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Optimal and robust control of transition

By T. R. Bewley 1 AND R. Agarwal 2

Optimal and robust control theories are used to determine feedback control rules

that effectively stabilize a linearly unstable flow in a plane channel. Wall transpi-

ration (unsteady blowing/suction) with zero net mass flux is used as the control.

Control algorithms are considered that depend both on full flowfield information
and on estimates of that flowfield based on wall skin-friction measurements only.

The development of these control algorithms accounts for modeling errors and mea-

surement noise in a rigorous fashion; these disturbances are considered in both a

structured (Gaussian) and unstructured ("worst case") sense. The performance

of these algorithms is analyzed in terms of the eigenmodes of the resulting con-

trolled systems, and the sensitivity of individual eigenmodes to both control and

observation is quantified.

1. Introduction

The behavior of infinitesimal perturbations in simple laminar flows is an impor-

tant and well-understood problem. As the Reynolds number is increased, laminar

flows often become unstable and transition to turbulence occurs. The effects of

the turbulence produced in such flows are very significant and often undesirable,

resulting in increased drag and heat transfer at the flow boundaries. Thus, a natu-

ral engineering problem is to study methods of flow control such that transition to

turbulence can be delayed or eliminated.

Transition often occurs at a Reynolds number well below that required for linear

instability of the laminar flow. Orszag & Patera (1983) demonstrate that finite

amplitude two-dimensional perturbations can highly destabilize infinitesimal three-

dimensional perturbations in the flow. Butler & Farrell (1992) show that the non-

orthogonality of the eigenmodes of subcritical flows implies that perturbations of a

particular initial structure will experience large amplification of energy before their

eventual decay, and suggest that such amplification can sometimes lead to flow

perturbations large enough for nonlinear instability to be triggered. Such nonlinear

instabilities can lead to transition well below the critical Reynolds number at which

linear instability occurs. Results such as these have renewed interest in the control

of the small (linear) perturbations, as the mitigation of linear perturbations also

lessens the potency of these nonlinear "bypass" mechanisms.
A firm theoretical basis for the control of small perturbations in viscous shear

flows is only beginning to emerge. An important step in this direction is provided
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by Joslin et al. (1995) and Joshi, Speyer, & Kim (1996), who analyze this problem

in a closed-loop framework, in which the dynamics of tile flow system together with

the controller are examined. Joslin et al. (1995) apply optimal control theory to

a problem related to the one presented here; in their approach, the control is de-

termined through an adjoint formulation requiring full flowfield information. Joshi,

Speyer, & Kim (1996) consider essentially the same problem analyzed in this paper,

and show that a simple constant gain feedback with an integral compensator may

be used in a single-input/single-output (SISO) sense to stabilize the fow; a single

output (the appropriate Fourier component of tile streamwise drag) is multiplied by

some scalar K and summed with a reference signal to determine the corresponding

component of the control velocity. This proportional approach is a special case of

a class of proportional-integral-derivative (PID) controllers, which combine terms

which are proportional, integrals, and derivatives of a scalar output of a system.

The present work extends these analyses to rigorously account for state distur-

bances and measurement noise. A two-step control approach is used. First, a state

estimate is developed from a (potentially inaccurate) model of the flow equations,

with corrections to this state estimate provided by (noisy) flow measurements fed

back through an output injection matrix L. This state estimate is then multit)lied

by a feedback matrix K to determine tile control. Potentially, this approach can

yield better results than a PID controller. In comparison to the PID apt)roach , the

present approach has many more parameters in the control law (specifically, the

elements of the matrices K and L), which are rigorously optimized for a clearly de-

fined objective. In this manner, multiple-input/multiple-output (MIMO) systems

are handled naturally and the controller is coupled with an estimator which models

the dynamics of the system itself.

Many problems in fluid mechanics, especially those involving turbulence, are dom-

inated by nonlinear behavior. In such problems, the linear analysis performed in

this paper is not valid. However, optimal control approaches, which use flfll state in-

formation, may still be formulated (Abergel & Temam 1990) and t)erformed (Moin

Bewley 1995) with imt)ressive results. In order to make such schemes practical,

one must understand how to account for disturbances in a rigorous fashion and

how to estimate accurately the necessary components of the state (for instance, the

location and strength of the near-wall coherent structures) based on limited flow

measurements. The current paper makes these concet)ts clear in a fluid-mechanical

sense, albeit for a linear problem, and thus provides a step in this development.

The controllers and estimators used in this work are determined by 7-/2 and "H_

approaches. These techniques have recently been cast in a compact form by Doyle et

al. (1989), and are well suited to the current problem, in wtfich the issue of interest

is the ability of a closed-loop system to reject disturbances to a laminar flow when

only a few noisy measurements of the flow are available.

In §2, we derive the governing equations for the present flow stability problem and

cast these equations in a standard notation. In §3, the control prol)lem is analyzed

in terms of the controllability and observability of each individual eigenmode of the

system developed in §2. In §4, the control approach dew'loped in Doyle et al. (1989)
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is summarized and applied to the present system. In this control approach, two Ric-

cati equations describe a family of 7-/2 and 7-Go controllers which take into account

structured (Gaussian) and unstructured ("worst case") disturbances. Results of

these approaches are presented in §5, and §6 presents some concluding remarks.

2. Governing equations

This chapter derives the equations governing the perturbations to a laminar chan-

nel flow and casts them in a form to which standard control techniques may be ap-

plied. This familiar discussion is presented to precisely define the control problem

under consideration.

2.1 Continuous form of flow equations

Consider a steady plane channel flow with maximum velocity U0 and channel

half-width _. Non-dimensionalizing all velocities by U0 and lengths by _, the mean

velocity profile in the streamwise direction (x) may be written U(y) = 1 - g2 on

the domain y E [-1, 1]. The equations governing small, incompressible, three-

dimensional perturbations (v, _) are

Ai,= {-ikxV A +ikxV" + A(A/Re)} v (la)

= {-i kz v'} v + {-i kxu + A/Re} (lb)

where kx is the streamwise wavenumber, kz is the spanwise wavenumber, A =

02/Oy 2 - k_ - k_ is the Laplacian, Re = Uo_/V is the Reynolds number, v is the

Fourier component of the wall-normal velocity, and a_ is the Fourier component

of the wall-normal vorticity. Equation (la) is the (fourth order) Orr-Sommerfeld

equation for the wall-normal velocity modes, and (lb) is the (second order) equation

for the wall-normal vorticity modes. Note the one-way coupling between these two

equations. Also note that, from any solution (v, w), the streamwise velocity u and

spanwise velocity w may be extracted by manipulation of the continuity equation

and the definition of wall-normal vorticity into the form

)
-i(0v )

Control will be applied at the wall as a boundary condition on the wall-normal

component of velocity v. The boundary conditions on u and w are no-slip (u =

w = 0), which implies that w = 0 and (by continuity) Ov/Oy = 0 on the wall.

