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1. Abstract

Performance Seeking Control (PSC) attempts to find

and control a process at an operating condition that will

generate maximum performance. In this paper a nonlinear
multivariable PSC methodology will be developed, utiliz-

ing the Fuzzy Model Reference Learning Control

(FMRLC) and the method of Steepest Descent or Gradient

(SDG). This PSC methodology employs the SDG method

to find the operating condition that will generate maxi-

mum performance. This operating condition is in turn

passed to the FMRLC controller as a set point for the

control of the process. The conventional SDG algorithm is

modified in this paper in order for convergence to occur

monotonically. For the FMRLC control, the conventional

fuzzy model reference learning control methodology is

utilized, with guidelines generated here for effective tun-

ing of the FMRLC controller.

2. Introduction

PSC approaches, primarily developed for aircraft

applications, are largely based on dynamic or linear pro-

gramming with some limited work having been per-

formed on gradient-type PSC. Even though random-type

search techniques for PSC (like linear or dynamic pro-

gramming) have proven effective for various applica-

tions, 0-3) a number of difficulties can be encountered in

the implementation of these techniques such as poor

convergence or long execution times.

In this paper, the combined effect of gradient optimi-

zation and FMRLC control with its ability to perform

nonlinear control, with fast on-line learning of the control

law, will be exploited. The state trajectory that generates

maximum performance resulting from the SDG

algorithm, is passed to the FMRLC controller as the

desired set point for the control of the process, Fig. 1. The

computed control trajectory can also be utilized by the
FMRLC, if it is desired to use the FMRLC as a trim

controller.

The standard SDG control algorithm can fall to con-

verge if the initial guess of the control inputs is rather poor.

Therefore the algorithm is modified here in order for con-

vergence to occur monotonically, which makes the algo-

rithm more suitable for on-line implementation.

During the past several years, fuzzy control has

emerged as one of the most active and promising control

areas, especially because of the ability of fuzzy control in

controlling highly nonlinear, time variant, and ill-defined

systems. The works of Mamdani and his colleagues on
fuzzy control (11-14) was motivated by Zadeh's work on

the theory of fuzzy sets, (16-19) and its application to lin-

guistics and systems analysis. The work of Procyk and

Mamdami on the linguistic self-organizing controller (2°)

as well as refinements to this algorithm made by others,

was later modified and extended by Layne to what it is
called FMRLC control. (21)The FMRLC structure, Fig. 4,

has learning capabilities and differs conceptually from

adaptive control primarily by its ability to memorize

learned experiences. The FMRLC algorithm will be uti-
lized here for nonlinear, multivariable feedback control,

while some guidelines will be generated for the effective

tuning of the FMRLC controller. In this paper the SDG
and FMRLC controllers will be combined to form the new

PSC control structure shown in Fig. 1.

It is assumed here that the model of the plant is

available. However, a standard Kalman-filter estimator,

or some other identification technique, could be used to
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Figure 1.--FMRLC/SDG PSC Control structure.

identify the plant on-line if necessary. (8'9) The implied

assumption here is made that the solution space is convex,

in order for the SDG control to find the global extremal

within the constraints of the control inputs.

A nonlinear process is selected to demonstrate the

effectiveness of this control methodology. The process in

(1) is chosen to be nonlinear, stable, with significant cross

coupling of the control inputs to the controlled variables.

Jc1 = -2XlX 2 + 3x 2 + u I

Jr2 =x?-x 3+u 2

(1)

The process itself (i.e. with zero control input) is deter-
mined to be stable by using the Liapunov Direct method,

with the Liapunov function: V(Xl,X2) = ax_ m+ bx_". With
the choices of m = 1, n = 1, a = 1, b = 2, which

simplifies ¢(x),V(xvx 2) = x_ + 2x_,which is positive

definite. ¢(x) = VV(x(t))tf(x(t)), and with no control

input,¢(xl,x2) = -4x 4 + 6xlxz3 which is negative

semidefinite as long as the inequality 2x 2> 3x 1is satisfied.

In section 3, the formulation of SDG optimization for

the process in Eq. (1) and the performance index in Eq. (2)
will be carried out. In section 4 the FMRLC control

methodology will be discussed and the multivariable

control design for the process in Eq. (1) will be shown.
Section 5 will cover the conclusion.

