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A study of the turbulence structures
of wall-bounded shear flows

By M. S. Chong 1 J. Soria 2 A. E. Perry 1

J. Chacin 3 Y. Na 4 AND B. J. Cantwell 5

This project extends the study of the structure of wall-bounded flows using the

topological properties of eddying motions as developed by Chong et al. (1990),

Sofia et al. (1992, 1994), and as recently extended by Blackburn et al. (1996) and

Chacin et al. (1996). In these works, regions of flow which are focal in nature

are identified by being enclosed by an isosurface of a positive small value of the

discriminant of the velocity gradient tensor. These regions resemble the attached

vortex loops suggested first by Theodorsen (1955). Such loops are incorporated in

the attached eddy model versions of Perry _z Chong (1982), Perry et al. (1986),

and Perry £: Marusic (1995), which are extensions of a model first formulated by

Townsend (1976). The DNS data of wall bounded flows studied here are from the

zero pressure gradient flow of Spalart (1988) and the boundary layer with separation

and reattachment of Na L: Moin (1996). The flow structures are examined from the

viewpoint of the attached eddy hypothesis.

1. Introduction

In the attached eddy hypothesis, eddying motions are envisaged to consist of

vortex tubes or cores which form loops as first proposed by Theodorsen (1955).

These loops are referred to by many names depending on the shape one believes they

possess, e.g. horseshoes, hairpins, ["1, A or II eddies, etc. A problem immediately

arises as to what constitutes a vortex core. There has been some debate regarding

this over the years and many workers have been involved, e.g. Truesdell (1954),

Cantwell (1979), Vollmers (1983), Dallman (1983), Chong, Perry & Cantwell (1989,

1990), Robinson (1991), Lugt (1979), and Jeong & Hussain (1995), to mention a

few. To avoid endless discussion and debate the authors will simply identify those

regions in the flow which are "focal", to be shortly defined, and refer to them as

"focal regions". The attached eddies postulated in the attached eddy hypothesis

need not necessarily be focal since this condition depends on the relative strengths

of the local rate of rotation tensor and the local rate of strain tensor (defined in Eqs.

(8) and (9)). The results of the attached eddy hypothesis are derived purely from the
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Biot-Savart law and in no way depend on the above relative strengths. Whether or

,lot a region of vorticity is focal depends on the rate of strain environment in which
it is embedded and so also do all definitions for a vortex core. Nevertheless it is

felt that most if not all of the attached eddies should display extensive focal regions

as a result of the work of Blackburn, Mansour & Cantwell (1996), who examined

the data from channel flow computations of Kim (1989). Here focal regions were

found to exist in tubes, some of which extended from very close to the wall to the

center plane of the channel. The authors consider these to be the clearest and most

spectacular indicators of eddying motions so far seen in DNS data and at first sight

look like the attached eddies envisaged by Perry and Chong (1982).

Following Chong, Perry & Cantwell (1989, 1990), the geometry of the streamline

pattern at any point in the flow, as seen by a non-rotating observer moving with

the velocity of that point, can be classified by studying certain invariants of the

velocity gradient tensor Aij = Oui/Ox3 at that point. Here ui is the velocity vector

and xi is the space vector. The characteristic equation of Aij is

Aa + PA 2 + QA + R = 0 (1)
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where P, Q and R are the tensor invariants. These are

P= -trace(A) (2)

Q = l(P 2 - trace(A2)) (3)

and

R = -clef(A).

For incompressible flow, P = 0 from continuity and so

(4)

_3 + Q_ + R = 0. (5)

The eigenvalues _ which determine the topology of the local flow pattern are

determined by the invariants R and Q. In fact the R - Q plane, shown in Fig. 1, is

divided into regions according to flow topology.

The discriminant of A 0 is defined as

27 R2
D = _- + Q3 (6)

and the boundary dividing flows with complex eigenvalues from real is

D = 0 (7)

Figure 2 shows contours of D on the R - Q plane. For D > 0, Eq. (5) admits

two complex and one real solution for )_. Such points are called foci and are part
of the focal regions mentioned earlier. If D < 0, all 3 solutions for _ are real and

the associated pattern is referred to as a node-saddle-saddle point according to the

terminology adopted by Chong et al. (1990).