In this development, it is assumed that an array of sensors, which can measure

streamwise and spanwise skin friction, and actuators, which provide wall-normal

blowing and suction with zero net mass flux, are mounted on the walls of a laminar
channel flow. It is also assumed that a sufficient number of sensors and actua-

tors are installed such that individual Fourier components of wall skin friction and

wall transpiration may be approximated, and the analysis is carried through for a

particular Fourier mode.
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2.2 Discrete form of flow equations

The continuous problem described above is discretized on a grid of N+I Chebyshev-

Gauss-Lobatto points such that

yt = cos(Tr//N) for 0 < I < N.

An (N + 1) x (N + 1) matrix 7;) may be expressed (Canuto et al. 1988, eqn. 2.4.31)

such that the derivative of co with respect to y on the discwte set of N + 1 points

is given by
f tt I

co =Dco and ,3 =D,.'.

where the prime (_) now indicates the (partial) derivative of the discrete quantity

with respect to y. The homogeneous Neumann boundary condition on v is accom-

plished by modiL'ing the first derivative matrix such that

7_tm = {0 l=O,N/)_,_ I<I<N-1.

Differentiation of v with respect to !/is then given by

b II ! Ill I!I _)_v ---- t' I)u , u = 7Z)v , and _W" _- _)u m.

With these derivative matrices, it is straightforward to write (1) in matrix form.

This is accomplished by first expressing the matrix form of (1) on all N + 1 collo-

cation points such that

i, = £ v (3a)

& = Cv +Sco, (3b)

where £, C, and S are (N + 1) x (N + 1). (Note that, for k_ + k_ ¢ 0, the matrix

form of the LHS of (la) is invertible, so the form (3a) is easily determined.) The

Dirichlet boundary conditions are explicitly prescribed as separate "forcing" terms.

To accomplish this, decompose £, C, and S according to

/_ = bll All b12 C = b21 A21 b.j,2 S = • A,22 *

• * * * * * * * *

where All, A21, and -42._ are (N - 1) x (N - 1) and bll, bl2, b2a, and b22 are

(N - 1) x 1. Noting that coo = con = 0 by the no-slip condition, and defining

.1/
°

:r __-- t? N - 1

co l

a;N - 1

(.10) iA- B_= u-

A21 A22 b:l b22



Optimalandrobust control of transition 409

where x is 2(N- 1) x 1, A is 2(N- 1) x 2(N- 1), B is 2(N- 1) x 2, and u is 2 x 1,

we may express (3) in the standard form

= Ax + Bu. (4)

The vector x is referred to as the "state", and the vector u is referred to as the

"control".

2.3 Wall measurements

We will consider control algorithms using both full flowfield information and wall

information only. For the latter case, we will assume that measurements made

at the wall provide information proportional to the streamwise and spanwise skin

friction

Ou

yma
Oyy upper wall

Ow
ym3

upper wall

yro2 = N lower wall

Ow

Ym4 = N lower wall"

Equations (2a) and (2b) allow us to express these measurements as linear combi-

nations of v and _. Defining a = i kx/(k_ + k_) and b -- -i kz/(k_ + k_) and using

the derivative matrices, the measurements are expressed as

Yral = (a_)2 v + bDW)upper wall

Ym3 = (b_)2 v +aDW)upper wall

Now decompose 7) 2 and T) according to

Ym2 = (a'f)2 v + b DW)lower wall

ym, = (b_2 v + aT)w) lower wall

(dlc 3)l*c3*/22 = , * * T)= * * * ,

de c2 d4 * c4 *

where cl, c2, ca, and Ca are 1 x (N - 1) and dl, d2, d3, and d4 are 1 x 1. Finally,

defining

yrn -- (at1be3)(a ib 3)a c2 b c4 a d2 b d4
y_2 C = D = ,
gin3 bcl a c3 bdl a d3

gin4 b c2 a c4 b d2 a d4

where ym is 4 × 1, C is 4 x 2(N - 1), and D is 4 x 2, allows us to express ym in the
standard form of a linear combination of the state x and the control u

ym = Cx + Du. (5)

The vector Ym is referred to as the "measurement".
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3. Analysis of control problem

In §2, it was shown that the equations governing small perturbations in a laminar

channel flow may be expressed in the standard form

k = Ax + Bu (6a)

ym = Cx + Du, (6b)

where all variables are complex and the system matrix A is dense and non-self-

adjoint. We now discuss the eigenmodes of A and identify which of these modes

may be modified by the control u and which may be detected by the measurements

yrn-

It has been shown (Orszag 1971) that, for Re <_ 5772, the uncontrolled problem

itself is stable and, for Re > 5772, weak instability is seen (though most of the

eigenvalues remain stable), with the greatest instability near kx = 1.0 and k, = 0.0.

We seek a method to determine the control u which stabilizes the system in a manner

which is robust to system uncertainties. To simplify our discussion, we will restrict

our attention in the remainder of this work to the particular case Re = 10,000,

kx = 1.0, and k, = 0.0. Joshi, Speyer, & Kim (1996) explore the (Re, k,, k_)
parameter space further.

For k_ = 0 (two-dilnensional perturbations), C = 0 in (3), entirely decoupling the

,_ eigenmodes from both the v eigenmodes and from the control u = (v0, Vg) T.

In the language of control theory, the w eigenmodes are thus "uncontrollable" by

the control u. (However, it is also seen that the w eigeumodes are stable, so these

modes will, so to speak, "take care of themselves".) Thus, for the remainder of this

paper, we will restrict our attention to the v eigenmodes according to system (6)
with

(v) () ( ) ()v0x = A = All B = bl! b12 tt = ,
VN

\VN-.1

where x is (N- 1) x 1, A is (N- 1) x (N- 1), B is (N - 1) x 2, and u is 2 x 1, and

( ml)(acl) /a lb 3)ym = Ym2 C = a c2 | a d2 bd4
gin3 bcl D = _ bdl ad3

Ym4 be2 \ bd2 a d4

where Ym is 4 × 1, C is 4 x (N - 1), and D is 4 × 2. (All the constituent matrices,

vectors, and flow measurements are described in the previous section.)

