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Abstract

The temporal instability of a spatially periodic, par-

allel flow of an incompressible inviscid fluid for various
jet velocity profiles is studied numerically using Floquet

Analysis. The transition matrix at the end of a period
is evaluated by direct numerical integration. For verifi-

cation, a method based on approximating a continuous

function by a series of step functions was used. Unsta-
ble solutions were found only over a limited range of wave
numbers and have a band type structure. The results ob-

tained are analogous to the behavior observed in systems
exhibiting complexity at the edge of order and chaos.

I. Introduction

The results of an investigation of the temporal instabil-
ity of spatially periodic, parallel flow of an incompressible
inviscid fluid for various velocity profiles are presented in

this paper. This study is motivated by a desire to in-
crease mixing in shear flows using multiple nozzles.

For many years the stability of jets, shear flows, and
wakes have been extensively studied to understand the

growth of a small, wave-like disturbance of the basic par-
allel inviscid flow U = U(y)i. For these unbounded flows,
it is assumed that the flow is uniform as y _ ±oc.

The stability characteristics of spatially periodic, par-
allel flows of an incompressible fluid ( both inviscid and

viscous) were studied by Beaumont 1. Beaumont con-

sidered periodic flows with U(y) = U(y + A) for some
period A and all y. He considered broken line triangular

and square velocity profiles and a continuous sinusoidal
velocity profile. Miles 2 extended this work in a study

of the collective interaction of a compressible, periodic,
parallel jet flow.

In this paper, the stability characteristics of spatially

periodic, parallel, inviscid jet flows of an incompressible
fluid will be studied. A sketch of the nozzle geometry

considered is shown in Fig. 1. A broken line V-shaped
velocity profile, a continuous Ganssian velocity profile,

and two continuous, roughly rectangular, velocity pro-
files, will be considered. For the steepest rectangular pro-

file, stability will be studied for nozzle spacing-to-width
ratios of 0.527, 0.819, 2.231, and 7.183.

An experimental study of an array of subsonic jets
imbedded in a square network by Villermanx and
Hopfinger 3 and Villermaux, Gagne, and Hopfinger 4

found the jets exhibit a self-sustained oscillation. In addi-
tion, they found the oscillations synchronized by the fluc-

tuating pressures gradient are strongly correlated over a
short distance. Furthermore, measurements of the oscil-

lations display the presence of large-wavelength travelling
waves directed from the boundaries of the network to the

center.

The study discussed herein may be considered to rep-
resent a one dimensional extrapolation to an array of

rectangular jets separated by a distance s. The analy-

sis depends on the jets being coherent spatially. In this
linear temporal stability analysis of perturbations about
the mean flow, it is the collective behavior of the periodic
parallel jet flow that determines the behavior of the flow
field.

The existence of unstable solutions for the broken line

V-shaped velocity profile and the profiles studied by

Beaumont 1 suggested the possibility of unstable solutions
for rectangular type profiles designed to have roughly the

same scale. Beaumont showed that for the square bro-
ken line velocity profile all solutions are unstable. In this

paper, we will show that for the V-shaped velocity pro-

file only non-growing neutral mode ( ci = 0) solutions
exist. Stable solutions were found numerically for the
continuous Gaussian velocity profile and two continuous,

roughly rectangular, velocity profiles.
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II. Formulation of the problem

The basic flow is assumed to be periodic with a maxi-

mum value U2 and a minimum value U1. The flow with

velocity U(_) in the _ direction is assumed to be charac-

terized by a length scale L and a velocity scale



Thedimensionlessvariablesusedhereinarex = _/L,

y = _/L, and t = t'AU/L,.

Let (U(y), O) be the velocity of a steady, plane-parallel

flow, where the x-axis is in the direction of the flow, and

where

_ = u2 + ul
2

and f is the velocity profile function which varies between
:t=l.

The flow field is perturbed by introducing wave distur-
bances in the velocity and pressure with amplitudes that

are a function of y. Thus

(_, _,_ = (u(y), v(y),p(y) ) exp [i (kx - wt)]

where

AA

k = kL,

_= AO'

k kAU AU

and we define _ as follows

_ c

AU AU 2

By definition, k is a real positive number that repre-
sents the wave number in the x-direction, c is the dis-

turbance velocity, c -- cr + ici, Cr is the relative phase
velocity, and w_ = kc4/2 is the amplification rate of the
disturbance. From the equations of motion, if nonlin-

ear and viscous terms are neglected, one can obtain the

. Rayleigh equation for the y-component of the perturba-
tion velocity as follows:

r ]v"(y) - v(y) L(/(y) - c) + k2 = 0, (1)

where the primes denote differentiation with respect to

y.
In this paper, f(y) is periodic such that f(y+A) = f(y)

where the period A used herein is the sum of a scaled noz-

"zle width, wt¢ = w_/L*, and the scaled nozzle spacing,
s = s*/L*. In this paper the period is scaled so that
)_ = s + WN = (S* + W*N)/L* = 27r. The velocity profile
f(y) is not any exact solution of the Navier-Stokes equa-

tion, but it can be considered as a simple model of some
real periodic flow.

The three continuous velocity profiles f(y) studied
herein are given by

fi(y) = 1 - 2gi(_), for i = 3... 5 (2)

where

= A( y - 1), (3)

A is the nozzle spacing parameter, y goes from 0.0 to 2_r,

1
g_(_)= , (4)

[1 + (sinh(_)) is ]

1
g4(_)= , (5)

[1+ (_)6]

and

g3(_)--exp(-(_)2). (6)

The profile number system used fl = sin(2_ry) and ]2 =
cos(2zry). The fl profile case was studied by Beaumont 1.

