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Drag reduction in turbulent MHD pipe flows

By P. Orlandi I

This is a preliminary study devoted to verifying whether or not direct simulations

of turbulent MHD flows in liquid metals reproduce experimental observations of

drag reduction. Two different cases have been simulated by a finite difference scheme
which is second order accurate in space and time. In the first case, an external

azimuthal magnetic field is imposed. In this case, the magnetic field acts on the

mean axial velocity and complete laminarization of the flow at Ha = 30 has been

achieved. In the second case, an axial magnetic field is imposed which affects

only fluctuating velocities, and thus the action is less efficient. This second case is

more practical, but comparison between numerical and experimental results is only

qualitative.

1. Introduction

Magneto-Hydro-Dynamic (MHD) flows received much attention in the sixties

and, after a period of loss of interest, there is a renewal of interest shown in this

activity. Attempts, for example, have been recently done in laboratory experiments

(Henoch &Stace 1995) to use MHD effects as an efficient way to reduce the drag of

bluff bodies in sea water. The present study is devoted to showing that some of the

experimental observations in liquid metals can be qualitatively described by a coarse

direct simulation of the full system of Navier-Stokes equations and magnetic field

equations without any low magnetic Reynolds number approximation. For liquid

metals such as sodium or mercury, the Reynolds numbers are in a range affordable by

direct simulations. Direct simulation can then be used as a design tool in practical

applications. In liquid metals experiments, it is almost impossible to perform flow

visualizations, and measurements of turbulent quantities are complex and difficult.

Direct simulations provide these desired turbulent velocity profiles.

The previous direct simulations of MHD flows were, for the major part, devoted

to isotropic turbulence (Kida et al. 1991) and, to my knowledge, there was only

one devoted to LES of flows in the presence of solid boundaries. Shimomura (1991)

considered the case of a magnetic field perpendicular to the wall and, in this case,

the drag increased as observed in the experiment of Reed &: Likoudis (1978). On

the other hand, drag reduction occurs when the magnetic field is directed in the

streamwise or spanwise directions. The realization in the laboratory of the second

case is easy to observe for a plane channel with a reasonable aspect ratio, but the

Hartmann boundary layers on the side walls can play a role. In a circular pipe
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one way to assign the external azimuthal magnetic field is by an electrical wire as

thin as possible located at the center of the pipe; this set-up is difficult to realize

and could influence the flow-field. This is why, for the case of spanwise external

magnetic felds, there are a large number of experiments only for plane geometries,

and some of these are listed in the review papers by Moffatt and Tsinober (1992)

and by Tsinober (1990).

The realizations of an axial magnetic field inside a circular pipe is easier to set up,

and two well documented experiments by Fraim L: Heiser (1968) and by Krasil'nikov

et al. (1973) are available. The friction coefficient reduction was measured at differ-

ent Re and intensities of the externally applied magnetic field. The main difference

between the cases of asymuthal and axial fields is that, in the case of an azimuthal

field, the Lorenz force acts on the mean streamwise velocity profile, reducing the

mean shear and thus the production of turbulent energy. In the presence of an axial

field, the Lorenz force acts on the fluctuating components, and thus is less effective.

In both cases, without the use of superconducting materials, the efficiency, that

is, the ratio between the input power and the power saved by the skin friction

reduction, is very low. Thus, this approach is useful only in applications for which

efficiency is not important, but it is important to reach a drag-free state. This, for

example, occurs in nuclear reactors employing liquid sodium as cooling system and

in some stainless steel production stages.

Dealing with liquid metals, the low magnetic Prandtl number approximation is

valid. In this case, the current density can be calculated by solving one elliptic

equation for the electrical potential instead of solving the full systems of Maxwell

equations. This approximation was used by Shimomura (1991) and Tsinober (per-

sonal communication) in a pipe with an azimuthal external magnetic field. I made

an attempt to follow this direction, but encountered numerical difficulties. Thus,

I decided to solve the full system of Maxwell equations, which are straightforward

to add to a code in which the Navier-Stokes equations are solved. The full solution

can be used to test the solutions with the simplified equation.