3.1 System analysis

We now address whether or not all of the current system's N - 1 eigenmodes

may be controlled by the rn = 2 control variables, and whether or not all of these

eigenmodes may be observed with the p = 4 measurements. To accomplish this, it
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is standard practice to consider two matrices which characterize the controllability

and observability of the system as a whole (Lewis 1995). These are the system

controllability Gramian Lc of (A, B) and the system observability Gramian Lo of

(C, A), which may be found by solution of

ALc + LcA* + BB*=O

A* Lo + LoA +C*C = O.

Note that stable numerical techniques to solve equations of this form, referred to

as Lyapunov equations, are well developed.

If L_ is (nearly) singular, there is at least one eigenmode of the system which

is (nearly) unaffected by any choice of control u, and the system is called "un-

controllable". If all uncontrollable eigenmodes are stable, and a controller may

be constructed such that the dynamics of the system may be made stable by the

application of control, the system is called "stabilizable".

Similarly, if Lo is (nearly) singular, there is at least one eigenmode of the system

which is (nearly) indiscernible by the measurements ym, and the system is called

"unobservable". If all unobservable eigenmodes are stable, and an estimator may be

constructed such that the dynamics of the error of the estimate may be made stable

by appropriate forcing of the estimator equation, the system is called "detectable".

For the present system, the smallest eigenvalue of both Lc and Lo are computed

to be near machine zero, indicating that the present system as derived above is

both uncontrollable and unobservable. Gramian analysis can not identify which

of the eigenmodes are uncontrollable or unobservable, however, so it is impossible

to predict from this analysis alone whether or not the system is stabilizable and

detectable. For this reason, we now develop a method to determine which of the

eigenmodes of a system may be affected by the control u and, similarly, which

eigenmodes may be discerned by the measurements Ym.

3.2 Individual eigenmode analysis

We will now make use of the modal canonical form of the system (6) to quantify

the sensitivity of each eigenmode of A to both control and observation (Kailath

1980). In order to clarify the derivation, we shall examine each eigenmode of the

system separately. Define the eigenvalues )_i and the right and left eigenvectors, _i

and rli, of A such that

right eigenvectors : A _i = )_i _*

left eigenvectors : r/_ A = Ai r/j,

where the eigenvectors are normalized such that I1_,11-- II_ill -- 1 for all i. Assume
A has distinct eigenvalues (this may be verified for the present system described

above). Then any x may be decomposed as a linear combination of the (independent

but not orthogonal) right eigenvectors such that

i
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Differentiating with respect to time,

i

Also, note that left and right eigenvectors corresponding to different eigenvalues are

orthogonal, but those corresponding to the same eigenvalues are not

= o

(,/j, # o

3.2.1 Definition of modal control sensitivity

By (6a) and (7), we have

i

j # i (8a)

j = i. (Sb)

= AZc_i_i + Bu
i

= _aiAi_i + Bu.

i

Taking the inner product with rli and noting (8a) yields

Noting (8b), this yields

(B*
d s = As a1 +

7;
If the vector B* rls = 0 then &j = Ai aj for an), u. In terms of equation (7a), the

component of x parallel to _j is not affected by the control u, and the eigenmode is

said to be "uncontrollable". Further, the norm of the coefficient of u

fJ = Irl; B B* rlj[ '/2
17/; _j[ ' (9)

which we shall call the control sensitivity of mode j, is a quantitative measure of

the sensitivity of the eigenmode j to the control u. Note the dependence of this

expression on the matrix B B*, which is the same term which drives the Lyapunov

equation for controllability Gramian L_.

3.2.2 Definition of modal observation sensitivity

By (6b) and (7) and assuming, for the moment, that u = 0, we have

J

If the vector C (j = 0, then Ym will not be a function of a s. In terms of equation

(7a), the component of x parallel to _j does not contribute to the measurements

y,n, and the eigenmode is said to be "unobservable". Further, the norm of C _J

gj = [_; C* C _S[ '/2, (10)

which we shall call the observation sensitivity of mode j, is a quantitative measure

of the sensitivity of the measurement ym to eigenmode j. Note the dependence

of this expression on the matrix C* C, which is the same term which drives the

Lyapunov equation for observability Gramian Lo.
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j £j fj gJ

1 0.00373967 - 0.23752649i 0.266545 102.61

3 -0.03516728 - 0.96463092i 0.000215 72.85

4 -0.03518658 - 0.96464251i 0.000005 1.45

5 -0.05089873 - 0.27720434i 0.026606 347.98

6 -0.06320150 - 0.93631654i 0.000513 81.39

7 -0.06325157 - 0.93635178/ 0.000021 2.90

8 -0.09122274 - 0.90798305i 0.000931 83.36

9 -0.09131286 - 0.90805633i 0.000056 4.32

10 -0.11923285 - 0.87962729i 0.001587 77.67

11 -0.11937073 - 0.87975570i 0.000124 5.37

12 -0.12450198 - 0.34910682i 0.171859 69.50

13 -0.13822653 - 0.41635102i 0.037660 252.09

14 -0.14723393 - 0.85124584i 0.002833 63.31

15 -0.14742560--0.85144938i 0.000268 5.59

16 -0.17522868 - 0.82283504i 0.005581 44.14

: : : :

38 -0.32519719 - 0.63610486i 5.659801 0.78

39 -0.34373267 - 0.67764346i 4.685315 0.64

: : : :

53 -0.66286552 - 0.67027520i 0.259581 11.58

: : : :

413

TABLE 1. Least stable eigenmodes of A (no control) and the associated control
and observation sensitivities. Note that all eigenvalues agree precisely with those

reported by Orszag (1971). Calculation used Chebyshev collocation technique with
N = 140 in quad precision (128 bits per real number). The second eigemnode,
which is not shown here, is spurious (see text). Note that the only unstable mode
(j = 1) for the present system is both sensitive to the control u and easily detected

by the measurements ym.

3.3 Sensitivity of eigenmodes of A to control and observation

The least stable eigenvalues of A and their corresponding control and observation

sensitivities fj and gj are tabulated in Table 1. Note that the fourth eigenmode is

five orders of magnitude less sensitive than the first eigenmode to modifications in

the control. In general, those modes in the upper branch of Fig. la (large I_(,k)l)

are much less sensitive to control than those in the lower branch (small I_()_)1).

Near the intersection of the two branches (_(A) ,,_ -0.3), the control sensitivity

is maximum, with this sensitivity decreasing slowly to the left of this intersection

(_(),) < -0.3). It can be predicted that the eigenmodes corresponding to the largest

fj may be affected most upon application of some feedback control u.