The corresponding value of d2]5(y)/drl 2 is

where

d2 f s (zl)/ drl 2 =

+

+

- 1296 fl (17)34 d52 (7])2

1 + el (_)18] 3 sinh(1) 2

612el (?_)16f2 (T])2

1 + O(_/) is] 2 sinh(1) 2

36e107) 18

1 + el (77)is] 2 sinh(1) _

el (_) = sinh(_)

e2(r/) = cosh(_).

The form used for the fs function velocity profile was

suggested by a velocity profile function used to study the
instability of two-dimensional wakes by Monkewitz s.

For c_f40?)/d_ _ we have

-14@7 _° 607/______4_
d:/_('_)/d_Z= [1+ ,_]_+ [1+ ,_]_

For d_fsO?)/d_ _ we have

d2f3(r_)/drl 2 = 4exp(-_ _) - 8_ _ exp(-_7_)).

Note that



Themannerin whichalteringthenozzlespacingpa-
rameter,A, changesthedistancebetweennozzleswillbe
discussednext.Let )/1 and X2 be the roots of f(y). The

gap between the zero crossings is s = X2 - Xl. Chang-

ing A shifts the roots of f(y). The distance between the
nozzle center lines is the period A = 2_r. The scaled jet
width is wy = A - s. Results will be given in terms of

the parameter A and a parameter which is the ratio of

the period, A = s + WN, to the scaled jet width, WN or
the ratio of the gap width, s, to jet width, WN. Note

- +1
WN WN

A value of 3 was used for A for some of the results pre-

sented herein. For A = 3, the corresponding velocity pro-
files and their first and second derivatives are shown in

Fig. 2a and 2b. Note that the gradients in these profiles
are steep. For the steepest velocity profile, ]5, stability

was studied using A -- 3.0, 2.3, 1.5, andl.18 which corre-
spond to values of A/WN = 1.527, 1.819, 3.231, and 8.183.

Decreasing A increases A/wg and 8/WN.

III. Floquet-Bloch theory

Since the basic flow velocity profile,/(y), is periodic,

Eq. (1) is an example of a Floquet-Bloch problem. Differ-
ential equation, nonlinear system, and dynamical system
textbooks frequently discuss the mathematics of solving

Floquet-Bloch type problems _-16. The method has been
applied in solid state physics 17-21 to study the stabil-

ity of a space vehicle =2 and a helicopter rotor 23-25. and
to spatially periodic flOW 1'26-29. A survey of the spa-

tially periodic flow literature is presented by K. Gotoh
and M.Y. Yamada 3°. The paper by Beaumont 1 and the

description of the Floquet-Bloch theorem by Hochstadt 9
were particularly useful in guiding this research.

In this section, Eq. (1) is rewritten in a form used
to obtain the numerical solutions discussed herein. The

second order differential equation can be described by a

system of first order differential equations. Let

so that Eq. (1) can be rewritten as the system

X' = AX (7)

•where

(0A(y) = D(y) '

X is the vector X = (Xl,X2) T and

D(y) = [
(f'_---- c) + kS] "

f(y)"

L

If O(y) is a fundamental matrix solution of Eq. ( 7 )
such that

v(0) = i

where I is the identity matrix, then from the Floquet-
Bloch theorem

For y = 0, # satisfies the matrix equation

_I,(2_) -'#I = 0. (8)

We now introduce two solutions of Eq.(1) with initial

values at y = 0.0

¢2'(0) = 0 1 • (9)

Next we seek the eigenvalues, /z, of ,I,(27r) from Eq. (8)
as follows

1,I,(2_) - _I] = ¢1'(27r) ¢2 (2_r) -/_

=/fl - (¢1(27r) + ¢2'(2rr))p

+(_1 (2zr)¢2'(2r) - ¢2 (27r)¢l'(27r))

= _ + + 1 = o, (10)

where we have used the following relation

¢l(2_r)¢2'(27r) - ¢__(2=)¢1'(27r) = [_I,(2rr)] = [cI,(0)[ = 1.

The independent solutions of Eq. (7) have the form

¢(y) = X(y) exp(_y) = X(y) exp(ry)

The parameter F specifies the period of the eigenfunc-
tion ¢. If F is real the eigenfunction grows or decays at
infinity. Consequently, only imaginary values of F are

acceptable. Thus, the eigenfunction oscillates in space
and is called a continuous mode. The disturbance with

ri = 1/n, where n is a nonzero integer, has a period
2n_r. One with Fi = 0 has the same period 27r as the
main flow, while an irrational value of Fi means the dis-

turbance is aperiodic. Note that the parameter F does

not appear in the flow equation, but is attributable to
the Floquet-Bloch theorem.

Solutions of Eq. (7) are thus of the form

x (y + =  lXl(y)
X2(y + 2r) = #2x2(y)

where the eigenvalues #1 and #2 represent the zeros of

Eq. (8), provided they are distinct.

In general, these solutions will not be periodic.
Conditions for periodic solutions can be found by letting

#1 = exp (i0i) and #2 = exp (-i0i).
Then from equation (10)



cos(Pi)= 5/2 (11)

where

5 = + (12)

Consequently, for a solution to be periodic, 5 must be

real and 15] must be smaller than 2 so that 8i is real.
The constants/z are termed the characteristic multipli-

ers of the Floquet-Bloch system ( Eq.(1 )) by Beaumont 1

and the corresponding characteristic exponents are deter-

mined by the relation r = rr+iri =_-l°g(_)_ _r_r+i _

again in accordance with the definitions of Beaumont 1 .

Equation (1) can be put in a form that shows k is an
eigenvalue of a differential equation. 31 From Eq. 1, we
have

v_k2[, ](f _ c)k2 + l v = O (13)

where again the primes denote differentiation with re-
spect to y.

