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5.1.0 Summary of Accomplishments 

The formerly developed preconditioned-biconjugate-gradient (PbCG) solversl~2 for the analysis 
and the sensitivity equations had resulted in very large error reductions per iteration; quadratic 
convergence was achieved whenever the solution entered the domain of attraction to the root. Its 
memory requirement was also lower as compared to a direct inversion s0lver37~. However, this 
memory requirement was high enough to preclude the realistic, high grid-density design of a 
practical 3D geometry. This limitation served as the impetus to the first-year activity (March 9, 
1995 to March 8, 1996). Therefore, the major activity for this period was the development of the 
low-memory methodology for the discrete-sensitivity-based shape optimization5. This was 
accomplished by solving all the resulting sets of equations using an alternating-direction-implicit 
(ADI) approach. 

The results indicated that shape optimization problems which required large numbers of grid 
points could be resolved with a gradient-based approach. Therefore, to better utilize the 
computational resources, it was recommended that a number of coarse grid cases, using the PbCG 
method, should initially be conducted to better define the optimization problem and the design 
space, and obtain an improved initial shape. Subsequently, a fine grid shape optimization, which 
necessitates using the ADI method, should be conducted to accurately obtain the final optimized 
shape. 

The other activity during this period was the interaction with the members of the Aerodynamic 
and Aeroacoustic Methods Branch of Langley Research Center during one stage of their 
investigation to develop an adjoint-variable sensitivity method6 using the viscous flow equations. 
This method had algorithmic similarities to the variational sensitivity7 methods and the control- 
theory8 approach. However, unlike the prior studies, it was considered for the three-dimensional, 
viscous flow equations. 

The major accomplishment in the second period of this project (March 9,1996-March 8, 1997) 
was the extension of the shape optimization methodology for the Thin-Layer Navier-Stokes 
equations.9 Both the Euler-based and the TLNS-based analyses compared with the analyses 
obtained using the CFL3DlO code. The sensitivities, again from both levels of the flow equations, 
also compared very well with the finite-differenced sensitivities. A fairly large set of shape 
optimization cases were conducted to study a number of issues previously not well understood. 
The testbed for these cases was the shaping of an arrow wing in Mach 2.4 flow. All the final 
shapes, obtained either from a coarse-grid-based or a fine-grid-based optimization, using either a 
Euler-based or a TLNS-based analysis, were all re-analyzed using a fine-grid, TLNS solution for 
their function evaluations. This allowed for a more fair comparison of their relative merits. From 



the aerodynamic performance standpoint, the fine-grid TLNS-based optimization produced the best 
shape, and the fine-grid Euler-based optimization produced the lowest cruise efficiency.9 

Finally, the details of the findings from this project are reported in References 5 ,9 ,  11 and 12. 
(See 5.5.) 

9.2.0 Identification and Features of Methodology 

Based on the experiences gained thus far, certain recommendations can be made for the 
directions to be taken. Hence, the features of the present methodology are given in this section. 
Most are selected for their virtues, however, some are recommended for the ease of their 
implementation. 

2.1 Flowfield analysis 

governing equations: thin-layer Navier-Stokes e q u a t i o n ~ l 9 7 ~ ~ - ~ ~  (primarily for systems with 
multiple components in close proximity), with a switch for the choice of dropping the diffusion terms 
and employing the Euler equations (for isolated configurations), in conservation form and 
generalized curvilinear coordinates. 

CFD discretization: 
- at least second-order accurate, upwind-biased (van Leer flux-vector split), cell-centered, finite 

volume discretization in space; 
- either PbCG for the unfactored equations112, or A D I ~ ? ~  with pseudo-time (local time stepping) 

integration of the factored equations. 

van Albada limiter. 

domain decomposition for structured grids using multiblockl4-17 (MB) concepts (contiguous lines 
normal to the interfaces). 

* vector processing of data; parallel processing with the number of grid blocks assigned to each 
processor determined by a load-balancing strategy. 

2.2' Parameterization 

* a general and easily differentiable surface parameterization1 (in addition to surface grid points or 
shape-specific functions) for flexibility and to reduce the number of design variables; 

- for the definition and redefinition of the surfaces to be shape optimized, employ Nth-degree 
Bezier-Bernstein polynomials. 

use the same approach, but with lower-order polynomials, to curve-fit the various shape 
schedules. 19 

using a partial-differential-equation-based approach20112 may prove to be a viable alternative 
where the parameters used are more appealing to an aerodynamicist's intuition. 

2.3 Optimization algorithm 

gradient-based and constrained optimization algorithm, such as, the feasible-directions 
method.21 



within the feasible region (no active constraints): deterministic search algorithms, such as, a 
univariate search strategy (sequential one-dimensional minimization in a multidimensional design space) 
with variable (using zeroth-order methods) alpha-step-size, or simply a constant-alpha-step-size 
(although less efficient for linear regions, better success rate for nonlinear regions). 

various options (user-changeable) of stopping criteria used for the optimization and for the flow 
analysis (either the convergence tolerances of different orders of magnitude, or the number of iterations, or 
both). 

for shape optimization, Bezier control points and other shape scalesl8vlg (taper, thickness, twist, 
cant, etc.) as the design variables (as opposed to the relative slopes at the surface grid points) to reduce 
their numbers. 

allow for geometric as well as aerodynamic constraints5~18. 

2 . 4  Sensitivities 

to obtain the sensitivity coefficients (gradients) implement both the direct and adjoint-variable 
methods374 as one may be advantageous over the other depending on the problem at hand 
(number of design variables versus the number of aerodynamic constraints). 

consistent differentiation22923 of the CFD-discretized equations to obtain all the necessary terms 
in the sensitivity equation and the equations rendering the gradients. 

writing the sensitivity equation for a multiblock grid with strong coupling of the sensitivities 
across the block interfaces; that is, employing the S A D D ~ , ~ ~ $ ~ ~  scheme. - a desirable capability is the representation of the Reynolds stresses by an algebraic model in the 
flow analysis equations; however, consistent differentiation of the currently available models 
(empirical with tunable parameters) for the sensitivities needs further studying; an approximate 
approach may be the automatic differentiation24912 of the turbulence modeling terms.23 

2;s Solvers for algebraic systems 

to solve the large set of linear algebraic equations resulting from the sensitivity equation (or the 
adjoint-variable equations), have several inversion options in, both direct and iterative approaches as 
they all have their distinct niches depending on the problem in hand: 

- naive Gauss elimination with banded storage;3$4 
- sparse-matrix method for symbolic factorization;3,4 
- a first-order iterative method (such as, solving the delta-form of the equations by an AD1 m e t h ~ d , ~ ~ ~  

also known as the incremental technique23); 
- a biconjugate-gradient-like method [such as, the restarting version of GMRES(~, m)]l*2 with 

several fill-in options for the preconditioners. 

2 .6  Programming 

optimizer as the outer do- loop. 

option for out-of -core storage. 

judiciously segregating the case-dependent routines, which should allow for ease in setting the 
code up for different application problems. 



9.3.0 Utilization of Available Methodologies for Present Objectives 

In order to achieve the goals of this investigation in a rather timely and cost-effective manner, 
the methodologies (and their computer codes) that were readily available and, in some cases, even 
reasonably validated, were utilized. This was done in a number of ways ranging from a "black- 
box" utilization to simply using as an illustrative example. 

The following methodologies, given with their acronyms, were considered in this category: 
 ADS,^^ A D O S , ~ ~  A ~ s o P , ~ * ~ * ~ * ~ ~  AD IF OR,^^ and RAPID.20 It should be noted, however, although 
these methodologies may be somewhat general, some have their computer codes written for 
specific cases and they are intended to be "research codes." 

ADOS. The three dimensional, aerodynamic shape optimization method, which include 
discrete "sensitivity analysis on decomposed computational domains" (SADD), was developed to 
handle complex configurations with multiple components. By substructuring the large Jacobian 
matrix (awaQ), which results from the sensitivity equation for large size problems, this method 
utilizes relatively less computer memory than the single-grid approaches. It employs the general 
purpose, multiblock CFD code C F L ~ D , ~ ~  to perform the flow analyses. 

AeSOP. This "third generation" methodology is rather efficient in computer resource usage. It 
utilizes a PbCG solverl.19, but it has been reinvestigated for reductions in computer storage per 
grid point.599 Some of the iterative methods being tried sought ways of solving the sensitivity 
equation without having to form the Jacobian matrix on the left-hand side, but rather on the explicit 
right-hand side, that is the ~ ~ 1 ~ 9 ~  approach. It solves both the Euler and TLNS equations. 

ADS. This is a general purpose package of optimization methods with its genesis being for the 
structural mechanics.21 Nonetheless, it may be modified to handle the aerodynamic problems. One 
of the main issues that often arise as a result of this switch in its application, is the limited 
suitability of its search strategies for the largely nonlinear design spaces encountered in solving the 
aerodynamic shape optimization problems. It has, however, all the capabilities desired in 92.3. 

ADIFOR. In 1992, a mathematical utility, AD IF OR,^^ was developed and successfully 
demonstrated to automatically obtain the sensitivity coefficients from an existing CFD code. The 
output was also in the form of a computer code. One of the recent demonstrations used the code 
 RAPID,^^ (interactive/batch version) which parameterized the geometry of a general aircraft 
configuration, generated its surface grid, and finally generated its grid sensitivities.12 Some recent 
research has also shown promise in eliminating the extra differential terms obtained in the process. 
(The author and his graduate students had unsuccessfully tried to use symbolic differentiation 
available in the commercially available mathematical packages, such as, MATHEMATICA~~ and 
MACSYMATM, to perform the differentiation needed to obtain the sensitivities. Some of the reasons 
for the failure are explained in Ref. 12.) 
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INTRODUCTION 

Near the beginning of this decade, a symposium on 
Multidisciplinary Applications of Computational Fluid 
Dynamics (Baysal, 1991) was organized. Its bound volume 
included a few papers reporting on the utilization of 
computational fluid dynamics (CFD) in a design environment. 
Since then, there have been a delightful increase in the interest 
on this topic for a clearly justified reason: CFD can be useful 
beyond just simulating and analyzing a fluid flow and be 
utilized for the purpose of design and optimization in order to 
cut down the cycle time for a new product design. This, 
however, may be a prohibitive proposition for the needed 
computational and human resources if, as often is the case, a 
large matrix of candidate designs or design variables are 
involved. Therefore, a few years later and with the motivation 
of providing a podium for beyond-cut-and-try approaches, where 
CFD would be a module of an automated methodology seeking 
the improved designs, the forum on CFD for Design and 
Optimization (Baysal, 1995) was organized. As it may be . 
evidenced by the quality of the papers in its bound volume, 
some of the best in the field of CFD have directed their research 
to the various aspects of this topic. 

Even '  a cursory glance through the emerging 
publications on this subject matter should attest to the attempts 
and successes on the topics which include: gradient-based 
numerical optimization methods, stochastic and genetic 
algorithms, shape optimization, direct and inverse methods, 
trade-off identification studies, multipoint designs, artificial- 
intelligence-based methods, pre- and post-optimization 
sensitivity analyses, adjoint methods, and discrete and 
continuous sensitivity methods. Today, there are government- 
funded initiatives to make even the multidisciplinary design 
optimization a reality, in which CFD plays one of the pivotal 
roles. Better yet, such efforts are not being perceived as just 
academic or esoteric exercises, but major corporations are 
investing in this exciting endeavor. It is the intention of the 
ASME Fluids Engineering Division to repeat these forums at a 

'*~rofessor and Eminent Scholar, Aerospace Engineering Department. 
Fellow, ASME. 

not-so-distant future, in its attempt to disseminate the further 
advances and applications on these topics. Consequently, a 
follow up forum on this topic, Design Optimization Using 
CFD (Johnson et al., 1997), has been organized, the proceedings 
of which is the present volume. 

A clear message from these events is, that CFD is now 
being widely used in the design of mechanical and aerospace 
systems and their components. Improving the accuracy and 
efficiency of this process can reduce its cost and increase its 
effectiveness. Other motivating factors that push and pull CFD 
into design optimization are the following: 
i) Need for design methodologies (single- and multi- 
disciplinary) to reduce cost and time in developing new fluid and 
aero systems, for fast response to market changes; ii) new 
design requirements outside existing database; iii) new CFD 
algorithms and growth in computing power; iv) need for 
increased product quality and reliabilitp; (v) lack of test 
facilities; (vi) limitations and cost of testing techniques; vi) 
limitations of existing design practices; vii) prohibitive cost of 
and conflicting designs derived from isolated component 
analyses and design, which are repetitive in nature and omit 
mutual interference. 

