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Abstract

The dyadic Green’s function for an electric current source placed in a rectangular
waveguide is derived using a magnetic vector potential approach. A complete solution for the
electric and magnetic fields including the source location is obtained by simple differentiation of
the vector potential around the source location. The simple differentiation approach which gives
electric and magentic fields identical to an earlier derivation is overlooked by the earlier workers
in the derivation of the dyadic Green’s function particularly around the source location. Numeri-
cal results obtained using the Green’s function approach are compared with the results obtained

using the Finite Element Method(FEM).

I. Introduction

Analysis and design of dipole, monopole, or aperture radiator to excite high intensity
electromagnetic (EM) fields inside a reverberation chamber can be done using an integral
equation approach. The EM fields inside a reverberation chamber due to a radiator can be
determined by weighting an appropriate dyadic Green’s function with an assumed antenna
current. The Electric Field Integral Equation (EFIE) is then set up by forcing the total tangential
electric field on the antenna surface to be zero. Using the Method of Moments (MoM), EFIE is
then reduced to a matrix equation which can be solved for the antenna current. From the current,
the EM field radiated by the antenna inside a reverberation chamber is determined. Also the
input impedance of the antenna as a function of its location and frequency can be determined.
This work is divided into two parts. In the first part we derive the appropriate dyadic Green’s
function for an electric current source located inside a rectangular waveguide and cavity. Detailed
steps involved in this derivation are reported in this document. The second part of this work,

which will be reported in subsequent documents, consists of an application of the dyadic Green’s



function to analyze a dipole antenna placed in a reverberation chamber.

Knowledge of a dyadic Green’s function for cylindrical waveguides and cavities is
essential for analyzing and designing antennas and arbitrarily shaped objects placed inside a
cylindrical waveguide and cavity [1,2]. A detailed derivation of a dyadic Green’s function for the
rectangular waveguide was presented by Tai [3]. In deriving these dyadic Green’s function valid
for both source and source free regions, an additional term must be added to the classical
representation of the field expressions [4]. To include the additional term in the classical
representation, Tai [5] has presented an approach based upon the use of eigenvector functions. In
[6], an electric-type dyadic Green’s function is obtained through a magnetic-type dyadic Green’s
function obtained using the theory of distributions.

The purpose of this communication is to present a simple method using the vector
potential approach to determine the dyadic Green’s funcﬁon valid in the entire region of a
cylindrical waveguide. For an arbitrarily oriented electric current source in a rectangular
waveguide, expressions for the magnetic vector potential are obtained by solving the
inhomogeneous Helmholtz equation. The electric fields and hence the dyadic Green’s function of
the electric-type is then obtained by taking the derivatives of the magnetic vector potential. In the
process of finding the electric field, if the derivatives of the véctor potential are carefully defined,
the additional term discussed in [4-6] automatically follows. Reflection and transmission
coefficients due to a y-directed cylindrical post placed in a rectangular waveguide and excited by
a dominant mode are derived and numerical results are compared with the results obtained by the

Finite Element Method [7].



II. Theory

Dyadic Green’s Function for an Electric Current Source in a Rectangular
Waveguide

(a) Solution of Inhomogeneous Helmholtz Equation:

%
Consider an infinite rectangular waveguide with electric current source J as shown in

9
figure 1. The electromagnetic fields inside the waveguide due to J can be determined from

H(xy2) = Vx4 M
Ho

2 —jor, 22 >

E(x,y,2) = L2 koA + V| Vel || )
kO

where the assumed time variation ¢** has been suppressed. The magnetic vector potential
Z (x, y,z) appearing in (1) and (2) statisfies the inhomogeneous wave equation

VA (5,5,2) +BoA (1,3,2) = o/ ()5, 2) ©)
If G(x,y,z,x,y',2) isthe dyadic Green’s function for the rectangular waveguide for a unit
impulse current source I (x',y', z') inside the waveguide, then the magnetic vector potential