Letw=vandz =v'/kandP(y,k)= -[_ + 1].
Then

[::1 [ '][°]=k Op 0 z

1- - o l[z]
or

Z' = kJH(y, k)Z

where Z is the vector Z = (w, z) T

and

Z [o1]

Consequently, the wavenumber k can be viewed as an
eigenvalue of the problem.

IV. Broken-line velocity profiles

In this section, the stability of a broken-line V-shaped
velocity profile and square-shaped velocity profile will

be discussed. As shown by Beaumont 1, one can use a
procedure given by Rayleigh 32 to obtain exact solutions
for various periodic broken line velocity profiles. The
method and the nature of the solutions is demonstrated

'using the Floquet-Bloch theory to obtain the simple ex-
plicit solutions for a broken line profiles. Beaumont 1 dis-

cusses additional solutions for a broken line triangular

profile and a broken line square velocity profile.

The Gaussian profile used herein has a resemblance to

a V-shaped velocity profile. Consequently, in this section
solutions for the V-shaped velocity profile are discussed.

Since the approach is obscure more details on the solution
are given in Appendix B.

The rectangular profile used herein has a resemblance
to the square velocity profile discussed by Beaumont _.

The square velocity case is treated anew herein since for
the condition of continuity of normal velocity Beaumont 1

uses continuity of ¢/(U - c) rather than continuity of ¢.
The condition that ¢ be continuous is presented in Ap-

pendix A where it is shown'that the normal velocity, v,
is v = ik¢. Both approaches yield identical results for

the triangular velocity profile case discussed by Beau-
mont and the V-profile treated herein which are contin-

uous but have non continuous derivatives. However, the

square velocity profile has discontinuities of the velocity
profile and the stability solution presented herein is not
the same as that derived by Beaumont 1. Again, since

the approach is obscure more details on the solution are
given in Appendix C.

For this analysis the velocity potential formulation is
used. 33 Thus, we have

(u - c) (¢" - k2¢) - U"¢ = 0. (14)

In Appendix A, the flow equations in terms of the ve-
locity potential and velocity are shown to represent two

different views of the same problem. The conditions of

continuity of pressure and normal velocity indicate that
at a discontinuity of U or U'

p(left) = _o(right) (15)

where

and

= (u - c)¢' - u'¢ (16)

V(left) = V(right) (17)

where

V = ¢ (18)

Note again that Beaumont 1 expresses the condition of
continuity of normal velocity using

¢
v = _ (19)(u - e)

The derivation of these equations is discussed in Ap-
pendix A.

A. Broken-line V-shaped velocity profile

The flow profile function U(y) is given by



I-_y , o<y<_ (2o)U(y) = -3 + ;y , 7r<_y < 27r

where U(y + 2_r) = U(y).

Using the two sets of initial conditions at y = 0
((v,v') T --- (1, 0) T and (v,v') T = (0, 1) T) ) and using

the matching equations at y = 7r, to solve the Rayleigh
equation (Eq.(1)) at y = 2_r yields

¢1 (27r) = cosh(2kTr)

4

k_(1 + c)

¢_'(2_r) = cosh(2kTr)

4

k_(1 + c)

cosh(kTr) sinh(klr)

sinh(k_r) cosh(k_r).

(21)

Consequently, using equation ( 12 ) and the angle sum

relationship for sinh(a + B)

4
J = 2 cosh(2kr) sinh(2klr) (22)

k_r(1 + c)

From equation ( 11 ) J is real. It then follows that since
the value of 5i is zero the value of ci is zero. Consequently,

only neutrally stable solutions can exist. The value of
for c = 0 is shown in Fig. 3a. The value of J is between

+2 only over a narrow range of k values, 0.60949283 <
k < 0.6573595.

For c = 0, the value of 5 vs k and the stability curve.
•Fi = cos -1 (5/2)/2r vs k, based on equation 11 calculated

from the following equation

cos(O_)= cos(2_rrd = ,_/2
2

= cosh(2kTr) - _ sinh(2kTr)

(23)

are shown in Fig. 3b and Fig. 3c.

Note again that a solution only exists between k =
0.60949283 and k = 0.6573595. Out side this narrow

range of wave numbers the magnitude of 8 is greater
than 2 and no unstable solutions to the Floquet-Bloch
problem exist.

B. Broken-line square shaped velocity profile

The flow U(y) is given by:

7r

1 , 0<y<_
U(y)= -1 , _. <_y< _--_

1 < 2_r, _-<_y_
(24)

with U(y + 27r) -= U(y)
Using the procedure discussed in Appendix C, the fol-

lowing equation for J is derived:

2[d cosh(2 k)c2- 1 - 1] (25)

Then

cos(0i) = cos(2_ri) (26)

cosh(2k )-
(d - 1)

Note that solutions are available for only the neutral sta-
bility case where ci = 0 and c = c_. For any ci not equal
to zero cos(0i) is complex and no unstable solutions exist.

The solution given by Beaumont 1 is based on a dif-
ferent condition for velocity continuity and this solution

shows that the whole of th_ (k, Fi) plane is unstable.
In this section, analytic solutions were determined for

two simple broken line velocity profiles. For these cases,
only neutrally stable solutions were found. The numeri-

cal procedures used to obtain solutions for the continuous
velocity profiles will be discussed next. The continuous
velocity profiles are scaled to resemble the simple broken

line velocity profile.

V. Numerical calculations

The specific point of interest is to determine for a given
value of ci and k if a value of c_ exists such that the

solution to Eq. (1) is unstable. In order to determine
the unstable regions with a numerical implementation of

Floquet-Bloch theory one must establish a grid in the
(ci, k) parameter space and separately assess stability for

each nodal point in the grid. For the results presented
herein, the spacing in k was 0.005 and the spacing in ci
was 0.1.