As implied earlier, the velocity gradient tensor can be split into two components
thus:

Aij = Sij + Wij (8)

where Sij is the symmetric rate of strain tensor and Wij is the skew symmetric rate
of rotation tensor. These are given by

and

1. Oui Oui

s,, = _(-E_=, + -_-;=,1 (9)

1 o_, o,,i)
Wi_ = _( Ox_ Ox_ "

(10)

The invariants of S,j are P_, Qs, and R_ and are defined in an analogous way as

the invariants of Aij. For incompressible flow Ps = O,
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FIGURE 2. Trajectories of constant D in the R - Q plane.

and

1

Q, = --_ SijSij (11)

I
R_ = - :&jSjk&, (12)

3

The corresponding invariants of Wi.i are Pw, Qw and Rw. Pw = Rw = 0 but Qw

is non zero and is given by

Qw = iwowij (13)
2

and isproportional to the enstrophy density. Other relationsof interestare

¢ = 2uSijSij = -4vQ, (14)

where ¢ is the dissipation of kinetic energy into heat per unit mass and it should

be noted that Q_ is always a negative quantity.
It can be shown that

1

Q = Qw + Q_ = _(wowo - SijSo) (15)

According to the work of Viellefosse (1982, 1984) and the more recent work of

Cantwell (1992), the evolution of the velocity gradient tensor Aij for a fluid particle

is given by the following :
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FIGURE 3. Isosurfaces of discrinfinant (D _ 0) for zero pressure gradient data of

Spalart for Reo = 670 (from Chacin et al. (1996)).
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OA,j uk OAij ___+ _ + AikAkj - AkmAmk__ = Hij (16)

Here _ij is the Kronecker delta and

02p 02p _ij v 02AiJ (17)
Hij = -( Ox--_xj OxkC3xk 3 ) +

If the viscous term and the pressure Hessian terms are small, the evolution of

Aij for fluid particles follows the so called restricted Euler equation, and solution

trajectories of such particles follow the contours of constant D on the R- Q plane as

shown in Fig. 2. It is thought that this might be an appropriate description of the

motions for fine scale eddies at high Reynolds numbers. It is found here that this

restricted Euler equation is not valid for the Spalart (1988) data, which is of course

at low Reynolds number. However, computations show that once a particle is focal

it is highly probable it will remain focal. This study of particle trajectories on the

R - Q plane gives us a first glimpse of how fluid dynamics might be combined with

the usual kinematic description of eddy structures as has been used in the attached

eddy hypothesis.

It has been pointed out that three-dimensional plots of vortex lines or particle

trajectories are extremely complex and confusing and not very helpful in gaining

an insight into eddying motions (Cantwell (1979)). However, a very interesting
feature of the isosurfaces of constant D found by Blackburn et al. (1996) is that

they enclose a rather concentrated and well-ordered bundle of vortex lines. Finally,
Blackburn et al. found that isosurfaces of constant D were superior to isosurfaces

of enstrophy density or dissipation of kinetic energy for showing clear, well defined

structures. The authors do not fully understand why this should be and this is a

question which needs to be pursued in future work.

2. Results

2.1 Normalization of the discriminant

The raw values of the discriminant D were used in the case of the Spalart DNS

data without any additional normalization. In the case of the Na & Moin DNS data,

it is assumed that the inflow free-stream velocity is unity and that all length scales

in the database are normalized by _i*,,, the displacement thickness of the inflow

boundary layer. The computed raw values of D were normalized by a velocity

gradient representative of the mean separation bubble flow to the power of 6. This

resulted in the raw values of D being multiplied by a factor of 10 6, and so maximum

values of normalized D were of order 10s. Typical values of D used in the isosurface

visualization of D were of the order of 1 - 10.

2.2 Zero pressure gradient boundary layer

Figure 3 shows a very clear picture (from Chacin et al. 1996) of isosurfaces of the

discriminant for part of the Spalart (1988), Reo = 670, zero pressure gradient turbu-

lent boundary layer simulation data. Some Theodorsen-typc vortices are apparent
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FIGURE 4. Isosurface of constant discriminant, D, for zero pressure gradient

turbulent boundary layer flow at Ro = 670 for different threshold values of (a)

D = 1.0, (b) D = 0.25 and (c) D = 0.1. The displayed boundary layer structures

cover Ax + 2442, + == grain = 6.4, Y+ax = 375 and Az + 1221. Here + denotes

viscous lengths.
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FIGURE 5. Particle trajectories on the R- Q plane conlputed from the zero

pressure gradient tm'bulent boundary layer data of SpaJart (1988).

together with intertwining tubes forming braids which are near the surface and are

aligned with the streamwise direction. Figures 4(a), (b), and (c) show the same

flow case of Spalart but for a different time frame covering a larger field of data.