2. Physical and numerical model

The dimensionless Navier-Stokes equations when a conducting fluid is subjected

to a magnetic field are

DU _ Ha 2D---_ = -Vp + V2U + Re2-------_V x B x B,

where in the Lorenz force the relationship between the current density, J, and the

magnetic field, B, J = V × B was used. B is calculated by

DB 1
- V2B + (B • V)U.

Dr RePro

The dimensionless equations have been obtained by using the pipe radius R as

reference length, the laminar Poiseuille velocity Up as velocity scale, and the magni-

tude of the externally applied magnetic field B0. Together with tile fluid properties,
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u the kinematic viscosity, # the magnetic permeability, and a the electrical conduc-

tivity, the dimensionless numbers are: Re = UsD/u = UpR/u is the Reynolds

number, Pm= u#a is the magnetic Prandtl number, and Ha = BoRv_/pu is the

Hartmann number.

These equations can be solved once the appropriate boundary conditions are

assigned. This paper deals with flows inside a circular pipe, hence the usual no-slip

conditions are assumed on the wall. Being interested only in the fully developed

statistical steady state, periodicity is assumed in the streamwise direction. The

components of the mean velocity U are Ur = U0 = 0 and Ux(r) _ 0; if we assume

the condition that the external magnetic field is only azimuthal, the mean magnetic

field is Bo = B0r. On the other hand, if there is only an axial field, it must be

Bx = B0. By these boundary conditions, in the Bo case, the result is that on the

pipe wall there is a strong current density. In the B, case the current density is

lOW.

From a physical point of view it is interesting to compare the action of the Lorenz

for the two cases, and the low Reynolds number approximation facilitates this anal-

ysis. With this approximation, the equations of the magnetic field are replaced by

the equation for the potential of the electric field • which is related to the current

density by J = -V(I) + U x B. ¢ can be calculated by the equation

V2_ = V- U × B,

which is obtained by imposing V • J = O. The components of the Lorenz force for

Bo = B0r are

and for B_ = B0

Oqr Ha2[ tO+ qrBolB °
"-G _ Re Ox

Oqx Ha 2 [ 00 q_Bo]Bo= -ff; - -

Oqr __Ha2[ rO(_ q_B_]Bz
"_ Re O0

Oqo Ha 2 . rO_
--_ "_ "--_'e 1 Or qoB _ lB x .

The result is that in the first case the external magnetic field decreases the mean

axial velocity, U_, and thus the reduction of turbulence is more effective since the

mean shear is reduced. In the second case the magnetic field acts only on the

fluctuating components.

An attempt has been made to solve this simplified set of equations, but the

results were not satisfactory. An initial explanation is that, to maintain a constant

flow rate, the pressure gradient has to account for the part of the Lorenz force

proportional to B_, and since this term at high Ha is greater than the friction

losses, the evaluation of the skin friction is not accurate. Dealing with the full
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system of equations, the contribution of Lorenz force to the mean pressure gradient
is zero.

The second order staggered mesh finite difference scheme in space and time devel-

oped by Verzicco & Orlandi (1996) that has been tested for several laminar flows,

and for rotating and non-rotating turbulent pipes (Orlandi & Fatica 1996), was

adapted to solve the magnetic equations. To deal with the axis of symmetry, the

quantities h_ = rbr, ho = rbe, hz = bx have been used, as was done for the velocity

components ( q_ = rye, qo = rvo, q_ = vx). The B and U components are located at

the center of the face of the cell. The fractional step method used for the velocity
field was used for the magnetic field.
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FIGURE 1. Profiles of rrns vorticity fluctuations in wall units, a) lines, present

65 × 65 x 65, b) closed symbols present 129 × 97 x 129 c) open symbols Eggels et

, '),( ........ • o v').al. 257x 129x 129(-- II, l:],v_),( .... , A, a,v_ , , ,

3. Results

Without the magnetic field, the turbulence intensities are higher; therefore, the

validation of the grid adequacy has been performed for Ha = 0. The simulation

with the magnetic field requires more memory and longer CPU time because of three

more parabolic equations. This study is limited to the investigation of whether or

not direct simulations reproduce the drag reduction observed in the experiments.