To investigate temporal stability for a given value of ci
and k, iteration was used to vary the value of the phase

velocity, cr. At each iteration, the eigenvalues, p, of the
matrix _(2_r) were then found and the corresponding
characteristic multipliers F calculated. The iteration was

successful if 8i = 0 so that Fr = 0. Also, at each iteration
a check was made that det @(27r) = 1 .

The iteration procedure that selects appropriate values
of c_ consisted of the following steps. First, values of c_

in the range between -1 < c_ < 1 at intervals of 0.02
are tried. Then these results are sorted to select the two

solutions with the smallest value of IJil. The two corre-

sponding values of c_ are next used as guesses in a root
finding IMSL subroutine (ZREAL) that tries to find two
roots of [_i(Cr)[ = 0. The solutions are then checked to

see if [_(21r)[ = 1 and 8r is less than 2. Both solutions
are retained if they exist. Note that while more than two
solutions may exist, the procedure finds at most two solu-

tions. This procedure is expensive and time consuming,

but alternative procedures of comparable rigor, quality,
and generality have not been forthcoming.

Two separate methods were used to evaluate the tran-

sition matrix at the end of a period ( y = 27r ) so that
and [@(2_r)[ could be calculated. These will be dis-

cussed next. The numerical solutions were obtained us-

ing a CRAY YMP at the NASA Lewis Research Center.



A. Direct Numerical Integration

In obtaining most of the results presented herein, equa-
tion (1) was integrated from y = 0 to y = 2_r using
a standard Runge-Kutta procedure (hMSL math library
routine IVPRK). Typical numerical results obtained us-

ing numerical integration for velocity profiles ]3, )¢4, and
f5 using g3, g4, and gs defined by equations 6, 5, and 4

are given in Tables 1 through 3. Each profile is calcu-
lated at a different pair of k and c_ values as noted in the
Tables.

In order to confirm the proper functioning of the com-

puter program and assess the accuracy of the results, typ-
ical cases were selected and verified using a spectral code

and a method which approximated the periodic matrix
A(y) by a series of step functions. In the next section,

solutions obtained using the step function procedure will
be compared to solutions obtained using direct numerical

integration. Direct numerical integration proved faster
than other integration procedures which were tried. In

addition, it gives good results and copes with the steep
gradients.

B. Approximate Method of Determining _I,(2r)

The approximate method to be discussed consists of

approximating the periodic matrix A(y) by a series of
step functions. To use the method, one evaluates the
state transition matrix by dividing a period into many

equal parts and treats the periodic matrix A(y) as a con-

stant matrix in each part. Consequently, the differential
equation is treated as a constant coefficient differential
equation in each part. The method is described by Hsu 34

and used by Friedmann and Silverthorn to study rotor

blade flutter 24 The period 2_r is divided into K inter-
vals denoted by y_, _ -- 0, 1, 2, ...K. In the _th, interval

the periodic coefficient matrix A(y) is replaced by a con-
stant matrix C_ = A(y_ + -_) where An = y_ - Y_-I-

Using the theory of differential equations with constant

coefficients 3s the transition matrix of the system is given
by

K

_----1

The matrix exponential is defined as

exp(h_C_) = I + _ j!
j=l

For small spatial intervals this equation converges
quickly, and the value of the matrix exponential can be

approximated by a sum over a finite number of terms.
However, for this problem, it can be shown that the ma-
trix exponential has the exact solution as

exp(A_C_) = [ c°sh(v/-D-_A_) sinh(v_'m_) ]vf-D_ sinh (v/-D-_ A _) cosh(x/-D-'_ A _)

The following results are presented to provide a more
accurate view of the calculation errors than can be con-

veyed by the figures.
Exact matrix exponential step function approximation

results as a function of the number of step function in-
tervals for the three velocity profiles studied herein are

presented in Tables 4, 5, and 6 for the same value of k
and ci used in correspondin.g Tables i, 2, and 3. In ad-

dition, for velocity profile fs, the computation time in

seconds is shown. For the f4 and f3 velocity profiles re-
sults obtained using the exact second derivative are given

in Tables 5a and 6a while results obtained using a numer-
ically calculated second derivative are given in Tables 5b

and 6b. For the step function approximation a range of
intervals from K = 500 to K = 40,000 were used.

In Figures 4, 5, and 6 the discrepancy between the ap-

proximate step function result and the direct integration
result are presented for 6, F, and c_ as a function of the

number of intervals, K for the three velocity profiles us-

ing the information presented in Tables 4 through 6. The
error scales with lOa/K b where b is approximately unity.
For each parameter 6, F, and c_, the value of a increases

as the velocity profile steepens. Figure 7 shows a plot of
the calculation time as a function of the number of inter-

vals, K. Note that the calculation time increases linearly

with a slope equal approximately to 0.5.
The integration results appear reasonable when com-

pared to the step function approximation results. How-

ever, using the step function approximation takes large
amounts of computer time to get results similar to that

obtained using integration. Consequently, the direct nu-
merical integration procedure was used for the calcula-

tions. Essentially, the method verified the direct numer-
ical integration calculations.

VI. Results

Typical stability curves based on the numerical com-

putation results are shown in Figs. 8-13. Results are

presented in pairs of plots for a range of ci values. The
upper plot shows the phase speed as a function of growth
rate, wi = kc_/2. The lower plot shows the periodicity

factor F as a function of growth rate.