9
A (x,y,7) can be written in the form

> _ -
Axy2 = [ [ [Gxyzxy.2)e J (x,y,2)dvdyd @)
Source

Substituting (4) in (3) we get
VG () +kG(.) = —pld (x—x) 8 (y=1) 8 (z-2) )

where 1 is an unit dyadic, defined as I = 2% + $9 + 22. Equation (5) may be written in compo-

nent form as



VG, () +KG_(.) = pd(x-x)8(y-y)8(z~2) ©6)
VG, () +koG,,(.) = B (x~2)8(y-¥)8(z~2) @)
VPG, () +kaG, () = k8 (x-%)8(y—¥) 8 (z-7) ®)

Because of the nature of the problem and the boundary conditions, the other components of the

dyadic Green’s function G ( . ) will not be excited and hence are not considered. The solutions

of (6), (7), and (8) may be assumed in the following forms

G,(.) = i igyy(x’,y’,z’,z) sin(’”—:i‘)cos(’-“l:—y) (10)
m=1n=0
G, (.) = ﬁ:: g L (2,9,2,2) sin(”l:;‘-’f)sin(’ig—y) (11)

Substituting (9) in (6), (10) in (7) and (11) in (8) we get

2

{ddzgxx< ) kg )}cos( " )sin( ") = b (x-2) B -y)B(e-2) (12
2

{égyy(’) +hig,, (. >}Sm( " Joos( %52 ) = pd (x-¥)3 (-3 8-2) 13

{;1% () +krg, (. )}Sm( :x)sm(’%t—y)=—Hos(x—x')ﬁ(y—y')S(z—Z') a4



2 2 ' 1
where k? = kg - (n_g_t) - (’%‘) . Multiply (12) by cos("—zaﬂc) sin( ’l{—)-)) and integrate over

the cross section of waveguide we get

2
d 2 8men mnux'y . ny' '
{Zzigxx( L) +kg, (. )} = —l, b cos( e )sm( by)S(z-—z) (15)

Likewise the equations (13) and (14) yield

2
d 2 B €., . (mnx' nmy' \
{Egyy( ) +k1gyy( . )} = Hop sm( , )cos( 3 )8(z—z) (16)

2
d 2 €., . (mnx') . (nmy' .
{;gzz(.)+k1gu( . )} = g sm( = )sm( by)S(z—z) a7

where €, and €, are Neumann’s numbers [7] and equalto 1 form = 0 and2 for m#0. In

order to determine the solution of the inhomogeneous differential equation (15) let us

T - Jkz
assume g () = jgxx(kz)e dk, (18)

—00

—ik'
Substitution of (18) in (15), multiplying by e 7% and integrating over z leads to

cos ( mnx') sin( nny ')
emen a b e—jkzz'

8, (k) = Hosap R (19
@ [ K+i)
Substitution of (19) in (18) yields
€,.&, mnx') . ( nmy' = 1 —jk 2 jkz
8,,(.) = Mo5rap 08\ = s 5 '[(kz kz)e e “dk, (20)
—o\ Yz T

The integrand in equation (20) has poles at k, = *k,, therefore the integral in (20) can be

evaluated using contour integration in the complex domain [8]. Hence



_ THoELE, (mnx') . (mty') Hjk; (z-2)
8,(-) = 2%, ab cos - sin 5 e 21

where + sign in the exponential is taken when (z—2') <0 and - sign in the exponential is taken

when (z-272") >0. Likewise, g yy( .) and g, (z) are obtained as

_ TMoELE, (mnx‘) (nny') ik, (z-2)

gyy(.) = 2%, ab sin P cos 5 e (22)
- THoEnE, | (mnx') . (nny') 1k, (z-2)

8,(.) = 2%, ab sin| == Jsin| == Je (23)

Substituting (21), (22), and (23) in (9), (10), and (11), respectively, the x-, y-, and z-components

of the dyadic Green’s function are obtained as

- > - £ & ] ' +ik o
G,(.) = 2 Z ;:IO ancos(m::x)sin(nzy)cos(m—;tx)sin('%t};)e Ty (2-2) (24)

o THoERE, . X' Ty') . T ny\ ik, (z-2)
G, (.) = 2 z 2k0 Zb"sm(max)cos(nby)sm(max)cos(’—l—gz)e ! (25)

] t i'k o
)sin(nny)sin(mnx)sin(m)e T2y (26)
a b a b

The x-, y- and z-components of the magnetic vector potential due to the x-,y-, and z-directed
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g