With this in mind,the strategy for the choice of the grid has been that the grid is

kept as small as possible such as to give satisfactory results for the second order

statistics. Fig. 1 shows that a grid with 65 x 65 x 65 mesh points gives normal stresses

profiles in v_all units in good agreement with those by more refined simulations

(129 x 97 x 129) and with that by Eggels et al. (1994) with a more refined grid in x.

A coarse simulation does not resolve the velocity gradients, and this affects the rms

profiles in a different manner. From previous simulations (Orlandi & Fatica 1996),

at Ha = 0 it has been observed that insufficient resolution in 0 and x produces a
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reduction in the level of v" and v_ while that in r affects v_. This explains why the

present coarse vx,rms profile near the wall agrees with that by Eggels ei al. (1994),

which was obtained by a uniform grid in r. 97 equidistant points in r located only

7 points within y+ = 15, while the present nonuniform grid located 18 points in
the same distance. The differences are not very pronounced, thus this resolution is

satisfactory for a preliminary understanding of MHD drag reduction.
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FIGURE 2. Time evolution ofu_ for external Bo (-- Ha = 0), ( ........ Ha = 20),

(.... Ha = 28), (--.-- Ha = 30), (----- Ha = 32).

The simulations of an external azimuthal magnetic field have been performed for

Ha = 20, 28, 30, and 32, starting from the field at t = 250 of Ha = 0 and advancing
for 750 dimensionless time units. The statistics were computed from 50 fields 10

time units apart. The evolution within the first 250 time units was discarded since

in this period the flow adjusts to the abrupt effects of the magnetic field. The u_

time evolution in Fig. 2 shows that this transitory period is long enough even for the

high Ha number. Fig. 2 furthermore shows that the magnetic field reduces the high

frequency oscillations, and that for high Hartmann numbers (Ha > 30) the flow
becomes laminar. In the experiment by Branover et al. (1966), in a plane channel

with an aspect ratio b/a = 0.067, the Hartman layers on the vertical wall do not

play a substantial role. Thus the results could be considered for comparison with

the present simulations. However also in absence of a magnetic field, the pipe and

the two-dimensional channel differ, as for example shown by Durst et al. (1995),

thus differences should be expected in the presence of the magnetic field. In the

experiment A = CIH,/CIo, that is, the ratio between the C I with and without

magnetic field depends on the Reynolds number. At Re = UbD/v = 7600 for

Ha = 20 and 28, ,_ is respectively equal to 0.82 and 0.62. In the pipe it was found

to be 0.86 and 0.77, and at approximately Ha = 30 a laminar state was achieved.

Recall that, at R, = 180 in the channel, the corresponding Reynolds number based

on full width and centerline velocity is Re = Ub2_/v = 5600; at this Reynolds
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number the experiments of Branover et al. (1966) show a laminar state, and the

present simulations differ more from the experiments.

The same initial conditions were used to solve the case of an axial magnetic

field. Fig. 3 shows that u_ does not change considerably going from Ha = 20

to 60. The experiment by Fraim & Heiser for Re = 4900 at Ha�Re = 0.122
gives for the friction factor )_ = 0.0305, a value smaller than 0.035 found in the

present simulation. The experimental and the numerical siumlations produce a

value of 0.385 for Ha = 0. Attempts were done to perform simulations at higher

Hartmann numbers to investigate whether the numerical simulation in this case

also reproduces a laminar state. The numerical simulation after the initial u_ drop

showed an increase of drag, associated with larger turbulent intensities near the

center, and the calculation diverged. Different initial conditions such as the field

for Ha = 60 at t = 1000 have also been tried without any success.
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FIGURE 3. Time evolution of ur for external Bx (_

(.... Ha = 60).

i

800 1000

Ha = 0), ( ........ Ha = 20),

Before discussing the velocity and rms velocity profiles, it is interesting to under-

stand why in these conditions the efficiency is very low. The efficiency is defined as

the ratio between the energy saved by skin friction reduction and the input energy

necessary to generate the magnetic field. It is e = (1.-_)ReR_Pm3/Ha 2. Since for

liquid metals the magnetic Prandtl number is O(10 -_ ), it is clear why the efficiency
is very low.