Note that the flow measurements are two orders of magnitude less sensitive to

the fourth eigenmode as they are to the first eigenmode. It can be predicted that

the state estimates of the eigenmodes corresponding to the largest gj will be most
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FIGURE la. Least stable eigenvalues: [_(Ad)[ versus !}_(Ai).
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FIGURE lb. Eigenvectors corresponding to (left to right): j = 1 (unstable, lower
branch), j = 3 (stable, upper branch), j = 4 (stable, upper branch), and j = 5
(stable, lower branch), plotted as a function of y from the lower wall (bottom) to
the upper wall (top). Real component of eigenvector is shown solid and imaginary
component dashed. Corresponding eigenvalues are reported in Table 1.

accurate when estimating the state based on noisy measurements.

An important observation from Fig. lb is that eigenvalues in the upper branch of

Fig. la have corresponding eigenvectors with variations primarily in the center of

the channel, and are thus less controllable via wall transpiration and less observable
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via wall measurements than eigenvalues in the lower branch. This observation is

quantified by reduced values of fj and 9j for these modes in Table 1.

The second eigenvalue computed, at A2 = -0.0235 + 1.520 i is spurious. Spurious

eigenmodes may be easily identified two ways: i) the eigenvalue moves significantly

when N is modified slightly, though the eigenvalues reported in Table 1 remain

converged, and ii) when plotted, spurious modes are dominated by large oscillations

from grid point to grid point across the entire domain, though converged eigenmodes

are well resolved. Spurious eigenmodes are expected using this approach and may

be disregarded.

4. Summary of 7_2 and 7_ control theories

In §2, the equations governing the stability of a laminar channel flow were derived

and cast in the form

?c = Ax + Bu (lla)

ym = Cx + Du, (llb)

where the constituent matrices A, B, C, and D were summarized and discussed in

§3. We now seek a simple method to determine a control u based oil the measure-

ments ym to force the state x towards zero in a manner which rigorously accounts

for state disturbances, to be added on the RHS of (lla), and measurement noise,

to be added on the RHS of (llb).

The flow of information in this problem is illustrated schematically in the following

block diagram.

disturbances

measurementSym _ plant

Ios '  tor

state estimate _ controller

control
U

The plant, which is forced by external disturbances, has an internal state x which

cannot be observed. Instead, a few noisy measurements ym are made, and with

these measurements an estimate of the state i: is determined. This state estimate

is then fed back to through the controller to determine the control u to apply back

on the plant in order to regulate x to zero.

To be more precise, we will consider feedback of the measurements ym such that

a state estimate _? is first determined by the system model

= A_ + Bu - fi (12a)
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_)m = C_ + Du, (12b)

= z:(y., - (12c)

then this state estimate is used to produce the control

u =/C(/:). (13)

Equation (11), with added disturbance terms on the tlHS, is referred to as the

"plant", (12) is referred to as the "estimator", and (13) is referred to as the "con-

troller". The problem at hand is to compute linear time-invariant (LTI) functions/:

and E such that i) the "output injection" term fi forces the state estimate 2 in the

estimator (12) towards the state x in the plant (11), and ii) the control u computed

by the controller (13) forces the state x towards zero in the plant (11).

We will now demonstrate how to apply 7-/2 and 7_ control theories to determine

C and K. (Note that we will redefine several variables used in §2 to derive the

Orr-Sommerfeld equation. Considered in the context of this chapter, this should

present no confusion.) With this presentation, one set of control equations, involving

the solution of two Riccati equations, describes a family of _2 and 7"/oo control

algorithms. The reader is referred to Doyle et al. (1989), Dailey et al. (1990), and

Zhou, Doyle, & Glover (1996) for derivation and further discussion of the control
theories summarized here.

4.1 7"l_ control theory

4.1. i Optimal control (L QR)

The first step in considering the system (11) is to consider the problem with no

disturbances and measurements which identically determine full infornmtion about

the state, so that 2 = x (i.e. no estimation of the state is necessary). These assump-

tions are quite an idealization and can rarely be accomplished in practice, but this

exercise is an important step to determine the best possible system performance.

It is for this reason that the controller in this linfit is referred to as optimal. Un-

der these assumptions about the system, the objective of the optimal controller,

of the form in (13), is to regulate (i.e. return to zero) some measure of the flow

perturbation x from an arbitrary initial condition as quickly as possible without

using excessive amounts of control forcing. Mathematically, a cost function for this

problem may thus be expressed as

_0 °_
&0R - (11 11 + e de. (14)

The term involving [lxl[" is a measure of the state disturbance x integrated over the

time period over which the initial perturbation decays, which is taken as t E [0, co).

The term involving u*u is an expression of the magnitude of the control. These

two terms are weighted together with a scalar f2 which represents the price of the

control. This quantity is small if the control is "cheap" (which generally results in
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larger control magnitudes), and large if applying the control is "expensive". As the

state equation is linear, the cost quadratic, and the control objective regulation,
this controller is also referred to as a linear quadratic regulator (LQR).

The mathematical statement of the present control problem, then, is the mini-

mization of JLQR. This results in regulation of x without excessive use of control

effort. Note that minimization of JLQR is equivalent to minimization of the integral

of z'z, where

and where Q is a diagonal matrix with diagonal entries Q j) = 7r/N, as required by

the appropriate definition of the inner product (Canuto et al. 1988). In order to

arrive at a form which is easily generalized in later sections, define

( ) (0)B2 = B C1 - QIu/( D12 - I "

For notational convenience, the state equation (lla) will be considered as "forced"

with a right hand side forcing term r which shall be set to zero, as this regulation

problem simply drives the state towards zero without external command input. The

state equation (lla), the performance measure z, and the state estimate _ then may

be written

= Ax + r + B2 u (15a)

z = Clx + D12u (15b)

S: = x. (15c)

The optimal controller J_LQR is sought to relate the (precise) state estimate i" to

the control u, which is applied to control the evolution of the state x such that the

cost JLQR(Z) is minimized. The important matrices of the system described by

(15) may be summarized in the shorthand form
a7 r t/

[ A I B2

7i:_LQR = Z [ C1 0 D12I 0 0

The flow of information is represented by the block diagram

2/ _2_LQR
_. u

_LQR

where PLQR is the flow system given by (15) and _LQR is the optimal controller,

which is still to be determined. The system output z may be used to monitor the
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performance of the system. Note that the command input is r = 0 and there are

no disturbance inputs; the task of the control u is simply to regulate the state x

from nonzero initial conditions back to zero. The state x = 5: is fed back through
the controller/CLQR to control the system.