A. Velocity profile effects

In this section results obtained for the three velocity
profiles obtained using A = 3 are discussed. For each op-

erating condition, the unstable wave is assumed to grow
at the maximum rate possible. While the trace of so-

lutions are shown for a range of c_ values, emphasis is
placed on the solution with the largest growth rate. For



the f3 profile (Fig. 8) solutions were found for ci in the

range, 0.1 _< ci _< 0.8. For the f4 profile (Fig. 9) solutions
were found for c_ in the range, 0.2 < ci <__1. Similarly,

for the ]5 profile (Fig. 13) solutions were found for ci in

the range, 0.1 _< ci _< 0.92.
For each profile the maximum growth rate occured at

a different value of ci. For the ]3 velocity, (ci)max = 0.4

(Fig. 8a), for the ]4 velocity, (ci)max = 0.5 (Fig. 9a),
and for the f5 velocity, (ci)ma_ = 0.9 (Fig. 13a). The

corresponding maximum growth rates are (wi)ma_ =

0.192,0.3038, and 0.2453. Thus while the range of

(ca)maz is large, the range of (wi)max is much smaller.
The corresponding calculated relative phase speeds are

(Cr),na_ = 0.1402,0.01143, and 0.2111. Thus the
range of (c_),_ax is also small.

Examining plots of the characteristic exponent, ri,

verses the growth rate, wi ( Figs 8b, 9b, and 13b) shows
most solutions are aperiodic. Hovever, for each profile
solutions were found with Fi near zero which have the

same periodicity as the main flow. More importantly,
the solution with the maximum growth rate has the same

periodicity as the main flow.
The trace of points in Fig 9 for ci = 0.6 illustrates

two interesting aspects of these results. First, note that
the curve is double valued in the range 0 < wi <_ 0.12.

Second, note that the trace consists of two islands of

points one in the range 0 _< wi _< 0.12 and the other in

the range 2.4 _< wi _< 0.28.
Another interesting feature is the occurence of insta-

bility waves with relative phase speeds near c_ = 4-0.5.
This feature can be seen in the trace of the c_ = 0.2 curve

•in Fig 8 and the trace of the ci = 0.6 curve shown in Fig
9.

B. Effects of spacing changes

Figures 10-13 show results obtained using velocity pro-

file f5 with four different spacings (A = 1.18, 1.5,2.3,
and 3 corresponding to the following ratios of nozzle
spacing to nozzle width s/wN = 7.183,2.231,0.81 and
0.527. Plots of the characteristic multipliers F_ and

the phase velocity c_ as function of growth rate for
a range of c_ values are presented again as a func-

tion of growth rate. For these spacings, the maximum
growth rate was at the following values of (ci)max =
0.3, 0.7, 0.9, and 0.9. The corresponding growth rates

are (wi),nax = 0.1867,0.5547,0.2453, and 0.2453 and
the corresponding relative phase speeds are (cr)maz =

0.5304, 0.1913, 0.06391, and 0.2111. The largest growth
occurs for A = 1.5 for this velocity profile.

The results given in Fig. 10 are unique. Results shown
in Figs 11-13 were obtained for a large range of c_ values
at least from 0.2 to 0.9. For A = 1.18 the range of ci
values was much smaller, 0.1 < c_ < 0.5. Another differ-

ence is that for the largest growth rates, for the spacing
A = 1.5, 2.3, and 3, the relative phase velocity is in the

range 0 < c_ < 0.3 . However, for the A - 1.18 case for
the largest growth rate c_ is much larger ( c_ = 0.5304).

In addition, all solutions have positive cr.
The traces given in Figs 11 through 13 are similar.

They also traces which are broken up into islands as dis-
cussed earlier. The stability plot with A = 1.5 is inter-

esting in that the (Ci)max = 0.7 trace represented by +
is broken up into more than four islands.

Again in Figs 11 and 12 we note for a single trace at

a particular value of ci the occurence of instability waves
with relative phase speeds near cr -- 4-0.5. These solu-
tions switch between values'creating islands of instability

with a particular phase speed. This is shown in Fig. 11
for the trace cr = 0.6 and 0.7 and in Fig. 12 with the

trace cr = 0.6, 0.7 and 0.8.

VII. Discussion

In this section, some general remarks about the specific
results will be made. Then, the nature of the solutions

will be examined.
The collective behavior of spatially periodic, parallel,

inviscid jet flows of an incompressible fluid supports un-
stable waves with many common temporal stability char-
acteristics. The results indicate that for a wide variety

of velocity profiles and nozzle spacings the unstable wave
with maximum growth will have a relative phase velocity

slightly greater than zero and have the same periodicity
as the flow.

Extrapolation of these results to an experimental study

of an array of subsonic jets imbedded in a square network

by Villermanx and Hopfinger s and Villermaux, Gagne,
and Hopfinger 4 suggest that the collective behavior ob-

served might also be studied by Floquet-Bloch theory.
Systems of equations with coefficients periodic in time

arise in the study of the stability of helicopter rotor

blades flapping motions 23-25, fluid column stability in
the presence of periodic accelerations 3s, the instability
of columns under periodic loading 3r, the stability of os-

cillatory Stokes layers 3s and the instability of any system
undergoing parametric excitation. Systems of equations

periodic in space arise in solid state physics 17-21, spa-
tially periodic hydrodynamic flow 1'26-29. The question
of interest in many cases is

• determining the frequency of the instability which

has the highest growth for systems undergoing pe-
riodic excitation

• the wavelength or the wave number of the instabil-

ity which has the highest growth for systems with

spatially periodic coefficients.

Theoretical models for systems where the variation is
sinusoidal exhibit a continuous family of stable states.

However, for the spatial variation considered herein one
finds in addition islands of instability. The eigenfunc-
tions of interest are the ones that do not vanish at infinity



whichareassociatedwith thecontinuouseigenvaluesand
arecalledcontinuousmodes.Thenewresultsobtained
withsteepvelocityprofilesindicatethat thesesolutions
canexistin discreteregions.

Beaumont1,showedthatforsinusoidalvelocityprofiles
theresultisaregionofinstabilityandforasquareveloc-
ity profileall pointsareunstable.However,it isshown
hereinthat for velocityprofilesthat arealmostsquare,
Islands of instability are found. This simple formulation
for almost square velocity profiles produces results that
are surprising, complicated and essentially unpredictable.