The figures are ordered for diminishing values of D. Figure 4(a) shows structures

which could be interpreted as _ or A eddies when viewed from upstream. These

loops appear to lean in the streamwise direction. As the _'threshold" is reduced (i.e.

as the value of D for the isosurface is reduced), more attached vortex loops become

apparent, but the picture becomes confusing. The structures are not as smooth as
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FIGURE 6. Particle trajectories using a linear diffusion model for Hij of Martin &

Dopazo (1995).

the Chacin et al. (1996) data, and this is because of computer storage problems.

There is nonetheless a suggestion of Theodorsen type structures with focal tubes

coming down to the wall and running along it in tile streamwise direction. Super-

position of vortex lines (done at the computer terminal) is confusing, but they tend

to loop and lean in the streamwise direction in a manner similar to the isosurfaces

of D.

Particle trajectories on the R- Q plane show that there is a rapid conw_rgence

to Small but positive D. Figure 5 shows a typical calculation for a selection of

particles with D > 0 at the initial time. These particles are identified at t = 0

and then followed in space as the DNS code is run forward in time fbr several eddy

characteristic turnover times. These calculations show that once a particle has a

positive discriminant (i.e. once it is focal), it has a high probability of remain-

ing focal over several eddy turnover times. Various models for the Hij term are

currently being formulated. One recent model by Martin & Dopazo (1995) shows

ensemble averaged R - Q trajectories with the topology sketched in Fig. 6, and this

is consistent with the above findings. Time evolution computations and animations
of the isosurfaces of the discriminant show that such surfaces retain their shape

and identity for considerable streamwise distances. When viewing a movie made

up of successive frames, these structures appear to convect downstream in close

accordance with Taylor's hypothesis. Smaller structures close to the wall appear to

be convecting at smaller velocities than the larger structures further away fl'om the

wall. All of this is consistent with aspects of the attached eddy model discussed by

Perry et al. (1986).

In zero pressure gradient layers, there seems to be a strong link between these

attached eddies and the Reynolds shear stress. Perry and Chong (1982) show_d that
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FIGURE 7. Time-averaged values of -u'r' for zero pressure gradient turbulent

boundary layer flow with Reo = 670 in (a) viscous sub-layer y+ < 5.0 (b) buffer

layer, 5.0 < y+ < 41, (c) logarithmic region, 41 < !I+ < 107 and (d) wake region,

y+ > 107. The contour levels shown are normalized t) 3' u_..

it is likely that they contribute ahnost entirely to the mean vorticity distribution

and the Reynolds shear stress distribution. Figure 7 shows that peaks in the time

averaged values of -u't/ occur near to and on either side of the contour D = 0

on the R > 0 branch of the R - Q plane. Here u' and u' are the streamwise and

wall-normal components of the velocity fluctuations respectively.

Chaein et al. (1996) found that the contributions to the Reynolds shear stress

by an attached eddy COIlle from regions close in iJlysical space to the isosurfac_,

of D, which is small and positive as seen in Fig. 9 of thin refi, rence. They tbund

that high Reynolds stress events are strongly corr(,lated with changes in sign of

the discriminant. This is important near the wall where the discriminant and the
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gradient turbulent boundary layer flow with Re = 670 in (a) viscous sub-layer

y+ < 5.0 (b) buffer layer, 5.0 < y+ < 41, (c) logarithmic region, 41 < y+ < 107

and (d) wake region, y+ > 107.

vorticity have completely different character. The role of the discriminant needs

to be clarified. One approach would be to analyze the velocity gradient tensor

induced by artificial isolated eddies of various shapes using the Biot-Savart law in

the manner of Perry and Marusic (1995).