Gzz(‘) -

currents are then obtained as

A (x,5,2) = Z Z L ab (m:x)sin(’lgl)

m=0nr=0

' "\ ik (22
[ [y cos(”‘;‘x)sin(”’;y )e’ 19 4y @7

Source



o THELE, | (mm T
A, (%y,2) = Z 2 2k10 ;"b sm(max)cos('%)

m=0n=0
' Y ik, (z-7
[ 7, @y sin(m)cos(’mTy)e]’(z 2 iy (28)
Source a
e THoEnE, (mnx) . (nny)
A, (x,y,2) = z Z 2%, “ab sin| —= Jsin| —=
m=0n=0
, N ik (2
j HJz(x',}",Z') sin("ﬂ)sin(’—zll:—)i)e]'(Z ? g (29)
Source a

The expressions in (27)-(29) are the required solution of inhomogeneous Helmoltz equation given
in (3).
(b) Electromagnetic Fields Due to Transverse Currents:

The electric and magnetic fields due to A  (x, y, z) are obtained from (2) as

_ Jo e v Mot 2 (mn)? mnx) . (nmwy
E @) =7 L X g ap (Ko~ ) Jeos\ T Jsin( 7
ko m=on=0""1
' " ik, (z-2
f ”Jx(x',}",Z') cos(m—m)sin(zg—y)e] 1 (30)
Source a

_doy ¥ Tolut g (o (1)
EA) =7 2 Xop e\ a5 7)o\ T

' N Lk, (z-2
[ .y cos(mzx)sin(”’;y)e”(z 2 ay 31)

Source
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1 ' +ik S
[ oo 2 Jun( B52)e O

Source

Hx(Ax) =0
TC . T
! | +ik .
J- J.J'Jx x,y,7") COS("ﬂ)Sin(nnTy)e Jk; (2 z)dv
Source a
(4 = i i ‘J‘emen(m)%s(mn )sm(n“y)
V) T 2k, ab \ b p -

(K I mnx' . rln_y' ijkI (z—- Z')
J‘ “.Jx(X,)’,Z)COS(———a )Sln( A )e dv

Source

Similarly, the electric and magnetic fields due to Ay (x,y,z) areobtained as

_ Jo JHoE,,E T\ mn mnx nm
E (A) = JW z 2: 0 "( n )( ) ( ) ( )’)
x( y) 2k, ab b a cos a st b

vor o e [ mTX nry' \ Yk (z-2)
_[”Jy(x,y,z)sm(T)cos(T)e dv

Source

_ JO - - THoELEL( 2 (nm 2). mmnx nmy
B0 = 2 X e (5 (5] Jon( 2 oo 72

vy o . [ mEX ’ﬂ +jk, (z—-2)
J ”Jy(x,y,z)sm(——a )cos( 7 )e dv

Source

_ 0w o THoEntn . nn) . (mnx) . (nny
E (4) = —k‘z" 2 Y oK, abn (Hik,) - sin| —= Jsin{ ==
0m=0n=0

11

(32)

(33)

(34)

(35)

(36)

(37



' N Lk (z-7
J ”J (x,¥,2) sin(’"_’”)cos(nny)eu(z 2
y a 5

Source
_.]kI) sm( mux )cos(nzy)

oo

mia) - 3 3 5

m=1n

' "\ ik (z-7
j ”J (x,y,7) sin(mnx)cos(nny )el & Z)dv
y a b

Source

H, (A) =0

H (A) = 2 Zzlﬁ ;”b"( —y)sm(m:x)sm(n:y)

m=0n=90

] . i'k o
j J.J‘J (x', y', Z) Sin(ﬂ’_t_’f_)cos(nny )e Jk, (z z)dv
y p -—--—-b

Source

(c) Electromagnetic Fields Due to Longitudinal Current:

The transverse electric fields due to A, (x,y,z) are obtained from (2) as

£0) =22 S 3, S ot (o 2 i 152

2
ko mon

vor o e[ MEEXTY . ;_11_@:_' ik, (z-2')
_[ ”Jz(x,y,z)sm(————a )sm( - )e dv

Source

|
d

0w w THoELE, . Y . T T
fihy + 22 5 5 2 oy (o 2]