With all of this as impetus, new design methods, 
varying from inverse methods to numerical shape optimization 
methods, are being developed by the researchers. Some of the 
objectives that such efforts try to accomplish are: i) Automated 
design optimization with minimal need for man-in-loop in a 
given try; ii) Reduce the need for the design expertise and the 
prerequisite database; iii) Improve accuracy, efficiency and 
practicality; iv) Information on the most influencing 
parameters, which leads to a reduced CFD analysis matrix, 
requires sensitivities of objectives and constraints with respect 
to design variables; v) the ability to design with a variety of 
fluid dynamic and geometric constraints and geometric 
flexibility (type and number of design variables and efficient 
parameterization). 

The current approaches to the engineering design may 
loosely be classified as follows. 
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1) Non-automated design: a) parametric analysis and cut-and-try 
approaches, b) database-matrix approaches, c) other intuitive 
approaches. These are highly data- and expertise-dependent, 
generally nonsystematic, and often inefficient practices, which 
provide discrete designs in the design space, with uncertainty in 
optimality. 

2) Inverse design methods require a priori knowledge of the 
flowfield for the final design in order to prescribe it as a target, 
then perform indirect searches. They are usually weak on 
geometry control and constraints, resulting in poor off-design 
performance. However, when applicable, they are efficient, 
hence, widely used. They may be grouped as: a) surface flow 
design (e.g. prescribed Cp,surface distribution), b) flowfield 
design (e.g. shock-free design). 

3) Direct numerical optimization methods are systematic 
methodologies which extremize a chosen objective. They create 
or merely improve a design. They may produce the best design 
or just a better design, dependent on if the global or just a local 
minimum has been found. They can be a conduit to understand 
the design process, and the effects of physical phenomena 
associated with the evolving shapes or designs. It may be 
viewed as a science or an art. They are suitable for multipoint 
design and allow for trade-off studies. However, they can be 
rather computing intensive. Direct numerical optimization 
methods can be grouped based on several factors: 

a) Constrained optimization is gradient-based ( VF, VGj), and 

relies on deterministic searches, ( D:+' = D: + anS/ ) .  Its 
mathematical formulation consists of the extremization of an 
objective function F(D,, Q(D,)) , subject to: fluid dynamic or 

geometric inequality constraints G ~ ( D ~ ,  Q(D,)) < 0 ,  fluid 

dynamic or geometric equality constraints H, (D,, Q(D,)) = 0, 

analysis equations, R,,, (Di, Q(D,)) = 0,  and the side constraints, 

b) Unconstrained optimization, may also use deterministic 
searches, and the constraints may be by projected by some type 
of a Lagrangian approach ( V F + 2 A. 0 VGj = 0 ). 

c) Optimization by stochastic search methods, such as, 
simulated annealing, emulating cooling schedules, and genetic 
algorithms, emulating survival ,of the fittest concept. These 
have better chance to find the global minimum, however, they 
are computer-resource intensive, since the needed number of 
function evaluations is usually unknown; that is, there virtually 
is no stopping criterion. 

d) Knowledge-based and databased algorithms use artificial 
intelligence with if-then rules, or the available databases on 
designs generated, for example, by the design of experiments. 
Response-surface methods or surrogate methods belong to this 
category. 

One type of simulation-based and automated design 
method, utilizing a constrained optimization, is the shape 

optimization. This typically consists of the following 
components: 
(i) formulation of the problem, i.e. identifying the objective and 

the constraint functions; 
(ii) gradient-based and constrained optimization algorithm, 
(iii) flowfield simulation and analysis, i.e. CFD; 
(iv) gradients of the objective and the constraints with respect to 

the design variables, i.e. the sensitivity coefficients; 
(v) parameterization and redefinition of shapes as they evolve, 

i.e. using computer-aided-design (CAD); 
(vi) regeneration of surface and volume grids, and the grid 

sensitivities; 
(vii) gradients of the optimized shape with respect to the design 

invariants, i.e. the sensitivity derivatives, used for trade-off 
studies and off-design conditions. 

SENSITIVITY ANALYSIS METHODS 

The accuracy of a gradient-based optimization method, 
and the efficiency with which it can accomplish this, are 
directly related to the accurate and efficient receipt of the 
gradient information on the objectives and the constraints. The 
sensitivity analysis provides: i) the gradients (VF,  VGj) for 
optimization and trade-off studies; ii) the post-optimization 
gradients for off-design conditions; iii) a first-order but 
inexpensive approximation to neighboring-point analysis via 
Taylor series expansion (Baysal et al., 1993). The gradient 
evaluation may be performed by the following approaches. 

1) Finite-difference method is a brute-force approach, which is 
highly prone to inaccuracies and inefficiencies. A poor 
selection of the design variable increments used in the finite- 
differencing may lead to inaccurate sensitivities (Baysal and 
Eleshaky, 1991). Another drawback is the computational cost 
necessitated by the repeated flowfield analyses of which at least 
NDV+ I are required when using a one-sided finite-difference 
technique, where NDV is the number of design variables. 
However, it is the easiest to formulate and is often readily 
available with off-the-shelf optimization packages. 

2 )  Implicit gradient evaluation methods: The governing 
equations of fluid flow can be differentiated analytically either 
starting with their original differential form and using the 
variational concepts (continuous sensitivities) or after they have 
been discretized (discrete sensitivity analysis). 

i) In continuous adjoint formulation (a.k.a. control theory), the 
adjoint (or co-state ) equations and their boundary conditions are 
derived by the use of variational methods. These partial 
differential equations are of the same order and character as the 
flow equations. Hence, they can be discretized and solved for 
the Lagrange variables by the same CFD scheme used for the 
flow (state) equations. Hence, its computer storage requirement 
is no more than what the flow analysis requires. Nonetheless, 
its analytical development is highly case-dependent, often 
cumbersome, which may be characterized as front-end loaded. 
ii) Discrete sensitivity analysis (a.k.a. quasi-analytical) is 
performed by differentiating the already CFD-discretized 
equations with respect to the design variables. It corresponds to 
a discrete solution of the continuous sensitivity function. Both 
hand-differentiation and automatic differentiation can be used to 
generate the sensitivity equations. 
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Continuous adioint method 

Variational design optimization blends the principles 
of optimal control theory and variational methods. The optimal 
control theory states the conditions under which the control 
variables, parameters, and functions, or their combinations, can 
be continuously altered so that the system is dictated to meet 
the desired criteria. When constraints and flow equations are 
involved, the systematic way of solving them is based on the 
classical adjoint functions technique, which transforms the 
constrained optimization to an unconstrained one. In a variety 
of constrained optimization problems, the converged solution of 
the continuous flowfield equations, 

can be uniquely defined for the specific boundary conditions 
along the whole or part of the domain boundary. In other words, 
the constrained problem is transformed to find a boundary 
condition so that the unique solution of eq. (1) extremizes the 
objective function ~ ( 4 ,  ~ ( 4 ) ) .  Then, from the Lagrange 

variables approach, the adjoint functional is defined as 

For the shape optimization, the optimum location of 
the boundary is iteratively computed such that the normal 
displacement produces a negative variation in the objective 
function (minimization). This is mathematically expressed as 
the scalar product between the gradient of the objective function 
and the variation of the design variables in the design space: 

6Fa=cVFa,6D>,  , where VFa=[%]6D. (3) 

Then, denoting the step size with a, the boundary is modified 
through, 

In eq. (4), the first choice is the steepest descent method. The 
second choice involves the more sophisticated search direction 
methods developed for the numerical optimization methods. 

The first-order variation of eq. (2) with respect to the 
flow and design variables is derived, then simplified considering . 
the fact that the variation R -  6A  satisfies eq. (1): 

To extremize eq. (2), eq. (5) is set to zero. From the 
first term on the right hand side, the first integral provides the 
boundary (transversality) conditions and the second integral 
provides the initial conditions. From the second term on the 

right hand side, the first and the second integrals provide the 
adjoint equations and the corresponding sensitivity equation 
(functional derivative): 

+ 11 [udjoint eqs. for i] dX dt 

Adjoint equations are of the same order and character as the flow 
equations. Hence, they can be discretized and solved for the 
Lagrange variables by the same CFD scheme used for the flow 
(state) equations. 

Discrete sensitivity analvsis 

The sensitivities needed by the optimization can be 
obtained by the chain rule of differentiation, 

where all, except the Q; = $ term can be obtained by direct 

differentiation. From the residual form of the discretized 
flowfield equations, 

and by differentiation of eq. (8), an equation is obtained for Q;, 

Then, the direct method is simply solving for Q' in eq. (9), 

which can also written in incremental (deficit-correction) form, 

Note that eqs. (10-11) scale with the number of design 
variables. An alternative, which scales with the number of 
inequality constraints, is the adjoint method. The adjoint 
sensitivities are obtained from eqs. (7, lo), 
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The equations for the Lagrange variables are obtained again where 

JQ ' 
\ --'/ 

, -," , - After a single-indexed ordering [i = I, 2,. . , (n . m)] of the control 
points, the solution requires forming a tensor product of the 1D 

which can also written in incremental (deficit-correction) form, 

Therefore, to obtain the sensitivities, either eqs. (10 or 11) are 
solved for Q', or eqs. (13 or 14) are solved for AF ,AG.  

Automatic differentiation 

In developing a discrete sensitivity method, one feature 
that requires intense effort is the differentiation of a number of 
functions with respect to the design variables. This has 
traditionally been done using the calculus definition of a 
derivative represented as a finite difference, then evaluating the 
function as many times as needed. A second method is the 
hand-differentiation of the equations or in their discretized form. 
This quasi-analytical approach is effort-intensive. A third 
option for the differentiation is the utilization of mathematical 
computer packages for this purpose. As most packages would 
include a symbolic differentiation module, this would be the 
natural approach to consider. Another approach is the 
automatic differentiation (e.g. Bischoff et al., 1992), which, 
given the computer code for a function, generates a computer 
code that can produce the sensitivities of that function. Rather 
than computing the full Jacobian, the product of the Jacobian 
and a seed matrix has been shown to be more efficient to 
compute. This method has recently been tried extensively by a 
number of researchers for different applications including those 
mentioned above (Baysal and Cordero, 1996). 

Surface parameterization 

A non-parametric geometry definition requires the 
surface mesh point coordinates. Although this approach 
utilizes the readily available data, it increases the number of 
design variables. On the other hand, a parametric geometry 
definition reduces the number of design variables, since the 
number of control points is significantly less than the surface 
mesh points. Current geometry definition techniques used in 
computer-aided design (CAD) are capable of parameterizing space 
curves and space surfaces with high fidelity. They do require 
some understanding in making the choice of parameterization 
technique, and extra computations and storage. As an example, 
the Bezier-Bernstein approach is considered to represent a surface 
defined by its grid points X{xi, y,, z , } ,  i = l,2, .., 1. Then, an 
(N,M)-th degree representation (N << I, M << I)  is obtained 
from a birectional spline frame. With 0 I u, v I I ,  

basis functions B,, (u) ,B, (v). 

In parameterizing a configuration, which includes the 
CAD-parameterized design surfaces, parameters that are more 
intuitively recognizable to the specific discipline may be 
preferred. For example, a wing may be described by thickness 
and chord of the airfoil sections, taper distribution, sweep, span, 
spanwise bending, geometric twist, and global angle-of-attack. 
Once a new configuration and its design surfaces are defined, the 
next task is the re-generation of its volume grid. Hence, 
efficient approaches should be developed to analytically relate 
the surface parameters to their computational volume grid. 
Then the grid may be regenerated systematically as the vector of 
design variables is changed with the evolving shape. As the 
surface is changed during the shape optimization, the new 
volume grid may be found using the following relations: 

xyW = X P ' ~ + [ ~ - V ~ ] ( X ~ ~  -x lY) ,  where vj ==, (17) 

SYNOPSIS OF SAMPLE RESULTS 

In order to illustrate the concepts described above, a 
brief overview of the developments from the research by the 
author and his graduate students will be presented. For brevity, 
a comprehensive overview of parallel developments by other 
researchers (e.g. Huan and Modi, 1995, Reuther and Jameson, 
1995, DeRise and Thomas, 1996, Knight, 1996, Pelz et al., 
1997, Anderson and Venkatakrishnan, 1997), who are very 
much deserving, have not been included, but they should be 
followed in the pertinent literature. 