These results can be categorized as follows. For the
v, triangular, and sinusoidal velocity profiles, the (ci, k)

space is divided into two regions one stable and one un-

stable and the space is highly ordered. For the square
velocity profile all solutions are unstable and the space
is highly disordered. In this paper, it is shown that by

selecting certain velocity profiles, one observes a phase
transition between highly ordered and completely disor-
dered (ci, k) phase space, analogous to the phase transi-
tion between the solid and fluid states of matter. This

analogy is also similar to the one made by Langton in
the study of cellular automata 39,4°. Consequently, these

results represent another example of a system exhibiting
complexity at the edge of order and chaos 4°'41.

The procedure used to find solutions has some similar-
ity to that used to study the Julia sets and the Mandel-

brot sets which are fractal geometric objects. However,
the search for solutions at each (ci, k) point is more dif-

ficult and the comprehensive method used requires more
computer time. Consequently, enough work has not been
done at this time to discern if the solutions are located in

rigid domains or if the domain boundaries have a fractal
nature. However, the basic procedure used involves find-

ing the roots of I_(c_)l = 0. Newton's method provides

a means to compute them using the following dynamical
system

C; f(z) = z F'(z)

Discussions of the application of Julia set theory to
Newton's Method 42 and a brief discussion by Shub on
the theory of the complexity of equation-solving 43 sug-

gest the solutions might have a fractal nature. The sensi-

•tivity of the problem to spacing and the complexity of the
results suggest that this is might be an interesting prob-

lem for someone working on the theory of the complexity
of equation-solving.

VIII. Conclusions

For a range of amplification rates, solutions for the
• velocity profiles considered were found. For these cases,

solutions exist over a limited range of wave numbers and
have a band type structure.

These results represent another example of a system
exhibiting complexity at the edge of order and chaos

Appendix A: Formulation of Flow Equations

The analytical study of the broken line V-shaped ve-
locity profile uses a velocity potential formulation of

Rayleigh's stability equation. The numerical study uses

a velocity perturbation formulation of Rayleigh's stabil-
ity equation. In this appendix, it is shown how these
two formulations are related. The derivations starts with

the two dimensional equations presented by Drazin and
Reid 33 (Eq. 21.11) written in terms of u and v rather

than u and w since in this.paper we consider U(y) in-
stead of U(z).
Thus we have

ik(U - c)u + U' v = -ikp A.1

ik(U - c)v = -Dp A.2

iku + Dv = 0 A.3

where I and D represent the d/dy operator. Introducing

a stream function ¢ such that the two components of the
disturbance velocity are given by

Let

Then

o¢
0y

A.4

v = --- A.5
Oz

= ¢(y)exp ik(z-ct) A.6

u = ¢' A.7

and the normal velocity is given by

v = -ik¢ A.8

Consequently, equation A.3 is automatically satisfied.
Substituting Equations A.7 and A.8 into Equation A.1

and solving for p yields

p = V'¢ - (U - c)¢'. A.9

Substituting equation A.8 and equation A.9 into equation

A.2 yields a velocity potential formulation of Rayleigh's

stability equation

[ u- 1¢" - ¢ l (t?-- c) + ks = O. A.10

The velocity formulation of Rayleigh's stability equation

is obtained by first solving equation A.2 for v

8



Dp
v= A.11

ik(U - c)"

Then equation A.3 is solved for u

iku = -Dr A.12

Next one substitutes equation A.3 into equation A.1

-(U - c)Dv + U' v = -ikp A.13

Then one takes the derivative of equation A.13 with re-

spect to y which yields

(U - c)(-D2v) + U"v -- -ikDp A.14

Last, one uses equation A.2 to substitute for Dp to obtain

]D2v-v (U---c) + ks =0 A.15

The conditions for the continuity of pressure and nor-

real velocity at a discontinuity of U or U' for the broken

line profile given by equations 15 thru 18 are easily de-
rived from equations A.8 and A.9.

Appendix B: Stability analysis for the broken line
V-shaped velocity profile

The analytical study of the broken line V-shaped pro-
file uses a velocity potential formulation of Rayleigh's
stability equation. For the broken line profile U" is zero

and the resulting differential equation

¢"-¢[k s]=0. B.1

has solutions which are linear combinations of sinh(ky)

and cosh(ky).
We now introduce two solutions of Eq. (B.1) ¢1 (Y) and

¢2(Y) with initial values at y = 0.0 given by equation 9.

In the region 0 < y < 7r we have solutions

and

el(Y) =cosh(ky) B.3

1

¢2(Y) ----- _ sinh(ky). B.4

In the region 7r < y < 2rr we have solutions

¢1 = cosh(ky) + M1¢ sinh(k(y - rr))

and

B.5

1

¢2 = _ sinh(ky) + M2s sinh(k(y - 7r)) B.6

• Next the conditions for continuity of pressure and normal
velocity given by equations 15 thru 18 are applied.

Using the flow profile function given by equation 20 we
have

U(Tr_) = -1 B.7
2

--" ]3.8

U(Tr+) = -1 B.9

2
"'" B.IO

7r

Evaluating equations B.3 thru B.6 at rr we have

¢1- = cosh(klr) B.11

¢i_ = k sinh(kTr) B.12

¢1+ = cosh(kr) B.13

¢I+ = k sinh(klr) + Mlck B.14

1

¢2- = _ sinh(krr) B.15

¢__ = cosh(kTr) B.16

1 sinh(klr) B.17¢2+ =

¢_+ = cosh(krr) + M2sk B.18

Equations for continuity of the normal velocity ( equa-

tions 17 and 18) are satisfied at the velocity gradient
discontinuity position rr.

Equations for continuity of pressure ( equations 15 and
16) at the velocity gradient discontinuity position rr yield
values for Mlc and M2s.