(I | 3 mnx' . n_’t_)j ijkI (z-17)
[ s {2

Source

In obtaining the longitudinal electric field representation due to A, (x, y, z) , special

attention is required in performing the differentiation with respect to z on A,(x,y,z) . Since

12

(38)

(39)

(40)

(41)

42)

(43)



Az (x,y,z) is continuous as a function of z, the first derivative of Az (x,y,z) is straightforward,

and therefore causes no difficulty. Hence

2 4 o3 = ) 2 Lt el 2 (k) sin ™ )sin( "2 )

m=0n=0

" " i 'k - "
[IBIACE XS sm("“;" )Sin(n_jz? )e D gy )

Source

where double prime quantities are the dummy variables of integration. Clearly aa A (x,y,2) is

0 .
a_zAz (x,y,z) withrespectto z

discontinuous at z = z", so in performing the derivative of

. . . d
around z = 7", care must be exercised to account for the jump in —Az (x,y,2) asone crosses

0z

the z = " point. The behavior at z = 7" is properly accounted for by an impulse function at

the point whereas the differentiation throughout the rest of region poses no problem, therefore,

9’ JTHoE,, ( 2) . (mnx) . (nny
gAz(x’y’Z) - 2 2 2k, ab R e
"\ ik (22"
J ”J (x",y", 2" sm( mix )sin(n—nbl)ej 1G22 e
Source a
. (mnx mty)
(72 s

[ [Jr.@y 8-z sin(mzx") sin(’%y")eijk’ =9 o 45)

Source

O THE,E
* Y YT
m=0n=0

Integrating on z" in the second term of equation (45) yields

13



aZA (x ) = 2 z lelo ( )Sin(mnx)sm(mty)
32 B = 2%, ab 2 5

Z m=0n=0

U TR TEN mux"\ . nTl',y" ik (z-2") "
J HJZ (x",y", z )s1n( . )sm(—b )e dv

Source

(_UOJ J. J, (x",y",2) — =5 z 2 1n( - ) ( Zy)Sin(mZx")Sin(’i?:)de"dy"

source m=0n=

Expanding 8 (x —x") 8 (y —y") in the Fourier sine series over the domains 0 < x < g and

0<y<b where 0<x"<a and 0 <y"<b [9], it can be shown that

S50 = 5 5 (72 22 225 )

Using (47), (46) can be written as

2

JTHE . '
o = wnos 5 5 B )l )

Z m=0n=0

ooy o3 mux" ) . nTl:y" ijkI(Z—Z") "
j ‘”Jz(x,y,z)sm( . )sm( 7 )e dv

Source

The longitudinal component of the electric field is then obtained using (2) as

o §0 v+ JHO mnx) . (nn
EZ (AZ) = J;CEMOJZ (x,y, Z) +J_ z Z 2k an(k -k ) (T)SIH(T}))
=1ln=1

2
0 k()m

1 ] i.k 2
f ”J (x',y, z)sm( nx)sm(’ﬂl:—y)ej’(z Z)dv

Source

14

(46)

(47)

(48)

(49)



The magnetic field components due to A, are obtained as

__._Smsn’_’l_l'c sin( m———nx)cos(m)
ab b a b

|
M s
M s
SN

Hx(Az) =
m=0n=0 1
' N\ ik (z-2
j “Jz(x',y', 7") sin(@t—x)sin(’—z%l)eh(z Z)dv (50)
Source a
H (A) = i i Lemenm—nc s(—l)sin(m)
Yooz 2k1 ab a b
m=0n=0
J "\ ik, (z—2
[ 7. @2 sin("-”‘—x)sin(’-’%y—)e”(z (51)
Source a
H(A) =0 (52)

_>
The total electric and magnetic fields inside the waveguide due to J is then obtained by
superpostion of the electromagnetic fields dueto A, , A v and A, .