An aerodynamic sensitivity analysis method was first 
presented for the 2D compressible Euler equations (Baysal and 
Eleshaky, 1991). This method was then placed in a design 
optimization methodology and demonstrated by applying it to 
the design of a scramjet-afterbody configuration for maximum 
axial thrust (Baysal and Eleshaky, 1992). The scramjet- 
afterbody was again used to validate an extension of the 
methodology to the higher-order discretization of the Euler 
equations, which was up to third-order accurate (Baysal et al., 
1993). A first-order and inexpensive flowfield prediction 
method for a given design was also introduced, which used a 
CFD solution and its sensitivities at a nearby design. Effects of 
diffusion on design were later accounted for by deriving the 
sensitivities of the thin-layer Navier-Stokes equations and using 
them in optimizing a transonic airfoil (Eleshaky and Baysal, 
1993). Then, the issue of computational-time efficiency was 
addressed in several ways, including the surface parameterization 
using Bezier splines and Bernstein polynomials, and solving the 
unfactored CFD equation by a quasi-Newton's method (Burgreen 
et al., 1994). The computer storage efficiency was later 
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addressed by examining the solution of the sensitivity equation 
as well as the CFD equation using a preconditioned biconjugate 
gradient (PbCG) method, known as the generalized minimum 
residual [GMRES(k, m)] method (restarting version), as 
compared to a direct inversion method (Burgreen and Baysal, 
1994a). 

Concurrently, the investigation was turned to the 
development of the multiblock sensitivity analysis scheme 
called SADD (Eleshaky and Baysal, 1994a). This scheme was 
motivated by the need to address the computer memory issues 
in the direct inversion of the sensitivity equation's coefficient 
matrix, which becomes particularly large. Another important 
benefit was its applicability to problems involving complex 
and multicomponent geometries, around which structured grids 
can only be generated by the use of domain decomposition 
techniques. The additional advantages of this approach were: (i) 
its amenability to parallel processing, (ii) demonstration 
(without the implementation) of a method for non-hierarchial, 
multidisciplinary sensitivity analysis, where the sensitivities of 
different disciplines would be coupled. This approach was then 
used in demonstrating the shape optimization of a multi- 
component airfoil for high lift, where the components were 
shaped simultaneously, that is, including the mutual 
interference into the design process (Lacasse and Baysal, 1994). 
The SADD scheme was later extended to three dimensions, 
where GMRES(k, m) was also incorporated (Eleshaky and 
Baysal, 1994b) and applied in the optimization of a nacelle near 
a wing (Eleshaky and Baysal, 1994~) ;  another simultaneous 
shaping of components with mutual aerodynamic interference. 

In the PbCG methods mentioned above, incomplete 
lower-upper (ILU) decompositions of the coefficient matrix with 
some fill-in ( ILU(n), n 2 0) were used for the preconditioning. 
The 3D optimization methodology with an efficient wing 
parameterization was successfully demonstrated for a transport 
wing (Burgreen and Baysal, 1996), and later it was applied for 
shaping asymmetric delta wings and cranked delta wings 
(Burgreen and Baysal, 1994b). Another preconditioning option 
is to use the approximate factors of the coefficient matrix, 
thereby break the problem into a sequence of simpler problems. 
That is the premise of the alternating-direction-implicit (ADI) 
scheme, which has been used in CFD to solve the flow 
equations for more than two decades. The trade-off in the latter 
approach is a slower convergence for the much reduced 
computer memory storage. 

The results from all the applications cited above 
indicate that, in general, the design methods obtain a final shape 
via an evolution of successively improved shapes. A practical 
use of fully implicit CFD methods (quasi-Newton method) 
within an optimization procedure allows the realization of high 
convergence rates and consequent reduction of CPU time. The 
memory requirement of such a procedure which uses a PbCG 
algorithm is low as compared to direct inversion solvers. 
However, this memory requirement is high enough to preclude 
the realistic, high-grid-density design of a practical 3D 
geometry, such as wings or wing-body combinations. This 
improvement has been achieved by the use of ADI-factored 
operators to serve as the preconditioning matrices for the CFD 
as well as the sensitivity equations (Pandya and Baysal, 1996). 

The method was then extended to the 3D thin-layer Navier 
Stokes equations and tested by shape optimizing cranked-mow 
wings in supersonic flows (Pandya and Baysal, 1997). 

To study the potential advantages of the automatic 
differentiation, a simple demonstration case has also been 
formulated based on this cranked-arrow wing geometry. It has 
been parameterized and the surface grid has been generated in 
two different ways: a method based on the partial differential 
equations and another based on the Bezier-Bernstein 
parameterization. Then, the grid sensitivities have been 
computed using an automatic differentiated code in the former 
method and using a hand-differentiated code in the latter method. 
It was observed that the results had comparable levels of 
accuracy, but the hand differentiated code required less number of 
arithmetic operations and utilized less storage. However, the 
advantage of the automatic differentiation was in the 
significantly reduced amount of effort for the development of 
the code that generated the sensitivities (Baysal and Cordero, 
1996). 

A design optimization method based on the variational 
methods has also been studied and a proof-of-concept study was 
conducted for a quasi-one-dimensional duct flow (Ibrahim and 
Baysal, 1994). This study indicated that the method required 
significantly less computer storage and processing time. 
Consequently, it was capable of handling large-scale 
optimization problems. 

Recapitulating, the methods have been illustrated 
through a number of academic examples. They included 
viscous and inviscid designs, and isolated and mutually- 
interfering multi-component designs: 
(i) National Aerospace Plane (NASP) nozzle-afterbody shaping; 

2D, supersonic/hypersonic, inviscid; Baysal and Eleshaky 
(1991, 1992), Baysal et al. (1993), Burgreen et al. (1994). 

(ii) Nozzle; quasi-ID, inviscid; Ibrahim and Baysal(1994). 
(iii) Airfoil shaping; 2D, transonic and supersonic, viscous and 

inviscid; Eleshaky and Baysal (1993), Eleshaky and Baysal 
(1994a), Burgreen and Baysal (1994a), Item and Baysal 
(1995). 

(iv) Multi-element airfoil shaping; 2D, subsonic, viscous; 
Lacasse and Baysal(1994). 

(v) Isolated nacelle and nacelle near a wing; 3D, supersonic, 
inviscid and viscous; Eleshaky and Baysal(1994b, 1994~). 

(vi) Transport wings and delta wings; 3-D, transonic and low- 
supersonic, inviscid; Burgreen and Baysal(1994b, 1996), 

(vii) Arrow Wings; 3D, supersonic, inviscid and viscous; 
Pandya and Baysal(1996, 1997), Baysal and Cordero (1996). 

Moving from the single-discipline to a multi- 
discipline optimization may now be considered as a viable 
prospect. Towards this goal, there have been some suggested 
formulations to couple the disciplines at various levels. These 
vary regarding the type or types of optimizers per discipline, 
whether the analyses and optimizations are performed 
simultaneously or in a nested manner, and whether they are 
done at the system level or discipline level or both. Currently, 
there doesn't appear to be a unique combination that renders the 
designs in the most efficient way for all possible problems. 
Some a priori consideration of the problem at hand is deemed 
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productive, and may be, a hybrid approach would surface as the 
best. Whichever path a designer may choose to pursue, one 
certain thing ought to be to take advantage of the lessons 
learned from the single-discipline methodologies to shape 
optimization. A case may be made from a method developed 
for aerodynamic shape optimization for multi-component 
configuration design: it is suggested that the components be 
conceivably thought of as disciplines, hence deriving a tightly 
coupled multidisciplinary sensitivity equation. Although the 
mathematical procedure in solving the equivalent sensitivity 
equation of SADD (Eleshaky and Baysal, 1994a. 1994b) was 
somewhat similar to that of a single sensitivity equation, the 
sensitivities were obtained in a closely coupled manner. The 
extension of SADD to a multi-disciplinary problem would 
propose a single-level optimization with simultaneous analysis 
and design at the system level, but nested analysis and design at 
the discipline level (Baysal and Eleshaky, 1996). 
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A gradient-based shape optimization methodology, that is  intended for practical three-dimensional 
aerodynamic applications, has been developed. It is based on  the quasi-analytical sensitivities. 
The flow analysis is rendered by a fully implicit, finite volume formulation of the Euler equations. 
The aerodynamic sensitivity equation i s  solved using the alternating-direction-implicit (ADZ) 
algorithm for memory efficiency. A flexible wing geometry model, that is  based on surface 
parameterization and planform schedules, is utilized. The present methodology and its components 
have been tested via several comparisons. Initially, the flow analysis for a wing is compared with 
those obtained using an unfactored, preconditioned conjugate gradient approach (PCG), and an 
extensively validated CFD code. Then, the sensitivities computed with the present method have 
been compared with those obtained using the finite-difference and the PCG approaches. Effects of 
grid refinement and convergence tolerance on the analyses and the shape optimization have been 
explored. Finally, the new procedure has been demonstrated i n  the design of a cranked arrow wing 
at Mach 2.4. Despite the expected increase in  the computational time, the results indicate that 
shape optimization problems, which require large numbers of grid points can be resolved with a 
gradient-based approach. 

Nomenclature 

A 
aoa 
CD 
CL 
CL~CD 
c, chdscal 
CP 
D 
F 

+,e,ii 
G 
M 
MW 
NDV 
Q 
Q' 
R 
S 

spn 
t, thkscal 
tranx, tranz 
twst 
v 
X 
VF 
AQ 
E 

area of airfoil section 
angle of attack 
coefficient of drag 
coefficient of lift 
lift-to-drag ratio 

chord and its distribution 
coefficient of pressure 
design variables 
objective function 

fluxes in curvilinear coordinates 
constraints 
vector of metric terms 

million 64-bit words 
number of design variables 
vector of conserved flow variables 
sensitivity of Q to design variable 
residual 
arc length 

half-span length 
thickness and its distribution 

coordinates of wing leading edge 
geometric twist 

wing volume 
vector of volume-grid coordinates 
gradient of objective function 
correction to flow variables 
tolerance 

adjoint-variable vector 
sweep angle 
relaxation parameter 
included angle at trailing edge 

Subscripts and superscripts 
b body surface 
n time level 
crank mid half-span location 
LE wing leading edge 
TE wing trailing edge 

Introduction 

Developing an effective three-dimensional design 
optimization procedure, that is also automated and practical to 
use, has been a topic of intense research since its introduction 
two decades ago.l Despite the formidable strides made in 
recent years, the challenge does not appear to have been met. 

The accuracy of a gradient-based optimization method, 
and the efficiency with which it can accomplish this, are 
directly related to the accurate and efficient receipt of the 
gradient information on the objectives and the constraints. 
These sensitivity coefficients can be delivered to the 
optimizer via sensitivity analysis, which often refers to the 
quasi-analytically obtained sensitivities, rather than those 
obtained by the traditional finite-differences approach. TO 
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this end, the governing equations of fluid flow can be 
differentiated analytically either starting with their original 
differential form and using the variational c ~ n c e ~ t s ~ ~ ~  
(variational sensitivity analysis; also known as continuous 
method, or adjoint formulation, or control theory approach), 
or after they have been discretized4 (discrete sensitivity 
analysis). 

In the variational sensitivity analysis approach, the co- 
state equations (or the adjoint equations) are partial 
differential equations, which are of the same order and 
character as the flow equations. Hence, they can be discretized 
and solved for the perturbations of the dependent variables by 
the same CFD technique, resulting in its computer memory 
requirement being no more than what the flow analysis 
requires.5 Nonetheless, this approach is not without a 
drawback: its analytical development is highly case- 
dependent, rather cumbersome, and may be characterized as 
front-end loaded. 