In spite of these difficulties it is interesting to make a comparison between the

two cases, Ha = 28 and Ha = 60. Recall that, in presence of Bo, the Lorenz force

effects the mean velocity, Fig. 4 shows that the velocity profile no longer has the log

law and that the profile is getting close to a lanfinar profile. On the contrary, the

case with B, has a well defined log law shifted upwards, reminiscent of other flows

with drag reduction.
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FIGURE 4. Radial streamwise velocity profile in wall units (_ log law),

( ........ Ha = 0), (e Ha = 28, Bo), (o Ha = 60, B,).
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rms velocity profiles in wall units ( ........ Ha = 0 ), (e Ha = 28 , Bo),

(o Ha = 60, B_).

The fields from direct simulations were used to explain through the profiles and

the spectra of the normal turbulent stresses that the effects of the magnetic field are

, and ' in Figs. 5a-b show that B0 re-different in the two cases. The profiles of v_ v r

duces both the streamwise and the azimuthal fluctuation everywhere Bx has a more

complex effect. In fact, while the axial stress increases everywhere, v_ is reduced in

the buffer region and increases at the center. For B0 the drag reduction is associated

with a reduction of turbulent intensity. On the other hand, for Bx the reduction is

associated with modifications of the vortical structures. One-dimensional azimuthal

energy spectra detect the size of the energy containing eddies, which near the wall

are those responsible for the wall friction. These spectra are shown for the axial

and azimuthal components at y+ _ 10, the location of high turbulence production.
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In discussing the spectra in Figs. 6a-b, keep in mind contour plots of fluctuating

velocity even if these plots are not presented. The spectra show that 13o reduces

the energy level at the small scales and there is a transfer of energy to the large

scales. The spectrum for the 13, case shows that the containing energy scale of

the t/, components are larger than those without magnetic field. These then are

located at a greater distance from the wall, and thus tile friction decreases. For the

azimuthal stresses, 13x produces a similar transfer at the large scales, but in this

case the energy level is also reduced at each wave number.
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FIGURE 6. One-dimensional energy spectra: Left: azimuthal, Right: axial direc-

tions. ( ........ Ha = 0), (e Ha = 28, Bo), (o Ha = 60, 13,).

3. Conclusions

The present study has shown that the numerical simulation of MHD flows for

liquid metal is feasible and that they can qualitatively reproduce experimental ob-

servations. It has been shown that for these fluids the drag reduction is inefficient;

that is, that a large amount of electrical power nmst be fln'nished to achieve the

desired goal. The reduction of the turbulent levels could be of great interest in

several applications where the energy saving is not important. These direct sim-

ulations, moreover, have great interest per se in the study of turbulence physics

when the turbulence is subjected to external forces. There are, in fact, similarities

between MHD turbulence and turbulence subjected to background rotation as was

claimed by Tsinober (1990). In both cases a drag reduction is achieved, but the

mechanism is different. In a previous study (Orlandi 1995), it was found that back-

ground rotation breaks the symmetry of right- and left-handed vortical structures

by increasing the helicity density near the wall. Thus the vortical structures have

a greater degree of order leading to a reduction of production and dissipation near

the wall. In the case of MHD flows the helicity density was null across the pipe
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as for Ha = 0, and so the decrease of production and dissipation are due to the

reduction of turbulence intensities. The effect is greater at the smaller scales. Thus,

under the MHD effects, the small scale structures near the wall disappear and the

large scales remain, producing less intense bursting events. However, the amount
of disorder near the wall for MHD flows remains unchanged with respect to that of

a non-rotating pipe.

It should be stressed that while these preliminary coarse direct simulations have

reproduced the differences between the effects of an azimuthal and an axial magnetic

field, the quantitative comparison between experimental and numeric results was

poor. This needs to be explained and it requires a much longer time than that

available during the summer program. All the mandatory grid resolution checks

should be performed.
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