3.1 Steepest Descent Gradient Formulation

Generally a performance index and the plant states

can be expressed as:

tf

to

Jc= a(x(t), u(t), t) (3)

The performance index selected for this problem has
the form

tf

0

(4)

where: X = [(x 1 -xlo)(X 2 -x20)] t, u = [UlU2 ]t,

;1 0° 1,
and xlo, x20 are constants.

For the case where h(x(tf),tf) = 0 in (2), the hamiltonian
of the system in Eq. (3) with the performance index (2) can

be expressed as:

H(x( t), u(t), p(t)) = g(x(t), u(t), t) + p(t)[a(x(t), u(t), t]

(5)

where p(t) are the costate equations. Substituting into

Eq. (5) the functions g and a from Eqs. (2) and (3) relative

to the plant in Eq. (1) and the performance index in Eq. (4),

n=(x 1 - Xlo) 2 -I-(x 2 - X2o) 2 + 0.5u? -I-0.5u 2

+ pl(-2XlX2 + 3x 2 +Ul)+ p2(x 2 -x 3 +u2) (6)

The costate equations are:

/_1 =

/)2 =

_H

_x1

_H

_x 2

.2(x I - Xlo) + 2plx 2 - 2p2x 1

2(x 2 - X2o)+ pl (2Xl- 3)+ 3P2 x2

(7)

The partials of the hamiltonian with respect to the
controls are:

_H

_)Ul =ul+Pl

_H
--=u2+P2
_u2

(8)

The control history u(i)(t), t _ [to,tf] is used to solve
the differential equations in (3) and (7) (including the
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superscripts x (i), u (i), p(i) in (3) and (7), and (i) is an index

signifying the current iteration), so that the nominal state-

costate trajectory satisfies the boundary conditions:

x (i) (t O) = x 0

p(i) (t f ) = ff_ (x(i) (t f ))

(9)

The initial conditions in (9) are split boundary, and

the differential equation in (3) is solved forward in time,

where Eq. (7) is solved backwards in time. Since h(x(tf),tf)

= 0 in Eq. (2), p(i)(tf) = 0. If this nominal control history
also satisfies

OH (x(i) (t), u (i) (t), p(i)(t), t) = O,
Ou

te[to,tf] (10)

which is equal to Eq. (8) for this problem, then u (i), x (i), p(i)

are extremals. IfEq. (10) is not satisfied, successive con-

trol histories are adjusted as follows:

• . OH (i)

u ('+1) (t k ) = u (') (t k) - X-_u (tk) k=0 ..... N-1

(11)

where, x > 0,is selected for the desired effect OH/Ou Eq. (8)

will have on the new control, and tk signifies a discrete
time. Note that the elements of Eq. (11) signify vector

quantities for a multivariable control process. The itera-

tive computation process is terminated when norm two,

OH OH t OH

= "_u (t) -_u (t) dt at iteration (i) is less
2

than a preselected positive termination constant'Y1, or the

performance index IJ(i) - J(i-1)l -< T2- The basic SDG

algorithm listed below has been modified as to achieve

monotonic convergence.

SDG Algorithm Steps:

1. Select a discrete piecewise-constant approxima-

tion to the nominal control history u(°)(t), t e [t0,_].

2. Using the nominal control history u (i), integrate

the state equations from to to (f with initial conditions

X(to) = x o and store the resulting trajectory.
3. Integrate the costate equations backwards in time

from _to to using P(_e) =pfas the initial condition and the
piecewise-constant values ofx (i). At each time step evalu-

ate OI-l(i)/Ou, t e [t0,(f] and store in the computer.
The following steps from 3.1 to 3.2 constitute changes

to the SDG algorithm to achieve monotonic convergence:

3.1 Evaluate the performance index J(i). if j(0 > 3wl)

restore the previous control trajectory (i.e. set u(i)(t)

= u(i-1)(t), t e [to,tfl) and repeat step 2 and 3 from above.

0H (i)

3.2 Find the component of 0u 2with the largest

magnitude and decrease its corresponding x component

(halving z is found to work fine for various problems).

0H (i)

4.If 0u 2 <'Y1°r IJ_°- J(/l)l < Y2then terminate the

iterative procedure and output the extremal states and

control. If the stopping criterion is not satisfied, keep in

storage the previous control vector (this step is added

relative to changes for monotonic convergence), and

generate a new piecewise-constant control history given

by Eq. (11). Return to step 2.