4 cosh(kTr)
Mlc = B.19

_r (l+c)

and

M2s :

At 2_r we have

4 sinh(k_v)

_rk 2 (I + c)
B.20

¢1+(2_r) = cosh(2_rk) + Mlc sinh(Irk) B.21

and

¢_+(21r) = cosh(2rrk) + M2skcosh(Trk) B.22

Using equation 12 and the angle sum relationship for
sinh(a + 8) we can obtain equation 22.



AppendixC: Stability analysis for the broken line
square velocity profile

Again, as with the broken line V-shaped profile, the

analytical study of the broken line square velocity profile
uses a velocity potential formulation of Rayleigh's stabil-

ity equation. Additionally, again, the broken line profile

U" is zero and the resulting differential equation (B.1)
has solutions which are linear combinations of sinh(ky)
and cosh(ky).

As before two solutions of Eq. (B.1) ¢1 (y) and ¢2(y)
are introduced with initial values at y = 0.0 given by

equation 9.
7f

In region one 0 < y < _ we have solutions

and

¢I,I(Y) =cosh(ky) C.1

1
¢2,1(Y) -- _ sinh(ky). C.2

In the region _ < y < _ we have solutions

7r 7r

¢1,2 ----Nlc cosh(k(y - 3) + Mlc sinh(k(y - 3) ) C.3

and

1 . 7r 7r

¢2,u = _Y18smh(k(y-_))+MlscOsh(k(y-_)) C.4

In the region _ < y < 2_r we have solutions

3r 3_r

¢1,3 ----N2c cosh(k(y - -_-) + M2c sinh(k(y - -_-)) C.5

and

1 . 37r 3_
¢2,s ---- _N2a smh(k(y--_))+M2s cosh(k(y--_-)) C.6

Next the conditions for continuity of pressure and nor-
real velocity given by equations 15 thru 18 are applied.
Note that U 1 -- 0.

Using the flow profile function given by equation 20 we
have

V(_ ) = 1 C.7

) = 0 c.8

' U(2+) = -1 C.9

v'(2+) = 0 c.10

Evaluating equations C.1 thru C.4 at _ we have

¢1,i- -- cosh(k 2) C.11

¢_,i- = ksinh(k 2) C.12

¢i,2+ = Nit C.13

¢_,2+ = kMic C.14

1 sinh(k2) C.15¢2,1- =

¢2,1- = c°sh(k 2) C.16

¢2+ = Mls C.17

¢_+ = N18 C.18

Equations for continuity of the normal velocity ( equa-
tions 17 and 18) are satisfied at the velocity discontinuity

position _ if

Nlc= cosh(k_) C.19
2

Mls- sinh'kz'(_ C.20
k

Equations for continuity of pressure ( equations 15 and
16 ) at the velocity discontinuity position _r yield values
for MI_ and Nls.

Mlc - c- 1 sinh(k2) C.21c¥1
and

Nls = __c- 1 2)c + 1 cosh(k C.22

Equations for continuity of the normal velocity ( equa-
tions 17 and 18 ) and pressure ( equations 15 and 16 )
yield at the velocity discontinuity position s._-:

[Nit cosh(klr) + Mlc sinh(kTr)]

-N2c = 0 C.23

(-1 - c)[Nlc sinh(kTr) + Mlc cosh(kTr)]

"(1 - c)M2c = 0 C.24

[-_sinh(k_r) + Mlscosh(kzr)]

-M2s = 0 C.25

(-1 -c)[gls cosh(kTr) + Mls sinh(kTr)]

-(1 - c)M28 = 0 C.26

Solving for N2c, M2c, M2s, and N2s and using the angle
sum relationships for cosh(a+j3) and sinh(a+fl) we find:

= c cosh(--_--) + cosh( ) C.27N2c 1 +c

M2c c - 1 csinh(-_--) + sinh( ) C.28

1 [ 3kTr kzr]N2_ - c - 1 ccosh(--_--) - cosh(_-) C.29

Me. = k(e+ 1-----_esinh(--_--) - sinh( ) (?.30

10



At 27r we have

_k _k

¢1+(27r) = N2e cosh(_-) + M2csinh(_-)
C.31

and

7rk _rk

¢_+(27r) = g2s cosh(-_-) + M2sksinh(-_-) C.32

Using equation 12 and the angle sum relationships we

can obtain equation 25.
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Table 1 Integration results for (sinh(_/sinh(1))) is velocity profile

_r F cr

e 1.5430059290031E- 2 0.2487720990379 0.9002607287015

c_ = 0.4, k = 0.115

Table 2 Integration results for _6 velocity profile

6r F Cr

-1.795749441083, 7.2555284510676E- 2 2.684018292084E- 2

c_ = 0.5, k - 1.195

Table 3 Integration results for Gaussian velocity profile

_r F cr

-1.76193559911 7.8446312448458E- 2 0.1914746533746

c_ =0.4, k=0.9

Table 4 Exact Matrix Exponential Step Function Approximation

Results for (sinh(zI/sinh(1))) is velocity profile

Intervals,K _r F cr Time

12000 0.1324704157898 0.2394506125696 0.8954450299652 6106

13000 0.1233419809349 0.2401785210625 0.8958327744015 6617

14000 0.1155161824543 0.2408023920132 0.8961633816575 7127

15000 0.108736216033 0.2413427747509 0.8964479072959 7639

16000 0.1028055481471 0.2418153838495 0.8966953578756 8149

17000 9.7573988718969E- 2 0.24223222159 0.8969125382767 8658

18000 9.2924800217857E- 2 0:2426026126168 0.8971046810721 9157

19000 8.8765848422101E- 2 0.2429339134897 0.8972758834688 9677

20000 8.5023484946906E- 2 0.2432320028322 0.8974293902613 10188

30000 6.1336692398649E- 2 0.2451182120209 0.898389137051 15271
35000 5.457366358024E- 2 0.2456566231031 0.8986594651123 17813