Since the early 90's. there have been promising 
developments in aerodynamic design optimization based on 
discrete sensitivity analysis.6 Its computational-time 
efficiency has been addressed in several ways? including the 
surface parameterization using Bezier splines and Bernstein . 
polynomials, and solving the unfactored CFD equations by a 
quasi-Newton method. The computer storage efficiency was 
later addressed, first by examining the solution of all the 
equations using a preconditioned conjugate gradient (PCG) 
m e t h ~ d , ~  then by the multiblock sensitivity analysis 
s ~ h e m e . ~  An important benefit of the latter was its 
applicability to a complex and multicomponent geometry, 
around which structured grids could only be generated by the 
use of domain decomposition techniques. The multiblock 
sensitivity analysis was extended for 3D shapes, where a PCG 
method was also incorporated10 and applied in the 
optimization of a mulfiple-component configuration. l 

In the PCG methods mentioned above,89l0 incomplete 
lower-upper (ILU) decompositions of the coefficient matrix 
with some fill-in (ILU (n), n>O) were used for the 
preconditioning. Another preconditioning option is to use 
the approximate factors of the coefficient matrix, then break 
the problem into a sequence of simpler problems; that is the 
premise of the AD1 (alternating-direction-implicit) schemes, 
which have been used to solve the CFD eauation for more than 
two decades.12 The trade-off in the latter approach is a slower 
convergence for the much reduced computer memory 
st0ra~e.13 

The results from all the applications cited above indicate 
that, in general, the design methods obtain a final shape via 
an evolution of successively improved shapes. A practical use 
of fully implicit CFD methods (quasi-Newton method) within 
an optimization procedure allows the realization of high 
convergence rates and consequent reduction of CPU time. The 
memory requirement of such a procedure which uses a PCG 
algorithm is low as compared to direct inversion solvers. 
However, this memory requirement is high enough to preclude 
the realistic, high-grid-density design of a practical 3D 
geometry such as a wing or wing-body combination. 

methodology, which was demonstrated for a transport wing,14 
and later it was applied for shaping asymmetric delta wings 
and cranked delta wings.15 This improvement has been 
achieved by the use of ADI-factored operators to serve as 
preconditioning matrices for the CFD as well as the 
sensitivity equations. 

Synopsis of Methodology 

Aerodynamic design optimization aims at the 
extremization of an objective function F(D,Q(D)) subject to 

constraints G(D.Q(D)).  Both F and G may be nonlinear or 

non-smooth16 functions of D and Q. In the present 
formulation, F and G are obtained from the governing 
equations of three-dimensional, compressible, inviscid flow, 
which are written in the steady-state residual form 

Their fully implicit discretization written in delta, or deficit 
correction, form is, 

Equation (2) was discretized in space using a cell centered, 
control volume formulation. The flux vectors and the 
Jacobian matrix aR/dQ were evaluated using the flux-vector- 
splitting technique of van Leer. The cell interface values of Q 
were determined using a spatially third-order accurate, upwind- 
biased, MUSCL interpolation formula with van Albada flux 
limiter. 

A strict application of Newton method, including 
consistent treatment of the boundary conditions, generally 
results in very large error reductions per iteration; quadratic 
convergence is achieved when the solution enters the domain 
of attraction to the root. However, because of the large 
memory requirement of the method, practical application of 
the same is thwarted. Since at convergence, the deficit 
correction is within 6 ( ~ ) ,  the coefficient matrix in Eq. (2) is 
simply a preconditioner for an iterative method. Even then, 
the memory storage required for a large-size problem is rather 
prohibitive.8.10 In the present work, this is circumvented by 
resorting to a first-degree iterative scheme, where the true 
Jacobian matrix is split into more memory-manageable parts 
using the approximate factorization followed by the AD1 
scheme. 

The employed optimization algorithm is based on the 
method of feasible directions which is coded in  ADS.^^ This 
method requires the first-order sensitivity gradients of both 
the objective function and the constraints. In the present 
fonnulation, these gradients are evaluated analytically. The 
analytic gradient of, for example, the objective function 
(similarly, it can be written for the constraints) is expressed 
by 

This particular limitation served as the impetus to 
improve upon the recently developed 3D optimization 
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where Q,! = dQ l dDi . 
For the discrete sensitivity analysis, either the direct 

method or the adjoint-variable method,47 given below, 
respectively, is used. 

The direct formulation renders Q' explicitly, which allows the 
use of approximate flow analyses$ but the number of 
equations to be solved scales with the number of design 
variables. The number of equations to be solved in the adjoint 
formulation, however, scales with the number of aerodynamic. 
constraints plus one for the objective. 

Following the same solution options considered for the 
analysis equation (I), the sensitivity equation, (4) or (5). is 
written in the delta form as shown below, respectively, 

Here, a k / a ~  is an approximation to the true Jacobian that is 
used as a preconditioner. Note that the delta form of the 
adjoint equation for the constraints can be written similar to 
Eq. (7). Then, these equations are either solved using the PCG 
approach, or they are approximately factored, then solved by 
the AD1 scheme. Witli the addition of a relaxation term for 
diagonal dominance, the AD1 scheme is written as 

The relaxation parameter, w, may be set to AT, where T is a 
time-like variable, or other conventional options may be 
used.14 For simplicity, the coefficient matrices in Eq. (8) are 
constructed using the first-order-accurate upwind scheme, and 

the consistent linearization of the boundary conditions is 
neglected. 

Wing Shape Parameterization 

The wing geometry used for demonstration herein is 
generated using the parameterization adopted from Burgreen 
and ~ a ~ s a l . l ~  This wing is generated from the geometrically 
simple wing which is unswept, untwisted, uncambered and 
rectangular, with both its chord and span equal to unity; 
hence, this wing is referred to as the unit wing. To generate a 
variety of shapes, the geometric parameterization of a wing 
should allow flexibility in its sections, taper distribution, 
sweep, span, spanwise bending, geometric twist, and global 
angle-of-attack. In the present parameterization (fig. I), each 
feature is implemented as an independent geometric operation 
in a sequential manner. Its details can be found from Burgreen 
and ~ a ~ s a 1 . l ~  

Once a new wing shape and its surface grid are defined, 
the next task is the regeneration of its volume grid. This 
process of regridding enroute to the optimized shape is 
completed using the flexible grid approach,14 where the 
volume grid is written as a function of the body surface grid 
(Xb). As the surface is changed during the shape optimization, 
the x-coordinates, for example, of the new volume grid are 
found using the following relations: 

where ,.=- , 
J simu-sz 

Results 

Validation of AD1 approach 

To test the presently developed AD1 methodology, an 
arrow wing (Table 1) was considered to be at 3-deg aoa to an 
oncoming Mach 2.4 flow. This wing was generated from the 
unit wing by linear distributions of chdscal and thkscal 
along the span as schematically shown in fig. 1. The entire 
wing was behind the Mach cone. The coarse grid was used in 
order to accommodate the memory-intensive PCG solutions 
within reasonable computer resources, as well as for the grid 
refinement studies. 

The flowfield was computed on the coarse grid using the 
present AD1 and PCG methods as well as C F L ~ D I ~  (Version 
3.0). The results of these analyses were successfully compared 
(fig. 2) via their chordwise pressure coefficient distributions at 
three spanwise sections. The drag values of CFL3D and AD1 
(7.6e-3 vs 7.8e-3) matched to the third digit and, for the AD1 
and PCG solutions, the lift and drag values matched up to five 
significant digits (Table 2). 
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As it is necessary for quasi-Newton methods, the PCG 
method was initialized with the solution to a M, = 2.35 flow, 
obtained using the AD1 method. Then, the convergence to the 
M,=2.4 solution was timed for both of the methods (Table 2). 
As expected, by using ADI, the storage was reduced by a factor 
of about six compared to the PCG, even for this coarse grid. 
The initialization, apparently, was not in the domain of 
attraction to the root, hence, the convergence time of PCG was 
also unexpectedly higher. 

In fig. 3, the chordwise pressure coefficient 
distributions, obtained on the coarse and fine grids with the 
AD1 method, are presented for three sections. Although the 
coarse-grid flowfield appeared plausible with its salient 
features, improvement in the solution due to grid refinement 
was clearly observed: with coarse-grid computations, the 
pressure peaks were overestimated in the root section, yet they 
were underestimated in the mid and tip sections. The surface 
pressures obtained on the fine grid (fig. 4) were deemed 
satisfactory based on the general flowfield features, such as, 
the crisper definition of the upper surface shock. A more 
conclusive evidence to an almost grid-independent solution, 
however, would have required another level of finer grid 
solution which would differ only insignificantly, if at all, 
from the current fine-grid solution. 

Next, the sensitivities were computed by the PCG and 
ADI methods using the direct differentiation (eqs. 2.4 and 2.8) 
on the coarse grid. The primary reason for the computations 
on the coarse grid was naturally the significant cost savings. 
Note that the point of this exercise was a fair comparison of 
the sensitivities from different methods, and not their absolute 
accuracy. Most of the values matched to the fourth significant 
digit (Table 3). As for the efficiencies, this comparison 
essentially epitomized the characteristics of both the 
methods. The unfactored solution procedure based on PCG 
method, when in the domain of attraction to its root, was very 
efficient from CPU time standpoint. Whereas, the factored 
solution procedure (ADI) could only achieve the linear 

- convergence, but it was very efficient from the memory 
viewpoint. The results shown in Table 3 were obtained using a 
convergence criterion of five orders of magnitude reduction in 
the L2-norm residual. As this much reduction may not always 
be necessary during an optimization, the effect of the order of 
magnitude on the efficiency and accuracy was investigated 
(Table 4). Each two orders of reduction increased the CPU time 
by a factor of about 1.6. Generally, the change in the values, 
when the residual was dropped from five orders to seven orders, 
was in the fifth or higher significant digit. Finally, AD1 
based sensitivities, obtained for the convergence criterion of 
three order of reduction, were comuared with those bv the 
finite difference meth0d~9~ and they were found to be in 
excellent agreement (Table 5). 

Shape Optimization 

The primary thrust of the present study was to apply the 
gradient-based optimization technique for 3D shapes, which 
often require large size grids. The challenge was to perform 
such a task using only a feasible amount of computer memory, 
despite the fact that higher grid densities than what has been 
used previously,14* l5 were needed. As a demonstration, the 
present method was implemented to optimize a supersonic 

arrow wing configuration (Table 1 and fig. 4), first on a coarse 
grid then on a fine grid. 

The present problem formulation had nine design 
variables (spn, i d  at mid and tip sections: t h k s c a i ,  
c h d s c a l  , tranx and twst) .  The objective function was 
selected to be the maximization of CLICD, subject to fourteen 
geometric and two aerodynamic inequality constraints: 

At the root, mid, and tip sections: 

The volume constraint prevented the wing from becoming too 
thin whereas the 8 constraint ensures that the trailing edge 
does not become too sharp or too blunt. Also, side (equality) 
constraints were imposed on the design variables; for 
example, s p n  was tightly bounded to avoid the optimizer 
seeking higher lift by simply increasing the wing span. The 
selected values of the design variables allowed for the 
formation of a planform break in the chord distribution. Also, 
the thickness, sweep and geometrical twist were allowed to 
have linear spanwise distributions. The airfoil section at the 
wing root was elected to remain unchanged. For both of the 
cases, CL, Btip at 90% chord, and V constraints were violated 
in the final design. Additionally, for the fine grid 
optimization, Amidspan constraint was also violated. 

The optimization resulted in a cranked arrow wing (figs. 
5 and 6). The primary change was observed in the enlarged tip 
chord, the planform break, reduced thickness and the increased 
geometric twist. A summary of the optimized wing's geometry 
and aerodynamics is given in Table 6 (for initial wing, see 
Tables 1 and 2). The surface pressures of the optimized wing 
are presented in fig. 7, which may be contrasted with fig. 4. 
The objective function histories during the evolution to the 
optimized shape are presented in fig. 8. The trends appear 
similar for the coarse and the fine grid cases, but the values are 
distinctly different and the coarse grid shape converged in 
fewer iterations. Finally, Table 7 presents some of the 
demographics for these optimization cases. It should be noted 
that the PCG method, had it been used for this fine-grid shape 
optimization, would require 164 MW memory. 

Conclusions 

A gradient-based shape optimization methodology, that 
is intended for reasonably practical 3D aerodynamic 
applications, has been developed. To accommodate the 
inherent larger size of such problems, the fluid dynamic and 
the aerodynamic sensitivity equations were solved using the 
AD1 algorithm for memory efficiency. 