(d) Dyadic Green’s Function for Electric Field:

It is instructive at this point to defined the dyadic Green’s function for the electri field

formulation. To this end, we write the vector wave equation for the electric field as
> > >
VXVXE - ko E = —jog] (53)
If the electric field in terms of the dyadic Green’s function —G—e (x,y',7/x,y,z) is given as

2 . ~ v 2 to ot '
E(xy,2) = Gou|[[C, .y, 2/%,.2) o J (x,y,2)dv (54)
Substituting (54) in (53) the wave equation for the dyadic Green’s function of electric-type is

obtained as

15



VXVXG, (. ) —ksG.(.) = I8 (x—x) 8 (y—y) 8 (z~2) (55)

From equations (30)-(32), (36)-(38), (42), (43), and (49), the dyadic Green’s function can be

written as

G.(.) =Gg(.) 5(x—x')8(yk;)")5(z—z')22 56
0

where G _(.) is given by

+ [k —K] sin( m:") sin( L ) sin(mzx )sin( ’”‘Ty)zz ) (57)

16



The expression in (57) is identical to the Green’s function reported in reference [1].

II1. Application

Analysis of Cylindrical Post in a Rectangular Waveguide:

Consider a rectangular waveguide with a cylindrical post as shown in figure 2. It is
assumed that the waveguide is excited by the dominant mode from the right. For simplicity it is

assumed that the surface current density on the post as
> . a ' '
7 = 518(x~2Js c-2) (58)
oS> S -
Let E S(J ) be the scattered electric field due to the current J and E ; be the incident electric

field due to TE;y mode. The total electric field inside the waveguide is then given by

=>(>) =
E S(J ) + E;. Subjecting the total tangential electric field on the surface of the post to zero, we

get following electric field integral equation:
- —>) -
(ES(J + El.)t =0 59
where the subscript ¢ is for the tangential component. Selecting a testing surface current density

H
as J, which resides on the cylindrical surface, Galerkin’s procedure reduces equation (59) to

>(2) — > —
E(T )eIy+(EoTp) =0 (60)
Equation (60) can be written in a algebric form as

Z, Iy+V, =0 (61)

17



=>(>) — - — ) ) ) )
where Z 1, = (E s(] J °J.), vV, = (E; e J, ), with the indicated integration performed in

cylindrical coordinates. Using (54) and (56), the expression for Zy y is obtained as

T

—ik,r.si ) mnr

Z, =-(opy2b/a) LJ‘e Tarosin (@ cos( 0
Yy k.

m=1,3,5 ."I"

cos (¢) )d(P (62)

_>
Assuming an unit amplitude dominant mode E; can be written as

E = yﬁs1n(1~?)e_j (kon(‘;) )z (63)

Using (63) the quantity Vy can be written as

v - (/\/-2:22)6“]' (kO—(Z) )Zl}e_j (ko—(:z) )"OSin((p) Cos(jﬂ)cos ((p)) (64)

Y L8
0
The algebric equation (61) can be solved for I,,. The reflected amplitude of the dominant mode

field at a reference plane z = 0 is then determined from

The transmitted amplitude of the dominant mode at the reference plane z = 2z, is obatined as

(65)

-k 22 1
Jm_O [ (66)

18



IV. Numerical Results

To validate the Green’s function derived in this report, a y-directed cylindrical post of

radius r, = 0.1cm placed at (x = ‘—21, zZ= 0.5) in a rectangular waveguide with a = 2.25cm,

b = 1.02cm and excited by an unit amplitude dominant mode field is considered. The reflection

coefficient at the z = 0.0cm plane and the transmission coefficient at the plane z = 1.0cm due
to the presence of the probe are calculated using expressions (65) and (66) and presented in
figures 3 and 4 along with the numerical results obtained using the FEM method [7,8]. The close
agreement between the results obtained from two different numerical methods confirms the

validity of the Green’s functions derived here.

V. Conclusion

The complete dyadic Green’s function for a electric current source located inside a
rectangular waveguide is derived using the magnetic vector potential approach. The magnetic
vector potential for an electric current source in a rectangular waveguide is obtained by solving
the inhomogeneous Helmholtz’s equation. The electric and magnetic fields are obtained from the
magnetic vector potential through spatial differentiﬁtion. The fields which are valid over the
source region are obtained by carefully differentiating the vector potential around the source
location. The electric and magentic field expressions obtained by the present method are found to
be identical with the expressions reported in the literature. Numerical results on the reflection and
transmission coefficients using the Green’s function approach are in a good agreement with the

numerical results obtained using the FEM techniques.

19
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Figure 1 Electric current source inside a rectangular waveguide
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Figure 2 Rectangular waveguide with a cylindrical post parallel to y-axis placed at
Xx=al2,z=12;.
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