Given this general setup, a Hamiltonian is defined such that

H2 - -C_" C1 -A" " (16a)

As shown in Doyle et al. (1989), the Hermetian positive-definite solution X_ to the
algebraic Riccati equation defined by this Hamiltonian

A* X2 + X2 A - X2 (B2 B_) X2 + (C_' C1 ) = 0, (16b)

denoted X_ = Ric(H2), then yields the optimal LTI state feedback matrix

K2 = -B_ X_. (16c)

The optimal LTI controller/CLQR is then given simply by

u = Ks _. (17)

This controller minimizes f_ z*z dt in a system with no disturbances and arbitrary

initial conditions. Note that standard numerical techniques to solve equations of
the form (16b) are well developed (Laub 1991).

4.1.2 Kalman-Bucy filter (KBF)

When there are disturbances to the system, and thus the state is not precisely
known, the state (or some portion thereof) must first be estimated, then the control

determined based on this state estimate. The Kalman-Bucy filter, of the form (12),
accomplishes the required state estimation by assuming that the state disturbances

and the measurement noise are uncorrelated white Gaussian processes. To accom-

plish this, we introduce two zero-mean white Gaussian processes Wl and w2 with

covariance matrices E[w_wl] = I, E[w_w2] = I, where E[.] denotes the expectation

value. With these new disturbance signals, and with GI defined as the square root
of the covariance of the disturbances to the state equation and G2 defined as the

square root of the covariance of measurement noise, the system (11) takes the form

k =Ax+Glwl+Bu

Ym = Cx -4-G2w2 + Du.

(18a)

(18b)

The objective of the Kalman-Bucy filter is to estimate the state x as accurately as

possible based solely on the measurements y,,. Put another way, the Kalman-Bucy

filter attempts to regulate the norm of the state estimation error XE to zero, where

XE -- X--._
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and where the state estimate _? shall be determined by a filter of the form (12).

Mathematically, a cost function for this problem may thus be expressed as

----E[IIzEtl2],

where zE =--XE for notational convenience. (As Gaussian disturbances _/'1 and w2

continually drive this system, an integral on t E [0, oc), as used to define flLQR, is

not convergent for this problem, and the expectation value is the relevant measure.)

The mathematical statement of the present control problem, then, is the mini-

mization of fllCBV. This results in a "best possible" estimate of the state x. In

order to arrive at a form which is easily generalized in later sections, assume G2 is

nonsingular and define

BI - ( G1 O) C2-G21C D21_(0 I)

and the vector of disturbances

W_
W2

Also, define new "observation" vectors y and 1) by a simple change of variables such

that

y = G_1(y,,, - Du) 1)= C,_(1)m - Du).

Note that this change of variables does not represent any real limitation, for when-

ever any flow measurement ym is made in a physical implementation, the control
u at that moment is also known, so the observation y is easily determined from

the flow measurement yo,. With this change of variables, (18b) and (12b) may be

expressed as

y = C2 x + D21 w (19a)

!) = C2 2. (19b)

As we are developing the equations for an estimator, it is appropriate now to exam-

ine the equations for the state estimation error XE and the ouput estimation error

yE - y - 1). Subtracting (12a) from (18a) and (19b) from (19a) yields the system

kE=AXE +Blw+fi (20a)

zE = XE (20b)

YE = C2ZE + D21w. (20c)

The Kalman-Bucy filter f_KBF is sought to relate the output estimation error y_:

to the output injection term fi, which is used to control the evolution of the state

estimation error XE such that the cost ,]_,BF(ZE) is minimized in the presence of

Gaussian disturbances w. The important matrices of the system described by (20)

may be summarized in the shorthand form
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X E w fi

bE [ A B1 I

PhUF = ZE [ I 0 0gE C2 D21 0

The flow of information is represented by the block diagram

ZE tv

YE fi

_-,h'BF

where PhBF is the flow system given by (18) and £KBF is the Kalman-Bucy filter,

which is still to be determined. The system output zE may be used to monitor the

performance of the system. This system accounts for Gaussian disturbances w and

noisy observations YE of the system, which are fed back through the filter £_,'B_' to

produce the state estimate. Note the striking similarity of the structure of Pt_'BF

to the structure of the conjugate transpose of PLQR. For this reason, these two

problems are referred to as "duals", and their solutions are closely related.

Given this general setup, another Hamiltonian is defined such that

A* -C_ C2 )•]'2 ---- -B1 B_ -A " (21a)

As shown in Doyle et al. (1989), the Hermetian positive-definite solution Y'2 to the

algebraic Riccati equation defined by this Hamiltonian

A 1_ + Y2 A* - _ (C_ C2 ) l_ + ( B, U [ ) = 0, (21b)

denoted 1_2 = Ric(J2), then yields the LTI estimator feedback matrix

L2 = -Y_ c;. (21c)

The LTI Kahnan-Bucy filter £KBF is then simply given by

= L2 YE,

and thus the complete state estimator is given by

J? = A _? + B2 u - L2 (y - C2 it) (22)

This estimator minimizes E[ [Ix - _[I 2 ] in a system with Gaussian disturbances in

the state equation and Gaussian noise in the measurements.
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4.1.3 7-12 control (LQG = LQR + KBF)

A controller/estimator of the form (12)--(13) for the complete system described

by (18) with Gaussian disturbances may now be constructed. The objectiw" of the

control is to minimize

J2 - E[IIxII2 + e2u*u],

where II"IIdenotes the standard Euclidian norm, also known as a "2-norm". Note

that minimization of J2 is equivalent to minimization of the expectation value of

z'z, where

and Q is a diagonal matrix with diagonal entries Qjj = u/N as required by tile

appropriate definition of the inner product. As the control objective is the min-

imization of the expectation value of the square of a 2-norm, this type of con-

troller/estimator is referred to as 7-/2. As the state equation is linear, the cost

quadratic, and the disturbances Gaussian, this type of controller/estimator is also

referred to as linear quadratic Gaussian (LQG).

Combining the notation developed in the previous two sections

B, =_(GI O) C, =- (Olo 2/_') D12= (O)

B2 - B C2 - G21C D21 - (0 1),

with the vector of disturbances w and the observation vectors y and _) defined such

that

w-_ -1 ^
w2 o=a_ (ym-Du),

the system (18) and the control objective for the minimization of ,7"2 take the form

,4:= Ax + Blw+B2u

z = Clz+ D12u.

y = C_x + D21w.