The flow analysis for an arrow wing at Mach 2.4 
compared well with those obtained using an unfactored 
approach (PCG), and an extensively used CFD code. The 
sensitivities of the present method have also compared well 
with those obtained using the PCG approach and finite 
difference approach. As expected the AD1 method reduced the 
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storage memory but increased the computing time as compared 
to the PCG method. It should be mentioned that, although 
initial flowfield analysis for the PCG method appeared to be 
more time intensive as compared to AD1 method (Table I), in a 
typical optimization cycle, two successive designs are only 
incrementally different and this feature would be very much 
amenable for the efficacy of PCG to render CPU-time efficient 
designs. The new procedure has been demonstrated in the 
design of a cranked arrow wing. Effects of grid refinement and 
convergence tolerance on the analyses as well as the shape 
optimization results have been explored. 

The results indicate that shape optimization problems 
which require large numbers of grid points can be resolved 
with a gradient-based approach. Therefore, to better utilize the 
computational resources, it is recommended that a number of 
coarse grid cases, using the PCG method, should initially be 
conducted to better define the optimization problem and the 
design space, and obtain an improved initial shape. 
Subsequently, a fine grid shape optimization should be 
conducted, using the AD1 method, to accurately obtain the 
final optimized shape. 

References 

1. Hicks, R. M.. and Henne, P.A. "Wing Design by Numerical 
Optimization," AIAA Paper 77-1247, AIAA Aircraft Systems 
& Technology Meeting, Seattle, WA, Aug. 1977. 

2. Ibrahim, A.H., and Baysal, 0.. "Design Optimization Using 
Variational Methods and CFD," AIAA Paper 94-0093, AIAA 
32nd Aerospace Sciences Meeting, Reno, NV, Jan. 1994. 

3. Reuther, J., and Jameson, A., "Supersonic Wing and Wing- 
Body Shape Optimization using an Adjoint Formulation," 
CFD for Design and Optimization (Ed. 0. Baysal), ASME 
FED-Vol. 232, pp. 45-52, International Mechanical 
Engineering Conference and Exposition, November 1995. 

4. Baysal, O., and Eleshaky, M.E., "Aerodynamic Sensitivity 
Analysis Methods For the Compressible Euler Equations," 
Journal of Fluids Engineering, Vol. 113, No. 4. Dec. 1991, 
pp. 681-688. 

5. Huan, J., and Modi, V., "Design of Minimum Drag Bodies 
in Incompressible Laminar Flow," CFD for Design and 
Optimization (Ed. 0. Baysal), ASME FED-Vol. 232, pp. 37- 
44, International Mechanical Engineering Conference and 
Exposition, November 1995. 

6. Baysal, O., and Eleshaky, M.E., "Aerodynamic Design 
Optimization Using Sensitivity Analysis and Computational 
Fluid Dynamics," AIAA Journal, Vol. 30, No. 3, Mar. 1992, 
pp. 718-725. 

7. Burgreen, G.W., Baysal, 0.. and Eleshaky, M.E., 
"Improving the Efficiency of Aerodynamic Shape Design 
Procedures," AIAA Journal, Vol. 32, No. 1, Jan. 1994, pp. 
69-76. 

Methods," AIAA Journal, Vol. 32, No. 11, Nov. 1994, pp. 
2145-2152. 

9. Eleshaky, M.E. and Baysal, O., "Aerodynamic Shape 
Optimization via Sensitivity Analysis on Decomposed 
Computational Domains," Journal of Computers and Fluidr, 
Vol. 23, No. 4, May 1994, pp. 595-611. 

10. Eleshaky, M.E., and Baysal, 0.. "Preconditioned Domain 
Decomposition Scheme for 3-D Aerodynamic Sensitivity 
Analysis," AIAA Journal, Vol. 32, No. 12, Dec. 1994, pp. 
2489-249 1. 

11. Eleshaky, M.E., and Baysal, O., "Design of 3-D Nacelle 
Near Flat-Plate Wing Using Multiblock Sensitivity Analysis 
(ADOS)," AIAA Paper 94-0160, AIAA 32nd Aerospace 
Sciences Meeting, Reno, NV, Jan. 1994. Also, to appear in 
Journul of Aircrafr. 

12. Beam, R.M. and Warming, R.F., "An Implicit Factored 
Scheme for the Compressible Navier-Stokes Equations," 
AIM Journal, Vol. 16, April 1978, pp. 393-402. 

13. Korivi, V. M., Taylor, A. C., 111, Hou, G. W., Newman, P. 
A., and Jones, H. E., "Sensitivity Derivatives for Three- 
Dimensional Supersonic Euler Code Using Incremental 
Iterative Strategy," AIAA Journal, Vol. 32. No. 6, June 1994, 
pp. 1319-1321. 

14. Burgreen, G.W., and Baysal, 0.. "3-D Aerodynamic Shape 
Optimization Using Discrete Sensitivity Analysis," AIAA 
Journal, Vol. 34, No. 9, Sept. 1996, pp. 1761-1770. 

15. Burgreen, G.W., and Baysal, O., "Three-Dimensional 
Aerodynamic Shape Optimization of Delta Wings," Paper 94- 
4271 CP, Proceedings of 5th AIAA/USAFRVASA/ISSMO 
Multidisciplinary Analysis and Optimization Conference, 
Panama City, FL, Sept. 1994, pp. 87-97. 

16. Narducci, R., Grossman, B.. Valorani, M., Dadone, A., and 
Haftka, R.T., "Optimization Methods for Non-Smooth or 
Noisy Objective Functions in Fluid Design Problems," Paper 
No. 95-1648 CP, Proceedings of 12th AIAA Computational 
Fluid Dynamics Conference, pp. 21-32, San Diego, CA, June 
1995. 

17. Vanderplaats, G.N., ADS - A FORTRAN Program for 
Automated Design Synthesis - Version I. 10, NASA 
Contractor Report 177985, Sept. 1985. 

18. Thomas, J.L., Krist, S.T., and Anderson. W.K.. "Navier- 
Stokes Computations of Low Aspect Ratio Wings," AIAA 
Journal, Vol. 28, No. 2, Feb. 1990, pp. 205-215. 

Acknowledgment 

This research was supported by NASA Langley Research 
Center under Grant No. NCC- 1-21 1. The technical monitor 
was Dr. James L. Thomas. 

8. Burgreen, G.W.. Baysal, O., "~e rod~namic  Shape 
Optimization Using Preconditioned Conjugate Gradient 



Journal of Aircraft 
Volume 34. No. 3. May-June 1997 

Tables 

Table 2. Efficiency and accuracy comparisons for CFD analyses* 

Coarse Grid Coarse Grid Fine Grid 
(43x1 5x9)# (43x15~9) (1 27x43~25) 

Iterations to 100 24 1 3 27 

CPU time (sec) 640*.* 283 8138 

Memory (MW) 10.61 2.25 42.1 1 

(CIJCD) 10.8362 10.8362 11.40 
*Computed flowfield for M,=2.4; ** Initialized with converged AD1 solution of M,=2.35 flow 

#1n circumferential, normal, and spanwise directions, 
respectively 

Table 3. Comparison of quasi analytical sensitivities* 

AD1 PCG 

Iterations to convergence 112 9 

CPU time (sec) 3 44 45 

Memory (MW) 2.60 10.61 

aCL/ a(chdtiD) 0.0217 0.0217 

aCL/ a(tranxmid)** -0.0142 -0.0142 

aCL/ a(spn) 0.0439 0.0439 

~(CLICD)~ a(tranxmid) 2.5124 2.5120 

~(CI/CD)/ a(tranxtiD) 2.7549 2.7549 

a(cL/cD)f a ( s ~ n )  -1 0.4890 -10.4881 

*Computed flowfield for M,=2.4 on 43x15~9 C-H grid; direct method (eqs. 4 and 8) with 6 ( 5 )  convergence. 
**Parameters as defined in fig. 1. 
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d* 

6(3) *(5) 3(7) 

CPU time (sec) 204 344 49 8 

~ C L /  a(chdtiD) 0.0217 0.0217 0.0217 

aCL/ a(trallxmid) -0.0142 -0.0142 -0.0142 

~ C L /  a(spn) 0.0439 0.0439 0.0439 

*Computed flowfield for M,=2.4 on 43x15~9 C-H grid; direct method (eq. 8). 

Table 5. Comparison of AD1 (quasi analytical) and finite difference sensitivities* 

Quasi Analytical** Finite Difference Quasi Analytical 

*Computed flowfield for M,=2.4 on 43x15~9 C-H grid. 
**Direct method (eq. 8) with 6(3) convergence. 
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Coarse Grid Fine Grid 

(de8 

Aspect ratio 0.8701 0.9214 

(t/c)root,mid,tiD (a) 4.71, 3.07, 1.44 4.71, 2.32, 1.51 

(twst)root,mid,tip 0.00, 0.50, 0.12 0.00, 0.50, 0.24 
(dea) 

%~i$id 68.7 52.0 

%V$/$f 88.6 80.4 

Table 7. Demographics from optimization cases* 

Coarse Grid Fine Grid 

Lift change (%) 12.8 13.5 

Drag change (%) -1.26 -2.22 

CL/CD change (%) 16.1 12.5 

1-D searches 69 88 

Gradient evaluations 5 9 

Memory (MW) 2.93 48.37 

CPU time (h) 0.53 38.1 
*Direct sensitivity method (eq. 8) with e(3) convergence. 



Figure 1: Parameterization of a wing. 
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Figure 2: Comparison of chordwise pressure 
ficients on coarse grid (43x15~9). M=2.4, ac 
deg. 
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Figure 3: Comparison of chordwise pressure coef- 
ficient distributions by AD1 method on fine and 
coarse grids. M=2.4, aoa=&deg. 
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Figure 4: Normalized pressure contours by AD1 
method on fine grid (127x43~25). M=2.4, aoa=b 
deg. 
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Figure 5:. Evolution of wing sections from initial 
to coarse- and fine-grid optimized shapes. 



Figure 6: Evolution of wing planform shape. 

Figure 7: Normalized pressure contours on opti- 
mized arrow wing obtained by AD1 method on fine 
grid (127x43~25). 

iteration number 

Figure 8: Histories of objective function and aero- 
dynamic constraints. 
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ABSTRACT 

In developing the automated methodologies for simulation- 
based optimal shape designs, their accuracy, efficiency and 
practicality are the defining factors to their success. To that 
end, four recent improvements to the building blocks of such a 
methodology, intended for more practical design 
optimization, have been reported. First, in addition to a 
polynomial-based parameterization, a partial differential 
equation (PDE) based parameterization was shown to be a 
practical tool for a number of reasons. Second, an alternative 
has been incorporated to one of the tedious phases of 
developing such a methodology, namely, the automatic 
differentiation of the computer code for the flow analysis in 
order to generate the sensitivities. Third, by extending the 
methodology for the thin-layer Navier-Stokes (TLNS) based 
flow simulations, the more accurate flow physics was made 
available. However, the computer storage requirement for a 
shape optimization of a practical configuration with the high- 
fidelity simulations (TLNS and dense-grid based simulations), 
required substantial computational resources. Therefore, the 
final improvement reported herein responded to this point by 
including the alternating-direction-implicit (ADI) based 
system solver as an alternative to the preconditioned 
biconjugate gradient (PbCG) and other direct solvers. 

INTRODUCTION 

When the symposium on Multidisciplinary Applications of 
Computational Fluid Dynamics [I] was organized, it included 
only a few papers reporting on the utilization of 
computational fluid dynamics (CFD) in a design environment. 
Since then, however, there has been an alluring eruption of 
interest on this topic for a justifiable reason. CFD can now be 
utilized for the purpose of design and optimization in order to 
cut down the cycle time for a new product design. This, 
however, may be a prohibitive proposition for the necessary 
computational and human resources if a large matrix of 
candidate designs or design variables are involved. 

Therefore, a few years later and with the motivation of 
providing a podium for beyond the cut-and-try approaches, 
where CFD would be a module of an automated methodology in 
search of improved designs, the forum on CFD for Design and 
Optimization [2] was organized. This forum attested to the 
fact, that the researchers were now developing new methods, 
varying from inverse to the direct numerical optimization 
methods. Some of the objectives that such efforts were trying 
to accomplish were: i) Automated design optimization with 
minimal need for the man-in-loop in a given try; ii) Reduce 
the need for the design expertise and the prerequisite database; 
iii) Information on the most influencing parameters, which 
leads to a reduced CFD analysis matrix, requires sensitivities 
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of the objectives and constraints; iv) Ability to design with a 
variety of fluid dynamic and geometric constraints, and with 
geometric flexibility; finally, v) Improve accuracy, 
efficiency and practicality, which also constitutes the 
motivation for the present paper. 