3.2 Steepest Descent Gradient Simulation

The final time, tf, in Eq. (4) can be chosen appropri-
ately based on the settling time of the process to a step

input, Fig. 2. The fourth order Runge-Katta integration
method was used for forward and backwards integration

of Eqs. (1) and (7) respectively. Euler integration was also
used as an alternative, but no noticeable differences in the

simulation results were observed for this problem. Choos-

ing rather large x's in Eq. (11), would normally cause the

steepest descent algorithm to diverge or fail to converge.
However, the modifications made to the algorithm in this

paper will cause the algorithm to monotonically converge,
because "cis adjusted automatically. Figure 3 shows the

monotonically decreasing performance index, the state

trajectories for the choice of (Xl0,X20) = (1.3, 1.2), and the

resulting control trajectories.

4.1 Fuzzy Model Reference Learning Control

Fuzzy control theory will not be covered in depth in

this paper. For more detail discussions in these areas see
Refs. 11 to 22. The FMRLC structure, (2°) shown in Fig. 4,

employs an inverse fuzzy model of the process and modi-

fies the knowledge base through the knowledge base
modifier mechanism in order for the process output y(kt)

to match the reference model output ym(kt). In this section

the basic design procedure of the FMRLC for the process

in Eq. (1) will be discussed.

For the MIMO system discussed in this paper two

decoupled FMRLC controllers are constructed. A coupled
FMRLC controller could be utilized instead, however, the
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Figure 2.mProcess open loop step response.

dimensions of the knowledge bases would have increased

equivalent to the number of the inputs to the fuzzy con-
troller. In addition to the basic FMRLC structure shown

in Fig. 4, a pole at zero frequency was placed at the output
of each decoupled controller. This is needed for zero

steady state error. Each decoupled FMRLC controller
contains 6 adjustable gains. Therefore, some discussion

in this section will be devoted to establishing some

guidelines for the effective tuning of the control gains.

Typical inputs to the fuzzy controller are the error e(kT)
and the error derivative c(kT), but other types of inputs

can be chosen such as integration of the error. The

membership functions for all the inputs to the fuzzy
controllers and the inverse models have been chosen with

triangular shape, normalized, and uniformly distributed
in each Universe of Discourse, as shown in Fig. 5. In

Fig. 5, E j signifies a membership function or linguistic
value associated with a specific input to the fuzzy control-

ler, where _t gives the certainty that an element of that

particular input may be classified heuristically as EJ.

Figure 6 shows the rule base constructed for the inverse

fuzzy models. From this rule base it can be deduced that
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Figure 3.mSteepest descent optimiation.

the Consequent membership functions corresponding to

the inverse model output variable yf(kT) have similar
distribution to the membership functions shown in Fig. 5.

The knowledge base (rule base) contains the centers of

the membership functions which are triangular shaped for

this problem, with a base width of 0.4 as seen in Fig. 5.
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Figure 6.--Inverse fuzzy model rule base.
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One of the important consideration in the construction of

the inverse knowledge base is that the inverse fuzzy model

exhibits the proper directionality associated with the

controlled process. The knowledge base associated with

the fuzzy controllers initially contains all zeros, which
reflects no knowledge of how to control the process. This

knowledge base is updated auto-matically as the FMRLC
controller learns how to control the process.

The selection of the FMRLC gains is an important

step in the design process, as the ability of the controller
to track the reference model will heavily depend on the

particular choices of the gains. The gains ge and g. are
• Ye

chosen so that the ranges of these inputs are mapped to

a normalized universe of discourse in the range of [-1,1].

For instance an appropriate choice for the value of the gain

ge would be 1�range (e(kt)). A good choice for the value
of the gain gc is found to be approximately equal to
lOl(range (e(kt))/T),which is equal to 10/(max change

(r(kt))/T), where r(kt) is the set point and T is the sampling

time. The smaller the choice for the values of the gains ge

and gc' the more the control action is concentrated towards
the center region of the rule base, resulting in better control

tracking at the expense of an increased control rate of the

control variable u(klO. The gain, gy , effects the damping
of the process response: If it's too s_all the response will

be oscillatory, if it' s too large, the process will be unable

to keep up with the reference model. A good choice for the

value of the gain, gYc' is found to lie somewhere in the
range of [1/(4con), II(2con)], where, con, is the natural

frequency of the process. The output gains, gu and gp are
chosen so that the corresponding Normalized Universe of

Discourse maps to the range of the output variables of the

fuzzy controller. For instance, both gu and gfare selected
to be equal to the range of the controlinput variable, u(kT).