40000 4.9502716977565E- 2 0.2460602929786 0.8988610967745 20377

ci = 0.4, k = 0.115
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Table 5a Exact Matrix Exponential Step Function Approximation

Results for 76 velocity profile using exact f"

Intervals,K 5r F cr
5000 -1.731639624708 8.3398757988445E- 2 2.663504066365E- 2

10000 -1.763593751114 7.8166992537224E- 2 2.6737302451565E- 2

20000 -1.779569996798 7.5427110978254E-2 2.6788433789913E-2

21000 -1.780330756172 7.5294351899531E- 2 2.6790868618323E- 2

c_ = 0.5, k = 1.195

Table 5b Exact Matrix Exponential Step Function Approximation

Results for _/6 velocity profile using numerical evaluation of f"

Intervals,K _ F cr
1000 -1.476622305991 0.1178118119098 2.5823569373648E- 2

10000 -1.764242903764 7.8057391206773E-2 2.6743768291609E-2
20000 -1.78021716754 7.5314187830809E- 2 2.6794895155659E- 2

30000 -1.785541787533 7.4379094561713E- 2 2.6811937462023E- 2

ci = 0.5, k = 1.195

Table 6a Exact Matrix Exponential Step Function Approximation

Results for a Gaussian velocity profile using exact value of f'_

Intervals,K _r F cr
5000 -1.743858151466 8.1434477636742E- 2 0.1914012580744

10000 -1.752887165675 7.9954766508094E- 2 0.1914378621255

20000 -1.757396473618 7.9206314493282E- 2 0.1914561345435

25000 -1.758297914811 7.90559160312E- 2 0.1914597866106

30000 -1.758898796215 7.8955517837813E- 2 0.1914622208468

c_ = 0.4, k = 0.9

Table 6b Exact Matrix Exponential Step Function Approximation

Results for a Gaussian velocity profile using numerical evaluation of

f"

Intervals,K 5r F Cr
1000 -1.671129084883

5000 -1.743886073843

10000 -1.752915022464

20000 -1.757424297442

30000 -1.758926608932

9.2570372553067E- 2

8.1429939437306E - 2

7.9950162541102E- 2

7.9201676217921E- 2

7.8950867920244E- 2

0.1911055992358
0.1914016096238

0.1914382134012

0.1914564856811

0.1914625719339

c_ = 0.4, k = 0.9

14



to

"O
e-

,.t... '_"

oa

¢xl
-o

Od

"O

Od

"1o

Fig. 1 Nozzle configuration.

-1

J
i \', /

..... t5

f4

f3

0 1 2 3 4 5 6

y

a) Velocity profiles.

"!0 2 4 6

lO

:' ; ,-" ...................

"% ,,: ;,. . ,,"

0 2 4 6

............ J'_............ /i ,- ...........

2 4 6

Y

b) Second derivative of velocity profiles.

Fig. 2 Velocity profiles and second derivative of velocity profiles.

15

200

150

100

50

0 ............................... "°°*'"

/

-50 ..................
0 0.2 0.4 0.6 0.8 1,0

a) $ versus k with c = 0.

1

0

-1

-2
0.61

o-

I

0.62 0.63 0.64 0.65

k

b) $ versus k with c = 0.

0.5

0.66

0.4

0.3

0.2

0.1

0

\
\

\
0.61 0.62 0.63 0.64 0.65 0.66

k

Fig. 3 Stability curves for broken line v shaped

velocity profile.

0.01

v 0.001

g

_- G0001

OD(_I1

4 II Gausslan numerical I"

• ....... • Gausslan exacl f"
e

_-----'V rl e numerical f"
tLq...... t-J II exectl"

---,o sinh exact f"

'll

-,a.o

103 104 105

logK

Fig. 4 Error in c r as a function of the number of intervals.



==

rr

v

01

o01

I- --• Gaul,teem numwocaJ r'
o- .... • Glcm.sl•n exact f"

_m..--.q q= numeracal r

"'_., [3- ..... o q_ exect ff
"_', o--- _9 ,strdl txact P

--,..,

10 z 10"

IogK

Fig. 5 Error in _r as a function of the number of intervals.

10=

001

0 o01

t) oo01

]
• • Giuiil•¢l numen_l r' |
• • Gausilln ixicl r'

"'''-. _7..... _7 q6 numenc==l ?'
"-. _ cq q6 exo¢tr'

"'''-. I. 2 ...... _, _nh exmctf"

10_ 10_

IogK

Fig. 6 Error i,l F t. as a function of the number of intervals.

I0 s

15000

5OO0
10000

Jr

._...r"jr
'iF

. _r I"

i"
J

. i "_
J

./

y*"

20000 30000 40000

K

Fig. 7 Calculation time in seconds as a function of the number

of intervals.

t6

o

L..

10

0.5

-0.5

%

-1.0 .....

0 0.1 0.2 0.3 0.4

a) Eigenva te c r versus growth rate w i

°251' _'A .'.'

o.0i i!i.i'\/.,::
i:"i-:7,V ...

O.lO!.7 ._. :"

O.U5 _il !f. : ..

0

]¢c.

2

c,=0.8

c=0.7
i

c =0,6
c'=0.5

i

c=0.4

c=0.3

c'=0.2

c'=0.1

c=0.8
c=0.7
¢'=0.6

c:=0.5

c =0.4
i

¢,=03

c =02

c,=0.1

0.5

0 0.1 0.2 0.3 0.4 0.5

(oI

b) F t versus growth rate w i = kcj.
2

Fig. 8 Stability plots forJ3 velocity profile withA = 3.
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