The approaches to the engineering design may be 
categorized as: 1) Non-automated design, 2) Inverse design, 
and 3) Direct numerical optimization, methods. As the 
present paper reports on a methodology which belongs to the 
last category, it will be the only one briefly introduced next. 

Direct numerical optimization [3] is a systematic 
methodology which extremizes a chosen objective. It may 
produce the best design or just a better design, dependent on if 
the global or just a local minimum has been found. However, 
it can be rather cumbersome to develop and its usage may be 
computing intensive. A constrained optimization is gradient 
based (VF,VGj) ,  and it relies on the deterministic searches, 

( D/+' = D: + anS / ) ,  i = I ,  NDV . Its mathematical 
formulation consists of the extremization of an objective 
function F ( D ~ , Q ( D ~ ) ) ,  subject to satisfying the analysis 

equations. R,,, (Di ,Q(D~) )=o ,  m = I ,  NEQ, fluid dynamic or 

geometric inequality cbnstraints, G ~ ( D ~ , Q ( D ~ ) )  SO. 

j = I, NCON, fluid dynamic or geometric equality constraints 
H~ ( D ~  ,Q(Di))  =o, k = I, NCON,, and finally the side 

constraints, DfWer I Di < D y e r .  
One type of a simulation-based and automated design 

methodology, which uses a constrained optimization, is the 
fluid dynamic shape optimization. This typically consists of 
the following components [3,17]: (i) formulation of the 
problem, i.e. identifying the objective and the constraint 
functions; (ii) gradient-based and constrained optimization 
algorithm; (iii) flowfield simulation, i.e. CFD; (iv) 
parameterization and redefinition of shapes as they evolve, 
i.e. using computer-aided-design (CAD); (v) regeneration of 
the surface and volume grids, and the grid sensitivities; (vi) 
gradients of the objective and the constraints with respect to 
the design variables, i.e. the sensitivity coefficients; (vii) 
gradients of the optimized shape with respect to the design 
invariants, i.e. the post-optimization sensitivity derivatives, 
used for trade-off studies and off-design conditions. 

The present paper will focus on the four improvements to 
this methodology that have recently been investigated in 
order to attain a more practical design optimization 
methodology: 1) PDE based surface parameterization and 
generationr2) automatic differentiation (AD) to generate the 
code for the sensitivities. 3) AD1 scheme for the sensitivity , , 

and analysis equations, and 4) shape optimization based on 
the TLNS simulations. Consequently, of the above mentioned 
methodology components, oniy (i;) through (vi) will be 
explained in the following sections. However, for the sake of 



completeness, three important building blocks will be 
summarized next. 

Flowfield simulation bv CFD 
The three-dimensional, compressible, thin-layer Navier- 
Stokes equations (TLNS), with an option to drop the diffusion 
terms when the Euler equations would suffice, are written in the 
conservation form and generalized curvilinear coordinates 
[14,18,20,23]. They are discretized by a cell-centered, finite 
volume method, where the flux vectors and the Jacobian 
matrices are evaluated using the van Leer flux-vector splitting, 
with the third-order MUSCL extrapolations to the cell 
interfaces and the van Albada limiter [22,23]. 

Owtimization al~orithm 
The feasible-directions method [25], which is a gradient-based 
and constrained optimization algorithm, is used as the driver 
of the overall methodology [5,6]. Within the feasible region, 
deterministic search algorithms, such as, a univariate search 
strategy (a sequential one-dimensional minimization in a 
multidimensional design space) with a variable step size using 
zeroth-order methods, or simply a constant step size, are 
employed. Various stopping criteria are used for the 
optimization and for the flow analysis, where either the 
convergence tolerances of different orders of magnitude, or the 
number of iterations, or both, are specified. 

Alpebraic svstems 
For the large systems of linear algebraic equations, resulting 
from the sensitivity equation or the flowfield equations, there 
are several inversion options in, both the direct and the 
iterative approaches, as they all have their distinct niches 
depending on the problem at hand. These are: (i) naive Gauss 
elimination with banded storage [5,6], (ii) sparse-matrix 
method with symbolic factorization [5,6], (iii) a first-order 
iterative method, such as, solving the delta-form of the 
equations by an AD1 method [22], (iv) a preconditioned 
biconjugate gradient method (PbCG), such as, the restarting 
version of GMRES(k, m), with several fill-in options as the 
preconditioners [10,16]. 

SURFACE PARAMETERIZATION 

A non-parametric geometry definition requires the surface 
mesh point coordinates. Although this approach utilizes data 
readily available for CFD, it increases the number of design 
variables. On the other hand, a parametric geometry 
definition reduces the number of design variables, since the 
number of control points is significantly less than the surface 
mesh points. Current geometry definition techniques used in 
computer-aided design (CAD) are capable of parameterizing 
space curves and space surfaces with high fidelity. They do 
require extra computations, storage, and some expertise. 
Among the desirable properties in choosing a particular 
parameterization technique, are their generality and 
differentiability. 

As an example, the Bezier-Bernstein approach [ l l ]  is 
considered to represent a surface given by its grid points 
X{xi, yi,zi}, i = 1,2 ,.., I. Then, an (N,M)-th degree 
representation (N <.c I, M << I )  is obtained from a bi- 
directional spline frame: 

where O I u , v l l  and 

After a single-indexed ordering [i = 1,2,..,(n-m)] of the 
control points, the solution requires forming a tensor product 
of the 1-D basis functions, B,, (u), B, (v) . 

In defining a configuration which includes the CAD- 
parameterized design surfaces, parameters that are more 
intuitively recognizable to the specific discipline may be 
preferred. For example, a wing may be described in part by its 
sweep, span, spanwise bending, geometric twist, spanwise 
distributions of taper and section chords and thicknesses [12]. 
Once a new configuration and its design surfaces are defined, 
the next task is the re-generation of its surface and volume 
grids. Hence, efficient approaches are developed to 
analytically relate the surface parameters to the computational 
volume grid. Then, the grid is re-generated systematically 
using these relations, as the vector of design variables is 
changed with the evolving shape. For example [12], 

An alternative is to build on the experiences with the PDE 
approaches that have long been used for the grid generation. 
Drawing from the smoothing properties of the Poisson 

equation, V2$ = Q, the method is very effective in creating 
smooth surfaces that act as the transition blocks between 
neighboring surfaces, i.e. the blend generation. One such 
approach [9] has recently been incorporated into the airplane 
design research [24] as well as into the present methodology. 
The mapping from the physical to the computational space, 

is performed by a fourth-order equation with a weighting 
parameter, 

However, rather than solving the equations by the usual 
iterative techniques, the solution is expressed as an 
approximate ~our ier  series representation, with the 
coefficients obtained from the Dirichlet (D) and Neumann (N) 
boundary conditions. For example, at a 77 = [O, 11 boundary, 

Do ,Dl and N o ,  Nl are then specified as in eq. (5), but with 
z. case-specific relations, ~ ~ ( 4 ~ )  and 1, respectively, where 
ag' 

i = 1,2,3 and j = 1,2. These relations are determined with the 
parameters of the particular geometry to be generated. By 
selecting the appropriate boundary conditions, the desired 
surfaces, such as, a wing, a fuselage, or a nacelle, can be 
generated; then, they are blended via, e.g. fillets or pylons, to 
obtain a wing-body, or a conceptual aircraft configuration. 
Further, the output is a discrete set of points arranged as a 
surface mesh X(i,j). The grid spacing parameters are also 



included in the usual way through the non-homogeneous part The equations for the adjoint (Lagrange) variables are defined, 
of the Poisson equation and the boundary conditions. from eqs. (9, 10, 12) and written in the delta form, 

SENSITIVITY ANALYSIS 

The accuracy of a gradient-based optimization method, and the 
efficiency with which it can accomplish this, are directly 
related to the accurate and efficient receipt of the gradient 
information on the objectives and the constraints. The 
sensitivity analysis provides: i) the gradients (VF, VGj) for 
the optimization and trade-off studies; ii) the post- Therefore, to obtain the sensitivities, either eq. (13) is solved 
optimization gradients for off-design conditions; iii) a first- for AQ'. or eqs. (15, 16) are solved for AF ,AGj . 
order but inexpensive approximation to neighboring-point 
analysis via ~ a y l o r  series kxpansion [7]. The 
evaluation may be performed by either a finite-difference 
method [5], or a continuous adjoint method [3], or a discrete 
sensitivity method [5,6]. The discrete sensitivity analysis 
(a.k.a. quasi-analytical) is performed by differentiating the 
already CFD-discretized equations with respect to the design 
variables [IS]. It corresponds to a discrete solution of the 
continuous sensitivity function. Since this approach is used 
in the present methodology, it will be further discussed next. 

Discrete sensitivitv analvsi~ 
The sensitivities needed by the optimization can be 

obtained by the chain rule of differentiation, 

where all, except the Q: = $ term, can be obtained 

analytically by a direct differentiation. Deriving an equation 
for Q,! starts from the residual form of the discretized flowfield 
equations, 

and by differentiating eq. (1 I), the equation for Q: is 
obtained, 

After eq. (12) is written in the delta form, the direct method is 
simply solving for the deficit-correction (incremental) form of 
the unknown AQ', 

Note that eq. (13) scales with the number of design variables. 
An alternative, which scales with the number of inequality 
constraints, is the adjoint method. The adjoint sensitivities 
are obtained from eqs. (9, 10, 12) to be as follows, 

Automatic differentiation (AD) 
In developing a discrete sensitivity method, one feature 

that requires intense effort is the differentiation of a number of 
functions with respect to the design variables. This has 
traditionally been done using the calculus definition of a 
derivative represented as afinite difference, then evaluating 
the function as many times as needed. A second method is the 
hand-differentiation of the equations in their discretized form, 
relying on the chain rule of differentiation based on the 
functional dependence. This quasi-analytical approach 
produces the most efficient code, byt it can be tedious and may 
not always be possible for non-continuous functions. A third 
option for the differentiation is the symbolic differentiation 
available in the mathematical computer packages. They are 
not, in general, capable of handling constructs, such as, 
subroutines, loops and branches in a computer code. 
Furthermore, in their basic form, they are not capable of 
handling the combinatorial explosion effect, which arise from 
the fact that a derivative expression for, say, a multiplication 
doubIes the string. 

An alternative approach is AD, which produces the 
derivative by applying the chain rule of differentiation on any 
type of function, as many times as needed. This is possible 
irrespective of the complexity of the function, since the 
computer execution of that function is always a sequence of 
elementary operations and elementary functions. There are 
various approaches, and a survey of these AD tools is given in 
[19]. Therefore, it is possible to develop the computer codes, 
such as, ODYSEE [21] or ADFOR [a], which, given a 
computer code for a function evaluation, breaks the code into 
elementary operations and functions to simplify the problem, 
then generates a computer code that can produce the 
sensitivities of that function. 

The two traditional methods for the chaining are the 
forward mode and the reverse mode. Consider computing 
certain partial derivatives of a dependent variable vector 
F(1:m) with respect to all or certain elements of an 

JF(i) independent variable vector D(I:n), that is, --. From, 

JF(Pn) where the Jacobian is J = and V denotes a derivative 

object, by initializing VD(i) to the i-th canonical unit vector 
of length n, the output VF(i) contains the desired derivatives. 
Hence, the forward mode computes arbitrary linear 
combinations of the columns of the Jacobian, 



VF(i) = [ J * v D ( I : ~ ) ~ ] ~  . (18) 
A forward-mode code is relatively easier to generate and it 
preserves the parallelizability of the original code structure. 
To compute n derivatives, the forward mode requires n times as 
much computer time and storage as the original code, that is, 
the required resources scale with the number of the independent 
variables. In the reverse mode, the derivatives with respect to 
some intermediate variables, denoted by overbars, are 
computed, 

- 
By initializing VF(i) to the i-th canonical unit vector of - J D ( i )  length m, the output VD(i) contains m. Hence, the 

reverse mode computes arbitrary linear combinations of the 
rows of the Jacobian. A reverse-mode code is much more 
complex. To compute n derivatives, the reverse mode requires 
m times as much computer time as the original code, that is, 
the required resources scale with the number of the dependent 
variables, which, however, is usually less than the number of 
independent variables n. 