This choice for the output gains allows both u(kT) and

yflkT) to take on values as large as the largest control input.

The selection of the reference model shown in Fig. 4,

represents the desired performance of the FMRLC feed-

back control system. The reference model is selected here

to have a natural frequency, com' equal to the process

natural frequency, con' with a relatively low step value for

the open loop response. With the process being nonlinear,
its response time can strongly depend on the magnitude of

the control input. Therefore, it may not be desirable to

select a reference model significantly faster than the

process response time relative to alow control input value,
or else we may be asking for relatively large control rates.
A first order model for the selection of the reference model

has been found to be adequate•

GR M _ com (12)
s W corn

4.2 FMRLC Control Simulation

Based on the discussion in section 4.1, the control

parameters for the two decoupled FMRLC controllers
have been selected with the following values:

gel gYe1 gCl gYc1 gUl g fl ¢Oml1

gel gye2 gc2 gyc 2 gu2 g f2 ('Om2 J

-/0.25 0.25 0.1 0.125 10 10 2J

The defuzzification approach used in this simulation

is the so called "Center of Gravity." Figure 7 shows the

response of the decoupled FMRLC controller with simul-

taneous step set point changes. This response shows the

tracking capabilities of the FMRLC. The set point track-

ing response was used to tune the controller as was

discussed in section 4.1. The knowledge base of the fuzzy

2.0

1.6

1.2

0.8

0.4

0.0
0 2 4 6 8 10

Time, sec

6

4

/

/
/

/
/

/
t

-2

-4

I
t
I
I

1

I

// I

/ I

// I

/ I

j

f I
I k

\

-- ul

i i i i i i i ,

0 2 4 6

Time, sec

Figure 7.--FMRLC close loop step response.
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Figure 8.--Automatically generated rule base for State X2.

controller started with all zero entries, reflecting that

initially there was no knowledge of how to control the

system. The learning rate is quite fast as is evident from the

responses of the states and control inputs in Fig. 7. The

resulting knowledge base of the decoupled controller

corresponding to the state x 2, for the simulation in Fig. 7,
is shown in Fig. 8. The zero elements associated with this
knowledge base is an indication that the controller, for

this particular simulation, has not had the opportunity to

venture in these areas of its knowledge space.

For a complete simulation of the PSC approach

discussed in this paper; in section 3 with the SDG formula-

tion and the modified SDG algorithm, the optimal state

and control trajectories were found, Fig. 3. The states

trajectories are passed to the FMRLC controller as the

desired set point control for the control of the process in

Eq. (1), shown in Fig. 9. In the simulation (Fig. 10), the

control trajectories were also utilized by adding them to

the control output of each decoupled FMRLC controller as

you would for a trim control structure. Due to memory
limitations for the PC Fortran used in this simulation, the

state and control trajectories of Fig. 3 were approximated

by first order responses, which would be expected to
introduce error in the trim control. All the control para-
meters discussed in this section remained the same for the

simulations shown in Figs. 9 and 10, except for the refer-

ence model frequency, com, which was increased to
16 rad/sec. For these simulations, the knowledge bases of

the two decoupled controllers were also initialized with

zeros, but the resulting knowledge bases from the simula-

tion in Fig. 7 could have been used as the starting point.
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Figure 9.--FMRLC simulation without trim control.
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5.0 Conclusion

In this paper a nonlinear process was used to help

develop a PSC methodology that utilized the modified

SDG and FMRLC approaches. The simulation results

presented in this paper showed that the modified SDG

algorithm can be used effectively to compute off line the

optimal state and control trajectories for the control pro-

cess. The results also showed that the FMRLC approach

with the given tuning guidelines, can be used to control the

nonlinear multivariable control process with good track-

ing performance, and relatively fast on line learning of the

control law. Finally, the optimal states and control trajec-

tories computed by the SDG algorithm are utilized in this

paper by the FMRLC to control the process to achieve the

desired performance.

For future work it would be important to study stabil-

ity, convergence, and robustness of this approach in more
detail. Further, experimental validation of this method

would be needed, with processes that exhibit more

complex dynamics. Finally, a direct comparison with other

existing PSC control methodologies could be carried out.
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