Figures 8, 9, 10, and 11 show joint probability distribution diagrams of the various

topological invariants. On these diagrams are shown contours of the joint pdf's of

various pairs of quantities. Figure 8 shows the joint pdf's of R and Q and Figs. 8(a)

through to 8(d) show results for the sublayer, buffer zone, logarithmic region, and

wake region respectively. Figure 9 shows the joint pdfof R_ and Q_. In the sublayer,

Fig. 9(a) shows that most of the rate of strain is two dimensional, since the data
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FIGURE 9. Joint probability density function between Qs and Rs for zero pressure

gradient turbulent boundary layer flow with Ro = 670 in (a) viscous sub-layer

y+ < 5.0 (b) buffer layer, 5.0 < y+ < 41, (c) logarithmic region, 41 < y+ < 107

and (d) wake region, 9 + > 107.

collects along the Q_ axis and very high Q_ values are encountered. In the buffer

zone results shown in Fig. 9(b) there is a drift towards D = 0, and IQ*I is half

that of the sublayer. In Fig. 9(e), the logarithmic region, there is a further decrease

in IQ_I and further movement towards the D = 0 contour. The rate of strain is

very three dimensional. In the wake region shown in Fig. 9(d), ]Q_I is orders of

magnitude smaller than the other regions and very little dissipation is occurring
there.

Figure 10 shows the joint pdf between -Q_ and Q,,,. A line of 45 ° through the

origin is symptonmtic of vortex sheet behavior or two-dimensional shearing. Data

running close to the Q_, axis could be interpreted as belonging to vortex tubes, and
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FIGURE 10. Joint probability density function between Qw and -Qs for zero

pressure gradient turbulent boundary layer flow with Ro = 670 in (a) viscous sub-

layer y+ < 5.0 (b) buffer layer, 5.0 < y+ < 41, (c) logarithmic region, 41 < y+ < 107

and (d) wake region, y+ > 107.

data close to the -Q8 axis corresponds to irrotational rates of strain which cause

dissipation. In Fig. 10(a) the sublayer results give sheet-like behavior which is not

surprising. In Fig. 10(b), the buffer zone results are shown and there is a mixture

of various types of motions, but vortex sheet behavior still dominates. Figure 10(c)

shows a complete mixture of motion types and so also does Fig. 10(d). These results

are consistent with the results of Blackburn et al. (1996).

Figure II shows the pdf between lal_/2 and Qw. Here

wiSijwj
- (17)

(Mk(._ k
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FIGURE 11. Joint probability density function between lala/2 and Qw for zero

pressure gradient turbulent boundary layer flow with Re = 670 in (a) viscous sub-

layer y+ = 1.2 (b) buffer layer, y+ = 16, (c) logarithmic region, y+ = 87 and (d)

wake region, y+ = 243.

where wi is the vorticity vector. Also it can be shown (e.g. see Soria and Chong

(1993)) that

w, Sijwj =R-R, (17)

The quantity la]a/2 is a measure of the stretching and contracting in the direction

of the vorticity vector. For all cases in Fig. 11 the highest vorticity has no stretch-

ing. Figure 12 shows the conditional volume integrated Qw and Q_ for D greater
than a specified threshold value as a function of this threshold value of D. These

volume integrals have been normalized by the total volume integral of Q,, and Q_

respectively. In addition to the cases including the viscous zone, these normalized
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FIGURE 13. Mean streamline pattern for turbulent boundary layer with separation

and reattachment. The dimensions shown were normalized by the displacement

thickness at the inlet plane.

conditional integrals have been computed for y+ > 6.4, thus eliminating the viscous

sublayer contribution, and for y+ > 37.4, thus eliminating the entire viscous zone

contribution. The results show that independent of the y+ threshold, focal regions

account /'or approximately 75% of all volume integrated Qw (i.e. enstrophy) and

66% of all volume integrated Qs (i.e. dissipation of mechanical energy).
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2.3 Separating and reattaching boundary layer

Figure 13 shows the mean flow streamlines of a turbulent boundary layer which

nominally starts as a zero pressure gradient layer using the Spalart data of R0 = 330

as an inflow boundary condition. These computations were carried out using a

finite differences method. As the flow moves downstream, the pressure gradient

is arranged to be zero, then adverse, and then favorable, resulting in a separation

bubble. The flow bears a strong resemblance to the experiment of Perry and Fairlie

(1975), but the Reynolds number for that experiment was orders of magnitude

higher than this computation.

Figure 14 (left side) shows an elevation view of tile isosurfaces of the discriminant,

and one can see a myriad of structures, many of which extend through from the

wall to the outer edge of the boundary layer and generally lean in the streamwise

direction. The structures leave the wall completely downstream of the mean separa-

tion point and ride over tile separation bubble and then reattach. In the separation

bubble there is an extensive region which seems to be devoid of fluid particles with

positive discriminant. Figure 15 (left side) shows the instantaneous surface limiting
streamlines or "skin friction lines". In the upstream part of the flow, bifurcation

lines (curves towards which neighboring trajectories asymptote) are most evident.