(23a)

(23b)

(23c)

An _2 controller/estimator is sought to relate the observations y to the control u,

which is applied to control the evolution of the state x such that the cost J2(z) is

minimized in the presence of Gaussian disturbances w.
The remarkable result from control theory (Lewis 1995) is that the 7"/2 con-

troller/estimator of the form (12)--(13) which minimizes J2 for this system is

formed by simple combination of the optimal controller and the Kalman-Bucy filter

such that

u=K2_

x = A_ + B2 u - La (y - Ca 2)

(24a)

(24b)
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where K2 is given by (16)

K2 = -B_ X_

and L2 is given by (21)

A -B2 B; )X2 = Ric -C_'C1 -A* (24c)

• ( A* -C_C2) (24d)L2 =-t'_C 2 Y2 =Ric -B1B_ -A "

Note the separation structure of this solution. The computation of K2 does not

depend upon the influence of the disturbances, which are accounted for in B1 and

C2. The computation of L2 does not depend upon the weightings in the cost
fimction, which are accounted for in C1, or the manner in which the control u

affects the state, which is accounted for in B2. In other words, the problem of

control and the problem of state estimation are entirely decoupled.

4.2 _oo control

The _o_ controller/estimator described in this section is very sinfilar to the 7"(2

controller/estimator described previously. Consideration is now given to distur-

bances, which we shall distinguish with a new variable X, of the "worst" possible

structure (as made precise below), rather than the Gaussian structure assumed in

the 7-/z case. Considered in the frequency domain, the controller/estimators de-

veloped in this section provide a system behavior in which the maximum singular

value of the closed-loop transfer function, also known as the "_x>norm", is less than

some constant, which shall be referred to as 7- As this approach may be inter-

preted as bounding the cx>norm of the transfer function from the disturbances to

the performance measure, it is referred to as 7-/_ control. For further details of the

frequency-domain explanation of 7-/_, the reader is referred to Doyle et al. (1989)
and Zhou, Doyle, & Glover (1996).

The governing equations to be considered in this section are identical to (23):

Jc= Ax +BI_+B2u

z = Clx+ D12u.

y = C2x + D_IX.

(25a)

(25b)

(25c)

An 7-/_ controller/estimator is sought to relate the observations y to the control u,

which is applied to control the evolution of the state x such that the cost fl_(z)

is minimized in the presence of some "worst case" disturbance X. As before, the

G1 and G2 matrices used to define this system describe any covariance structure of

the disturbances known or expected a priori (for instance, if one measurement is

known to be noisier thaal another). These matrices are taken as identity matrices
if no such structure is known in advance.

Effectively, the cost function considered for 7"/_ control is

flo¢ - E[x*Qx + g2 u*u -7 2 X'X]. (26)
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A u is sought, through a controller/estimator of the form (12)--(13), to minimize

J_, while simultaneously an external disturbance ); is sought to maximize J_. (In

this manner, _ is the "worst possible" disturbance, as it is exactly that disturbance

which increases the relevant cost function the most.) Thus, the 7-(_ problem is

a "min-max" problem. The term involving -3, 2 limits the magnitude of the un-

structured disturbance in the maximization of ,Y'_ with respect to X' in a manner

analogous to the term involving t?2, which limits the magnitude of the control in tile

minimization of fl_ with respect to u.

The result (Doyle et al. 1989) is that an 7"/_ controller/estimator of the form

(12)--(13) which minimizes J_ in the presence of some component of the worst
case unstructured disturbance 9_ for this system is given by

u = K_a3

= A_ + B2u - L_(y - C2 _)

(27a)

(27b)

where K_ is given by

( A 3'-2 BI B__A- B2 B_ ) (27c)K_ = -B_ Xoo Xoo = Ric -Ci' C1 *

and L_ is given by

, ( A* "Y-2C_C1A-C;C2 ) . (27d)L_=-Y_C 2 Y_ =Ric -B1B_ -

Note first that, in the 7 _ oc limit, the 7"12 controller/estimator is recovered, so

the set of two Riccati equations in (27) describes both the 7-/2 (optimal control +

Kalman-Bucy filter) and the 7"/oo problems.

It may also be shown that, as the upper-right blocks of the Hamiltonians may not

be negative definite, a solution to these Riccati problems exists only for sufficiently

large 3_; the smallest 7 = 3_0 for which a solution to these equations exists may be

found by trial and error (Doyle etal. 1989). An "H_ controller/estimator for 7 > "_0

is referred to as suboptimal.

4.3 Comparison of TI2 and 7"lc_ control equations

Most of the robustness problems associated with 7-(2 stem from the state estima-

tion. Optimal (LQR) controllers themselves, provided with full state information,

generally have excellent performance and robustness properties (Dailey et al. 1990).

Recall from §4.1.3 that the problems of control and state estimation in the 7"(z for-

mulation are decoupled.

An important observation of §4.2 is that the problems of control and state esti-

mation in the "H_ formulation are coupled. Specifically, the computation of K_

depends on the expected covariance of the state disturbances, which are accounted

for in B1, and the computation of L_ depends on the weightings in the cost func-

tion, which are accounted for in C1. This is one of the essential features of 7-/_

control.
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By taking into account the expected covariance of the state disturbances, re-

flected in B1, when determining the state feedback matrix K_, the components of

corresponding to the components of x that are expected to have the smallest forc-

ing by external disturbances are weighted least in the feedback control relationship
u = K_.

Similarly, by taking into account the weightings in the cost function, reflected

in C1, when determining the estimator feedback matrix L_, the components of

corresponding to the components of x that are least important in the computation of

J_ are forced with the smallest corrections by the output injection term L_ (y- tj)
in the equation for the estimator.

By applying strong control only on those components of _ significantly excited by

external disturbances, and by applying strong estimator corrections only to those

components of 2 important in the computation of the cost function, 7-{_ feedback

gains for components of tile system not relevant to the control problem are reduced

from those in the 7"/2 case. With such feedback gains reduced, the stability properties

of 7-/o_ controller/estimators in the presence of state disturbances and measurement

noise may be expected to be better than their 7-/2 counterparts, at the cost of a

(hopefully, small) degradation of performance in terms of the 2-norm of the output

z for the undisturbed system.

_._ Numerical method

Standard numerical techniques are now applied to all aspects of this problem.

In order to simplify both the theory to be presented and the numerical algorithm

to be coded, no further manipulation of the equations is used beyond the matrix

representations (25) and (27). It was observed that the minimal realization approach

(Kailath 1980) is well suited to reduce the computation time necessary to determine

effective control algorithms by the present approach; however, such an approach was

not found to be necessary in the present case.