The approach of the code ADIFOR 181, which is used 
herein, is a hybrid of the forward and reverse modes. It applies 
the reverse mode first to compute the derivatives of the result 
with respect to the design variables and then employs the 
forward mode to propagate the overall derivatives. By 
defining a seed vector as s = V D ( I : ~ ) ~ ,  eq. (1 8) is rewritten as 

Since S is initialized as a vector, rather than an identity 
matrix, only the product of the Jacobian and the seed vector is 

, computed (instead of computing the full Jacobian). The output 
is a code which not only computes the function but also the 
sensitivities. This code is usually two to three times longer 
than the original function analysis code. 

RESULTS 

Each of the four improvements proposed for a shape 
optimization methodology, as stated in the Introduction 
section, were developed and demonstrated through a series of 
test cases. Included in the present paper are only a few 
representative results from this investigation. 

Since the present design optimization methodology is 
automated, the parameterization technique to be used needs to 
be performed "on-the-fly," hence, be batch processed. Then, 
the parameters used in the boundary condition specifications 
of the PDE surfaces become the design variables; they are 
incrementally changed, depending on the step size dictated by 
the optimizer, for the shapes to evolve. However, a 
prerequisite step prior to the shape optimization is the 
conceptual design phase, where the designer intervenes in the 
decision making process. Also, the intervention is desirable 
in the construction of the adequate design variables and their 
side constraints. With this impetus, an interactive processing 
version [13] of the method was developed to provide a 
graphics visualization package that could directly implement 
the design changes to the model in near-real-time. Continuous 
input by the user allowed the model to dynamically evolve 
into a new configuration creating a morphing effect. 
Presented in Figure 1 are two sample configurations and their 
surface meshes generated by this method. 

Often the utility of porting a parameterization technique is 
desired to a shape optimization methodology, which was 
originally developed for another parameterization technique. 
Also, the shape or configuration to be optimized is usually an 
existing design. Then, the parameterization code is required to 
replicate the shape, easily and with high-fidelity, so that the 
optimization could subsequently be performed. These inverse 
problems were studied with the present PDE method 
(designated as BWB) and the Bezier-Bemstein flexible wing 
model [12,22] (designated as EWM). As the methods differed 
in their parameterizations, rather than a point-to-point 
comparison, the regenerated surface contours were compared. 
Presented in Figure 2 are the redefinitions from these two 
methods (case 1) of a cranked-arrow wing section. By and 
large, the redefinitions were successful for the section shown 
as well as the rest of the wing sections. 

To study the potential advantages of the automatic 
differentiation, a simple demonstration case was also 
formulated based on the same cranked-arrow wing geometry 
[22,23]. Subsequent to the parameterizations in two different 
ways, their surface meshes were automatically generated by 
their respective extensions, as explained in the Surjace 
Parameterization section. Then, the grid sensitivities were 
computed using an automatic differentiated code in the former 
method and using a quasi-analytical hand-differentiated code in 
the latter method. From the results [13], as sampled in Figure 
3 (case 2) for the sensitivity of the normal coordinate to the 
thickness of the airfoil section at the crank (,*), it was 

observed that the methods had comparable levels of accuracy; 
but, the hand-differentiated code required less number of 
arithmetic operations and utilized less storage. Nonetheless, 
the advantage of the automatic differentiation was in the 
significantly reduced amount of effort for the development of 
the code that generated the grid sensitivities [4]. 

The second phase of the study involves the shape 
optimization cases 3-6. The present wing is considered to be 
at a 4.5-deg angle-of-attack to an oncoming freestream flow of 
Mach 2.4. To retain the validity of the laminar flow 
assumption for the current viscous optimization, the 
freestream Reynolds number is assumed to be the relatively 
low value 2.0e5. To assess the effect of the grid density, a 
coarse grid (43x15~9) and a fine grid (85x29~17) are used. 
The clustering of the fine grid in the direction normal to the 
planfoxm is done such that the boundary layer is resolved with 
at least ten points. The objective is to maximize the lift-to- 
drag ratio subject to 14 geometric constraints and 2 
aerodynamic constraints. The geometric constraints include 
bounds on the wing volume, section areas, and the trailing 
edge angles. On the other hand, the aerodynamic constraints 
ensure that the lift is not below and the drag is not above their 
tolerable values [22,23]. Cases 3-6 were selected to illustrate 
the effects of viscosity (Euler-based Vs. TLNS-based designs) 
and the grid size (coarse-grid-based Vs. fine-grid-based 
designs). The Euler-based design on the coarse-grid is case 3 
and on the fine grid is case 5. Correspondingly, the TLNS- 
based design on the coarse-grid is c p e  4 and on the fine grid is 
case 6. 

The optimized shape from the fine-grid TLNS-based 
computations was substantially different, as compared to 
those from the fine-grid Euler- and the coarse-grid TLNS-based 
computations (case 6 Vs cases 5 and 4), and produced the best 
lift-to-drag ratio. Their respective CPU times were 18.52 hr, 
1.10 hr, and 6.78 hr. These optimized wing designs were then 
re-analyzed via the fine-grid TLNS-based flowfield 
computations. These high-fidelity, post-optimization 



flowfield analyses provided a common measure of merit and 
helped in illustrating the trade-off between their 
computational efficiencies and performance gains. It was 
observed, that the optimized wing of the coarse-grid TLNS- 
based computations (case 4) resulted in an aerodynamic 
performance close but not equal to that of the optimized wing 
from the fine-grid TLNS-based computations (case 6). 
However, the fine-grid Euler-based optimized wing design 
(case 5) yielded the lowest aerodynamic performance. 

CONCLUDING REMARKS 

The recent advances in the numerical design methods have 
manifested themselves in more automation, much better 
accuracy, improved computational efficiency, but only 
moderately more practical for the real application problems. 
With this motivation, four recent improvements to the 
building blocks of such a methodology have been reported. 
First, in addition to a polynomial-based parameterization, a 
PDE based parameterization was shown to be a practical tool 
for a number of reasons. Second, an alternative has been 
incorporated to one of the tedious phases of developing such a 
methodology, namely, the automatic differentiation (AD) of 
the computer code for the flow analysis in order to generate the 
sensitivities. Third, by extending the methodology for the 
TLNS based flow simulations, the more accurate flow physics 
was made available. However, the computer storage 
requirement for a shape optimization of a practical 
configuration with the high-fidelity simulations, required 
substantial computational resources. Therefore, the final 
improvement reported herein responded to this point by 
including the AD1 based system solver as an alternative to the 
PbCG an other direct solvers. 
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subsonic transport supersonic transport 

Figure 1: Sample configurations and their surface meshes generated by the PDE method. 

root airfoil crank airfoil 

Figure 2: Comparison of wing sections (case I) parametrized using the Berier-Bemstein polynomials (M) and the 
PDE method (BWB). 

automatic differentiation analytical hand differentiation 

Figure 3: Sensitivity contours of the normal coordinate to the thickness of the crank airfoil (case 2). 
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Figure 4: Comparison of optimized shapes from cases 3-6 
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Figure 5: 3D view of initial and optimized wing 
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ABSTRACT 

A gradient-based shape optimization methodology based 
on quasi-analytical sensitivities has been extended for prac- 
tical three-dimensional aerodynamic applications. The flow 
analysis has been rendered by a fully implicit, finite-volume 
formulation of the Euler and Thin-Layer Navier-Stokes 
(TLNS) equations. Initially, the viscous laminar flow anal- 
ysis for a wing has been compared with an independent 
computational fluid dynamics (CFD) code which has been 
extensively validated. The new procedure has been demon- 
strated in the design of a cranked arrow wing at Mach 2.4, 
with coarse- and fine-grid-based computations performed 
with Euler and TLNS equations. The influence of the ini- 
tial constraints on the geometry and aerodynamics of the 
optimized shape has been explored. Various final shapes 
generated for an identical initial problem formulation but 
with different optimization path options (coarse or fine grid, 
Euler or TLNS), have been aerodynamically evaluated via 
a common fine-grid TLNS-based analysis. 

The initial constraint conditions show significant 
bearing on the optimization results. Also, the results 
demonstrate that to produce an aerodynamically efficient 
design, it is imperative to include the viscons physics in the 
optimization procedure with the proper resolution. Based 
upon the present results, to better utilize the scarce com- 
putational resources, it is recommended that, a number 
of viscous coarse grid cases using either a preconditioned 
bi-conjugate gradient (PbCG) or an alternating-direction- 
implicit (ADI) method, should initially be employed to 
improve the optimization. problem definition, the design 
space and the initial shape. Optimized shapes should sub- 
sequently be analyzed using a high fidelity (viscous with 
fine-grid resolution) flow analysis to evaluate their true per- 
formance potential. Finally, a viscous fine-grid-based shape 
optimization should be conducted, using an AD1 method, 
to accurately obtain the final optimized shape. 

INTRODUCTION 

Aerodynamic design by the numerical optimization method 
has witnessed a spectacular rise in the research interest and 
limited success in handling realistic problems. In this pur- 
suit, several inviscid-flow-based optimization results have 
been presented in the past. The motivation of the present 
study is to report an extension of such an approach for 
the viscous flow equations and present certain algorith- 
mic strategies for formulating and solving a practical prob- 
lem. For this purpose, a gradient-based shape optimization 
methodology has been developed and used. 

Since the early go's, there have been promising de- 
velopments in the area of aerodynamic design optimiza- 

tion based on discrete sensitivity analysis [I]. The is- 
sue of computational-time efficiency was addressed in sev- 
eral ways [2], including the surface parameterization u s  
ing Bezier splines and Bernstein polynomials, and solving 
the unfactored CFD equations by a quasi-Newton method. 
The computer storage efficiency was later addressed, first 
by examining the solution of all the equations using a pre- 
conditioned biconjugate gradient (PbCG) method [3], then 
by the multiblock sensitivity analysis scheme [4]. Another 
benefit of the latter was its applicability to a complex and 
multicomponent geometry, around which structured grids 
could only be generated by the use of domain decomposi- 
tion techniques. The multiblock sensitivity analysis ale0 in- 
corporated [5] and applied in the optimization of a multiple- 
component configuration [6]. 

In the PbCG methods [3,5], incomplete lower-upper 
(ILU) decompositions of the coefficient matrix with some 
fill-in (ILU (n), n10) were used for the preconditioning. 
Another preconditioning option is to use the approximate 
factors of the coefficient matrix, then break the problem 
into a sequence of simpler problems; that is the premise of 
the AD1 schemes, which have been used to solve the ffow 
equations for more than two decades [7]. The trade-off in 
the latter approach is a slower convergence rate for the 
much reduced computer memory storage [S]. 

The results from all the applications cited above in- 
dicate that, in general, the design methods obtain a final 
shape via an evolution of successively improved shapes, al- 
though sometimes at a rather high computational cost due 
to the large number of flow analyses involved. A practi- 
cal use of the fully implicit CFD methods (quasi-Newton 
method) within an optimization procedure allows the real- 
ization of high convergence rates and consequent reduction 
of the CPU time. The memory requirement of such a pro- 
cedure which uses a PbCG algorithm is low as compared to 
direct inversion solvers. However, this memory requirement 
is high enough to preclude the realistic, high grid density 
design of a practical 3D geometry such as a wing or wing- 
body combination. This limitation served as the impetus 
to improve upon the formerly developed 3D optimization 
methodology, which was demonstrated for a transport wing 
[9], an asymmetric delta wing, and a cranked delta wing 
[lo]. This improvement has been achieved by using ADI- 
factored operators to serve as the preconditioning matrices 
for the CFD as well as the sensitivity equations [ll]. The re- 
sults indicated that the shape optimization problems which 
required large numbers of grid points could be resolved with 
a gradient-based approach. The method, however, was de- 
veloped and demonstrated only for the Euler equations. 

Since there are numerous real design cases where the 
viscous effects could not be neglected, the method needed 
to be extended for the viscous flow equations. The vis- 
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cous design has previously been performed, for example, 
for single and multielement airfoils [12,13] and to demon- 
strate the leading-edge thrust phenomenon [14,15]. There- 
fore, this was the first objective of the present study. The 
second objective was inspired from the work of Refs. 9 
and 11. In Ref. 11, it was recommended that, to bet- 
ter utilize the computational resources, a number of coarse 
grid cases, preferably using the PbCG method, should ini- 
tially be conducted to better define the optimization prob- 
lem and the design space, and obtain an improved initial 
shape; subsequently, a fine-grid shape optimization should 
be conducted, using the AD1 method, to accurately obtain 
the final optimized shape. Also, a comment was made in 
Ref. 9, that the minor changes in a problem formulation 
could result in radically different designs. Indeed, this is 
also true for the computational resources needed for each 
design. Hence, an investigation of some pertinent strate- 
gies was deemed necessary and conducted subsequently to 
be presented herein. 