The precise definition and property of such lines are given by Hornung and Perry

(1984) and Perry and Hornung (1984). As the pressure gradient becomes adverse,
the skin friction lines reveal critical points all over the surface prior to the mean

flow separation region. Under the bubble, the scale or spacing of the critical points

is much larger than in the mean attached flow and large "nodes" of separation and
reattachment are evident near the mean flow separation and reattachment "lines"

respectively. After reattachment, bifurcation lines are reformed after a short stream-

wise distance with a much wider spanwise spacing than upstream of the separation

bubble. This spacing is no doubt related to the viscous scaling as a lower shear

velocity gives rise to the wider spacing.

Figure 15 (right side) shows the surface vortex lines which are orthogonal to the

skin friction lines. In regions far upstream and downstream of the separation bubble,

kinks in the vortex lines indicate a bifurcation line in the skin friction lines. Hornung

and Perry (1984) showed that near a bifurcation line, neighboring skin friction lines

are exponential curves and the vortex lines are orthogonal parabolas. Figure 16
shows skin friction lines and vortex lines superimposed for selected parts of the

flow and the bifurcation patterns just mentioned are apparent. This orthogonality

property throughout the limiting wall field acts as a useful check on the correctness

in our data processing and in some aspects of the computations. Critical points in

the limiting surface streamlines are also critical points in vorticity. In the separation

region, the large velocity field nodes which are apparent are loci in the vorticity fieht.

In Figure 14, the side and plan views of the isosm'faces of the discrirainant show

that the structures appear to be pulled apart and stretched as they ride over the

separation bubble. Coles ( 1956, 1957) formulated a hypothesis for the mean velocity

profiles which considers a turbulent boundary layer to consist of two components

superimposed - namely a wall component which fii_llows the universal law of the
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FIGURE 16. (a) and (b). Skin-friction lines and surface vorticity lines superim-

posed. (a) Unseparated region. (b) Separated region.

wall and a wake component which follow a universal law of the wake. Recently this

has been extended to include the turbulence structure by Perry and Marusic (1995)

and Marusic and Perry, (1995) where the wall component for both mean flow and

Reynolds stress is considered to be generated by wall attached eddies where the

vortex lines connect to the wall like the Theodorsen type eddies as shown sketched

in Fig. 17(a). The wake component of velocity and the peak in the Reynolds shear

stress which occurs well away from the wall when the Coles wake factor is appre-

ciable is considered to be generated by wake eddies which are thought to consist of

spanwise undulating vortex cores as shown in Fig. 17(b). This model is supported

by mean flow, broadband turbulence and spectral measurements and an analysis

using convolution integrals for computing the effect of a random array of eddies with

a range of scales (see Perry & Marusic (1995) for details). It is almost obvious from

the picture of the isosurface of the discriminant in Fig. 14 that as the flow develops

in tile adverse pressure gradient and as the Coles wake factor increases, more of

the eddies which contribute to the Reynolds shear stress and mean flow vorticity

are eddies which are not connected to the boundary. Once separation has occurred,

there are no eddies connected with the wail. Unfortunately, memory limitations o£

the flow visualization software prevented a full rendering of the details of the flow

field causing the isosurfaces to appear lumpy and unstructured. More work on this

is required.
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FIGURE 17. (a) Wall eddies and (b) wake eddies, after Perry & Marusic (1995).

Note that here, unlike earlier convention, z is the coordinate normal to the wall

rather than y.

3. Conclusions

This study has shown that there exists evidence for the Reynolds shear stress

carrying structures in zero pressure gradient turbulent boundary layers, and they

consist of attached eddies in the form of tubes of positive discriminant connected to

the wall. The vortex loops envisioned by Theodorsen, the vortex tubes used in the

model of Perry and Marusic (1995), and the tubes or arches of positive discriminant

observed in simulations all bear striking resemblance to one another. But there are

important differences which still need to be reconciled. The evidence presented here

indicates that Reynolds stress generation is correlated, not with the vorticity, but

with the discriminant of the velocity gradient tensor, especially near the wall where

these two quantities have quite different character.

For adverse pressure gradients, there is evidence of wake structures which are not

connected to the wall. However, because of the early stages of the present work

and the difficulties encountered with the resolution of the stored data (if not the

computed data), the evidence, although encouraging, is not conclusive. Furthermore

we should keep in mind at all times that we are dealing with low Reynolds number

flows where the range of eddy length scales is relatively small.
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