat unsatisfactory with a trend towards flattening of the
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FIGURE 3. Scatter plot of $1 and $2 in filtered DNS (a) and LES (b).

spectrum at later times. In the range 0.4 < _u _ 1, there is a general insensitivity

to p, leading to correct statistics and diminishing backscatter. The performance of

the model for all values of p in forced turbulence is satisfactory. Presently we show

results for p = 0.5 which axe typical of the behavior of the decay of the resolved

energy spectrum and of the resolved and subgrid energy for 0.4 < # < 1.0.

An interesting feature of Fig. 3 is that all points lie within a bounding parabola.

An estimate based on a locally two-dimensional 'maximum stretch' scenario for Sij

gives a bounding parabola $1 -- 16 $22. We find however that $1 = 12 $22 gives a

slightly better boundary and so this curve is displayed in the figure. The importance

of backscatter has been a question of debate though there is some evidence in the

literature of its importance in wall-bounded flows. The backscatter property of the

model is also illustrated in Fig. 4a, which shows a pdf of the 'stretch', that part

of the velocity-gradient tensor which stretches the subgrid vorticity. The stretch is

suitably normalized by x/_- While the two curves peak at approximately the same

location, the LES shows predominant stretching. Figure 4b is a plot of the pdf of the

subgrid energy transfer, _gs/_; points on the left of the origin exhibit backscatter.

It is clear from the figure that the LES does well in the cascade region. The pdf

of the total dissipation log10 (e/_) is displayed in Fig. 4c. The total dissipation e is

a positive definite quantity by construction as defined in (3). The distribution of

appears to be approximately log-normal.

4. Concluding remarks

The behavior of an SGS model for LES has been tested against filtered DNS fields

at similar Reynolds numbers. The model is stable and appears to produce a good

quantitative description of the resolved flow and of the subgrid energy. It shows

the right decay rate and gives good agreement with the experiments of Comte-

Bellot and Corrsin. The model seems to work well for forced turbulence. Misra
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& Pullin demonstrate that it produces negligible SGS dissipation in the limit of
fully resolved flow. A small amount of backscatter is produced by the version of

the model tested presently albcit not as much as is indicated by the filtered DNS

field. An adjustable parameter in the model is the Kolmogorov constant. The
value presently used is within the bounds of experimental values. The model is

about 25% more expensive in CPU time than the simple Smagorinsky model. Some

subgrid model features show qualitative but not strong quantitative agreement with
the equivalent quantities from filtered DNS fields at a similar Reynolds number. It
remains to be seen how well the model will function for free-shear or wall-bounded

flows. Future work will aim at constructing models with alternative representations

of the subgrid vortex orientations.
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