The algebraic Riccati equations are solved using the method of Laub (1991), which

involves a Schur factorization. This is found to be a stable numerical algorithm for
all cases tested. The implementation of Laub's method is written in Fortran-90 and

follows closely the algorithm used by the Matlab function are. m (Grace et al. 1992).

A Lyapunov solver, modeled after the Matlab function lyap.m, is used to compute
the system Gramians.

Two LAPACK routines (Anderson et al. 1995), zgeev.:f and zgees, f, are used

to compute eigenvalues/eigenvectors and Schur factorizations. These routines are

compiled in quad precision (128 bits per real number) to ensure sufficient numerical

precision in the eigenvalue computation. All computations are carried out with

N = 140 to ensure good resolution of all significant eigenmodes. The eigenvalues of

A match all those tabulated by Orszag (1971) to all eight decimal places, as shown

in Table 1, indicating that this numerical method is sufficiently accurate.

5. Performance of controlled systems (no disturbances)

We now examine the behavior of the "closed-loop" systems obtained by applica-

tion of the above controllers and estimators to the _nominal" (i. e. no disturbances)
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channel flow stability problem. In other words, we examine the behavior of tile flow

and the controller/estimators operating together as a single dynamical system. By

looking at "root locus" plots which map the movement of the eigenvalues of these

systems in the complex plane with respect to the relevant parameters, this beimvior

is well quantified. We shall also examine the control and observation sensitivities

defined in §3.2 for two special cases in order to better understand the fundamental

limitations of controllers and estimators applied to the present system.

5.1 7"12 control

5.1.1 Optimal control (LQR)

In order to investigate the controllability of the closed-loop eigenmodes when all

modes are observable, consider the system described in §4.1.1. With r = 0 and

examining only the equations for _ and &, the plant is given (in the shorthand

notation used in §4) by
x u

_LQR = _: I 0

with the control now given by

u = Ks_ +u',

where an additional control term u' has been added to study the sensitivity of the

closed-loop system to further modification of the control. Putting the plant and the

controller together, the closed-loop system may be represented by
x u I

ic A + Bs K2 Bs ]

_L)LQR(closed loop) = ._ I 0 J "

The eigenmodes of Ah'2 =-- A + B2 Ks describe the dynamics of the closed-loop

system for the unmodified control rule (u' : 0). Figure 2 shows the movement

of these eigenvalues with respect to the free parameter of the control problem, _,

used to determine Ks. The eigenvalues for g ---+ oo are very near those of the

uncontrolled system A in Fig. 1, with the previously unstable mode moved just to

the left of the imaginary axis. The eigenvalues generally move to the left as _ is

decreased. Comparing Fig. 2b with Fig. lb, it is seen that the control modifies most

those eigenmodes with significant variations near the wall.

The sensitivity of the eigenmodes of the closed loop LQR system to modification

of the control rule may be quantified by performing the analysis of §3.2.1, replacing

the eigenmodes of A by the eigenmodes of Ah-2. The result of this analysis for small
e is shown in Table 2. This table shows that, in the _ ---* 0 limit, the system matrix

is modified to the point that the eigenmodes are no longer sensitive to further

modification of the control. In other words, all the controllable dynamics of the

system have been modified by Ks and are accounted for in the closed loop system
in this limit. This is one demonstration that the optimal controller extracts the

best possible performance from a given (full-informatiorr) system.
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FIGURE 2a. Root locus of least stable eigenvalues of At,'2 as a function of the free
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FIGURE 2b. Eigenvectors of Ah'2, with g = 10 -4, corresponding to (left to right):
j = 1, j = 3, j = 4, and j = 5. Real component of eigenvector is shown solid and
amaginary component dashed. Corresponding eigenvalues are reported in Table 2.

5.1.2 Kalman-Bucy filter (KBF)

The estimator itself has its own set of dynamics. These dynamics are captured

by the equations for the state estimator error, as described in §4.1.2. We now make

use of this system in order to investigate the observability of closed-loop eigenmodes
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j $j fj

3 -0.03513233 - 0.96462128i 0.000000029

4 -0.03518652 - 0.96464261i 0.000000001

5 -0.06255259 - 0.29262711i 0.000001101

6 -0.06310358 - 0.93629329i 0.000000070

7 -0.06325089 - 0.93635257i 0.000000003

1 -0.06644730 - 0.29721403i 0.000001116

8 -0.09102975 - 0.90793951i 0.000000129

9 -0.09130964 - 0.90805917i 0.000000008

10 -0.11890731 - 0.87955083i 0.000000226

11 -0.11936036 - 0.87976246i 0.000000020

12 -0.14335180 - 0.43962023i 0.000002303

14 -0.14673294 - 0.85111508i 0.000000414

15 -0.14739907 - 0.85146161i 0.000000045

13 -0.14803996 - 0.44586838i 0.000003081

427

16 -0.17450455 - 0.82261690i 0.000000842

TABLE 2. Least stable eigenmodes of the closed-loop system A j,"2 and their sensitiv-

ity to control for the optimal controller in the cheap control limit (2 = 10 -4). The
numbering of the eigenvalues shown is the same as the numbering of the eigenvalues
of Table 1 to which they are connected by the root locus of Fig. 2. Note that the
control in this limit drives all eigenmodes to positions at which they are insensitive
to further modifications of the control, as illustrated by the large reductions in fj.

Note also that those eigenmodes with the largest values of fj in Table 1 (specifically,

those in the lower branch) have moved the most.

when all modes are controllable. With w = 0 and examining only the equations for

XE and YE, this plant is given by
XE fi

72_hBF = YE C2 0

with the output injection now given by

fi = L2 yE +ill,

where an additional output injection term fi' has been added to study the sen-

sitivity of the closed-loop system to further modification of the output injection

rule. Putting the plant and the estimator together, the closed-loop system may be

represented by
X E fi_

_E A + L2 Ce I ]

_PKBF (closed loop) : YE C2 0 J "

The eigenmodes of AL2 =- A+L2 C2 describe the dynamics of the closed-loop system

for the unmodified output injection rule (fit = 0). Figure 3 shows the movement of
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FIGURE 3. Root locus of least stable eigenvalues of AL_ as a function of the free
parameters of the "H2 estimator, gl and g2 (note that we take 91 = g2 for the purpose
of drawing the root locus). The eigenvalues for gl = g2 _ 0, marked with (x), are
very near those of the uncontrolled system A in Fig. 1, with the previously unstable
mode moved just to the left of the imaginary axis. The eigenvalues generally move
to the left as gl and g2 are increased.

these eigenvalues with respect to the free parameters of the estimator problem. This

is done by assuming that the matrices describing the covariance of the disturbances

have the simple form G1 = gl I and G2 = g2 I, where gl and g2 are real scalars.

The sensitivity of measurements YE to the eigenmodes of the closed loop KBF

system may be quantified by performing the analysis of §3.2.2, replacing the eigen-

modes of A by the eigenmodes of AL2. The result of this analysis for large gl = g2

is shown in Table 3. This table shows that, in the gj = g2 _ _ limit, the system

matrix is modified to the point that the measurements are no longer sensitive to the

eigenmodes of the closed-loop system. In other words, all the measurable dynamics

of the system have been extracted by L2 and are accounted for in the closed loop

system in this limit. This is one demonstration that the Kalman-Bucy filter extracts

the best possible state estimate from a given (fully-controUable) state estimator.

5.1.3 7-l_ control (LQG = LQR + KBF)

It was mentioned in §4.1.3 that the controller/estimator which minimized the

relevant cost functional (f12) in the presence of Gaussian disturbances could be

found by considering the controller and estimator problems separately. In this

section, it is shown that the closed-loop performance of a system of the form (23)

(without disturbances)

[c= Ax +B2u

y = C2x



Optimaland robust control of transition 429

j _j gj

3 -0.03505745 - 0.96474093i 0.000000568

4 -0.03518656 - 0.96464253i 0.000000004

6 -0.06287931 - 0.93668086i 0.000000644

7 -0.06325136 - 0.93635193i 0.000000008

5 -0.08362450 - 0.25066856/ 0.000002858

8 -0.09059621 - 0.90874817i 0.000000673

9 -0.09131196 - 0.90805689i 0.000000011

1 -0.09565183 - 0.17658643i 0.000000094

10 -0.11823779 - 0.88095122i 0.000000646

11 -0.11936807 - 0.87975709i 0.000000014

12 -0.14209547 - 0.25910275i 0.000000130

14 -0.14584717 - 0.85329567i 0.000000549

15 -0.14741926 - 0.85145223i 0.000000014

16 -0.17347707 - 0.82577419i 0.000000399

13 -0.17418920 - 0.40314656i 0.000002002

TABLE 3. Least stable eigenmodes of the closed-loop system AL2 and their sen-
sitivity to observation for the Kalman-Bucy filter in the large disturbance limit

(gl = g2 = 102) • The numbering of the eigenvalues shown is the same as the num-
bering of the eigenvalues of Table 1 to which they are connected by the root locus
of Fig. 1. Note that the estimator in this limit modifies all eigenmodes until the
measurements are no longer sensitive to them, as illustrated by the large reductions

in gj. Note also that those eigenmodes with the largest values of gj in Table 1
(specifically, those in the lower branch) have moved the most.

combined with an estimator/controller of the form (24)

u=K2_

_: = AJ: + B2 u - L2 (y - C2 _)

may also be evaluated by considering the controller and estimator problems sepa-

rately. To accomplish this, simply combine the above equations into the closed-loop

composite system

& = -L2C2 A+B2K2+L2C: & "

Gaussian elimination, first on the rows and theri on the columns, reveals that the

eigenvalues of this system are the same as the eigenvalues of the system

( A + B2 Ix'2 B2 Ix'2 )0 A+L2C2 "

In other words, the eigenvalues of the closed-loop composite system for the "1-/2

problem are simply the union of the eigenvalues of the controlled system At,2 =

A + B2 K2 and the eigenvalues of the estimated system AL2 = A + L2 C2 discussed

in the previous two sections and illustrated in Fig. 4.
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FIGURE 4. Least stable eigenvalues of the composite closed-loop system with the
7-(2 controller/estimator, taking _ = gl = g2 = 1. Note that the eigenvalues are
simply the eigenvalues of the closed loop controller (+) together with those of the
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5._ 7-l_ control

As with the 7"/2controller/estimator, the performance of the closed loop composite

system with the "H_ controller/estimator

= -Lo_C2 A+B2Ko_+L_C2 ] (_)"

may be evaluated by considering the performance of the controlled system Ah'_ =
A + B2 Ko_ ond the performance of the estimated system ALo_ = A + Lo_ C2 sep-

arately. The root locus of the eigenvalues of Ah'o¢ are plotted with respect to the

parameter 7 of the H_ problem in Fig. 5, clearly illustrating the tendency of "Hc¢
controllers to modify only the least stable components of the system, as opposed to

the _ controller of Fig. 2, which modifies all controllable modes of the system.

6. Conclusions

Optimal and robust control theories have been successfully applied to the Orr-

Sommerfeld equation. Given control on the wall-normal component of boundary
velocity only, the flow system is shown to be stabilizable but not controllable. Given

measurements of wall skin-friction only, the flow system is shown to be detectable

but not observable. It is shown that _2 controllers/estimators modify all of the
controllable/observable modes of the system. In contrast, the _o_ controllers mod-

ify the corresponding 7_ controllers only in the most unstable component, as 7fo_
targets a bound only on the maximum value of the transfer function.
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FIGURE 5. Root locus of least stable eigenvalues of the 7"/oo controller versus _,

taking g = 100, gl = g2 = 0.001. The result with "7 ---* oe, marked with the (x), gives
the corresponding 7_2 controller. Note that the 7-/00 controller modifies only the least
stable eigenmode of this 7"/2 result, without expending any extra control effort to
control those eigenmodes not associated with the maximally unstable component of
the system. Note also that "1,= "7o, marked with the (o), is reached by reducing "_
until the least stable eigenvalue corresponds to one of the uncontrollable eigenmodes
in the upper branch, which cannot be moved further left; in the present case, this

corresponds to a numerical value of "1'0= 0.26.

In the e --_ 0 limit of the 7-/2 controller, corresponding to cheap control and thus

large values of u, all eigenmodes of the closed-loop controlled system are shown to

be modified to points at which they are no longer sensitive to further modifications

of the control. Similarly, in the gl = g2 _ o¢ limit of the 7-12 estimator, accounting

for large disturbances on both the state and the measurements, all eigenmodes of

the closed-loop system for the estimator error are shown to be modified to points

at which they are not discernible by flow measurements.

These results indicate that 7"/2 controllers and estimators are optimal for their

desired purposes, but may contain large feedback gains. On the other hand, 7-/o_

controllers only target the least stable components of the system, and thus have

smaller feedback gains while still achieving the same worst case performance for the

nominal plant. Such reduced feedback gains generally result in improved robustness

to inaccuracies in the system model.
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