SYNOPSIS  O F  M E T H O D O L O G Y  

Aerodynamic design optimization extremizes an objective 
function F(D,  Q(D)) subject to constraints G(D, Q(D)), 
where D is a vector of related design variables [I]. The 
employed optimization algorithm is the method of feasible 
directions as coded in ADS [16]. To evaluate the neces- 
sary objective function and aerodynamic constraints, the 
present study employs CFD analysis [11] to solve either 
the Euler or the thin-layer Navier-Stokes equations. The 
flux vectors and the Jacobian matrices are evaluated using 
the flux-vector-splitting technique of van Leer. The cell 
interface values of the flow variables are determined using 
a spatially third-order accurate, upwind-biased, MUSCL 
interpolation formula with van AIbada flux limiter. The 
viscous fluxes are centrally differenced. The sensitivity 
derivatives of the objective function and aerodynamic con- 
straints are obtained analytically [I] from the steady-state 
residual form of the flow equations. The direct differenti- 
ation method [1] is used for obtaining the resulting sensi- 
tivity equation. The flowiield and the sensitivity equations 
are then solved by employing the approximate factoriza- 
tion followed by the AD1 scheme of Beam and Warming 
[7]. This specific choice was made to reduce the com- 
puter memory requirement of the optimization algorithm 
and thereby facilitate a relatively higher grid density de- 
sign [ll]. The wing parameterization and the regridding 
model are adapted from Burgreen and Baysal[9]. The wing 
parameterization is schematically represented in Figure 1. 

RESULTS 

To evaluate the viability of the present extension of the 
gradient-based optimization methodology, and to explore 
the ways to deploy it wittingly, several problems related to 
wing optimization have been formulated and solved. Also, 
for a better posed optimization problem, some studies are 
aimed at investgating the algorithmic strategies with re- 
gard to the initial constraint specification. Results of these 

freestream Reynolds number is assumed to be the relatively 
low value of 2.0 x la5. As the computational grids, a coarse 
grid (43 x 15 x 9)3 and a fine grid (85 x 29 x 17) are used. The 
clustering of the fine grid in the direction normal to the 
planform is done such that the boundary layer is resolved 
with a t  least ten points. 

The flowfield on the initial wing is computed by the 
fine-grid analyses performed using the present viscous code 
and CFL3D-version 3.0 [17]. Results of these analyses show 
excellent agreement as manifested in the comparison of the 
chordwise pressure coefficient distributions a t  three span- 
wise sections the of initial wing (Figure 2). For this case, 
the present code predicts the lift coefficient to be 0.0189 
and lift-to-drag ratio to be 6.068, whereas, the correspond- 
ing values predicted by CFL3D are 0.0187 and 6.055, re- 
spectively. 

Subsequently, the present code is used to compute 
the flowfield on the initial wing corresponding to the Euler- 
and TLNS-based flow analyses on the coarse and fine grids 
(Figure 3 and Table 1). From the surface pressure coef- 
ficient distributions, contrasted for three sections of this 
wing (Figure 3), it is evident that the fine-grid computa- 
tions render a crisper definition of the suction peaks and 
slightly increased levels of the lower surface pressures. In 
addition, the upper surface pressure variations are signifi- 
cantly different for the outboard portion of the wing. Also 
the fine-grid computations reveal a marked difference in the 
pressure distributions between the Euler and TLNS cases. 
Hence, it is confirmed that the fine-grid computations have 
the adequate resolution of the boundary layer. The pre- 
dicted aerodynamic coefficients from these cases along with 
their computational resource requirements are summarized 
in Table 1. As expected, the fine-grid viscous analysis re- 
quires the largest resources but yields significantly more 
accurate aerodynamic coefficients. 

A comparative database, in regards to the the grid 
refinement and viscous effects, is also developed for the sen- 
sitivities starting with the above mentioned flow analyses 
(Table 2). The direct differentiation method [I] is used with 
a convergence criterion of 2.5 orders of magnitude (d(2.5)) 
reduction in the residual. This choice has been deemed 
adequate, after studying the effects of stricter convergence 
criteria on the gradients, and considering the importance of 
the accurate and efficient computational procedure on the 
overall performance of the optimization methodology. AS 
it can be observed, viscous fine-grid sensitivities require a 
larger number of iterations to converge, thence, more CPU 
time. Also, they are quite different from the corresponding 
sensitivities of the viscous coarse-grid, Euler coarse-grid, 
and Euler fine-grid cases. 

S h a p e  Optimizat ion 

The present problem formulation has thirteen design vari- 
ables (spn; and at the wing root, mid and tip sections: 
thkscal,  chdscal,  tranx and twst). Each section of this 
wing is initially a NACA-0004 airfoil defined in the x - z 
plane. The objective function is selected to be the maxi- 
mization of CL/CD, subject to 14 geometric and two aero- 
dynamic inequality constraints: 

studies are presented next. 

CL 2 CLrni, , CD 5 CD,,, , 
Effect of Viscosity o n  Flow and Sensitivity Analyses V . , o . 8 ~ i + t i ~ ~  initial 

(1) 

wing , wing , Amidspan 2 0.6Amidspan , (2) 
The initial arrow wine used for this purpose has thickness- 
to-chord ratio of 4%, gading- and tr&g-edge angles (ALE, and at  the root, mid, and tip sections: 
ATE) of 72-deg and 56.3-deg, respectively, and an aspect 
ratio of 1.01. The present wing is considered to be at  a 2' _< @0.90chord 1 20' , 2' _< 80.98chord 5 20' , (3) 
4.5-deg angle-of-attack (aoa) to an oncoming freestream 
flow of Mach 2.4. To retain the validity of the laminar where, CL,~,, and Co,,, are the threshold values of the 
flow assumption for the current viscous optimization, the lift and drag coefficients, respectively. V denotes the wing 

3Dimensions in streamwise, normal and spanwise directions, respectively. 



volume, A denotes wing section area and 6 is the traiIing- 
edge included angle. The current problem formulation also 
imposes side (equality) constraints on the design variables. 
The utility of imposing such volume and angle constraints 
has been discussed in Ref. 11. 

A reliable and comprehensive wing design method- 
ology should be able to address issues, such as, the effects 
of grid refinement and viscosity on the optimized shape. 
Thus, the primary objective of this study is to quantify 
these effects and somewhat elevate the present wing de- 
sign methodology from the realm of conjectures on these 
issues. Note that for all the analysis cases studied above 
for the identical initial shape (Figure 3 and Table I), the 
flowfields themselves are different in their character, conse- 
quently, they predict different values of lift and drag coeffi- 
cients. These deviations would generate, even for the exact 
same values of C L , ~ ~  and CD,,,, different initial aerody- 
namic constraints and would lead the optimizer to compute 
different search directions and optimized shapes. To neu- 
tralize this initial influence on the optimizer and facilitate 
judicious evaluation of the effect of grid refinement and vis- 
cous computations enroute to the optimized shape, CLmin 
and Corn,, values are altered to obtain identical initial con- 
straints. Therefore, a test matrix of six cases is reached, 
as given with their rationale in Table 3. In these optimiza- 
tion studies, full CFD analyses are used for the flowfield 
computations, prior to the search direction evaluations as 
well as for the one-dimensional searches. During the one- 
dimensional searches, the wing geometry is perturbed by 
varying the design variables in 1% increments (Acu = 0.01). 

The primary objectives for cases 1-4 (Table 3) are 
to study the effects of initial constraints on the optimized 
shapes and to compare the optimized shapes generated by 
the Euler- and TLNS-based computations for the identi- 
cal values of initial aerodynamic and geometric constraints. 
Due to the consideration of the available computational re- 
sources, only the coarse-grid computations are performed. 
To make the comparisons rather broad-based, two sets 
of initial aerodynamic constraint conditions are selected. 
For the first condition, lift constraint is violated and drag 
constraint is inactive (lift-driven design, cases 1 and 2), 
whereas for the second condition, lift as well as drag con- 
straints are violated, with the drag violation being more 
severe than the lift violation (drag- and lift-driven design, 
cases 3 and 4). 

Presented in Table 4 is a summary of aerodynamic 
features,. geometric changes, and statistics for cases 1-4. 
The opt~mized wing shapes for these cases are contrasted 
against the initial shape in Figure 4 and the corresponding 
evolutions of the objective function and the aerodynamic 
coefficients are given in Figure 5. For both the Euler and 
the TLNS cases, the results are distinctly different for the 
two sets of initial constraint conditions (In Table 4 and Fig- 
ures 4 and 5: case 1 vs 3, and case 2 vs 4). As explained be- 
fore, these two constraint conditions represent lift-driven, 
and drag- and lift-driven designs, respectively. This dif- 
ference leads the optimizer to derive the pertinent aero- 
dynamic performance improvements along different search 
directions in the design space and, hence, produces very 
distinct designs as illustrated further below. For the cases 
with initially violated lift constraint and inactive drag con- 
straint (cases 1 and 2), search directions are evaluated with 
the emphasis on the lift improvement, even incurring a drag 
penalty. This is reflected in the optimized shapes having re- 
duced leading-edge sweep of inboard wing and positive geo- 
metric twists of the sections. The first search direction also 
results into substantial drag increase with the concomitant 
lift improvement. This increase in drag violates the drag 
constraint and, in the later stages of the optimization, is 
sought to be satisfied via a reduction of the wave drag due 
to the volume. The effect of viscosity appears to be of sec- 
ondary importance for these cases (see, e.g. cases 1 and 2 in 
Figure 4). 

For the cases that initially violated lift and drag con- 
straints, with the drag violation being more severe (cases 3 
and 4), the optimizer generates the search directions by fo- 
cusing on drag reduction, leading to the optimized shapes 
with increased leading-edge sweep, reduced thickness-to- 
chord ratios, and substantially trimmed wings. 

Another remarkable feature of the optimized de- 
sign is that outboard portions of the optimized wings have 
drooped leading edges. TLNS-based optimized wing has 
an outboard portion with more pronounced leading edge- 
drooping as compared to that of the Euler-based optimized 
wing (Figure 4). This trend can be linked to the realiza- 
tion of the leading-edge thrust potential, which has been 
reported in the literature [14,15]. The main idea is to re- 
duce the vulnerability to separation, by aligning the wing's 
subsonic leading edges with the freestream, which inturn, 
reduces the suction peaks and the entailing adverse pres- 
sure gradients due to the pressure recovery. AIthough the 
evolution trends (Figure 5) of respective objective functions 
and aerodynamic constraints are similar, large differences 
exist in their values. This is a natural outcome of exclud- 
ing the friction drag from the Euler computations, and its 
minor variations, as compared to the inviscid drag, dur- 
ing the TLNS-based optimization. Again, it is noted that 
the Euler- and the TLNS-based optimized shapes and their 
aerodynamics are quite different for the identical values of 
CL,~,, and CD,,, (cases 1 vs 4, Table 4). 

The second phase of the study involves the fine-grid- 
based optimization cases using the Euler and TLNS anal- 
yses (cases 5 and 6, respectively, in Table 3). For these 
cases, only one set of initial aerodynamic constraints, vi- 
olated lift and drag constraints, is chosen (comparable to 
cases 3 and 4). A summary of the results is presented in Ta- 
ble 4. The optimized shapes are compared with each other 
and the initial shape in Figures 6 and 7. The evolution of 
the objective function and the aerodynamic coefficients are 
recorded and compared in Figure 8. 

The optimized shape from the fine-grid TLNS-based 
computations is substantially different, as compared to 
those from the fine-grid Euler- and coarse-grid TLNS-based 
computations. The leading-edge drooping, as observed in 
the outboard portion of the optimized wing from the coarse- 
grid TLNS-based computations, is absent from that of the 
fine-grid TLNS-based computations (case 4 vs case 6, Fig- 
ures 6 and 7). Although, the optimized shapes are not quite 
similar in these cases, their aerodynamic performance im- 
provements towards the respective optimized shapes, dis- 
play similar trends (Figure 8). However, as seen in Table 4, 
the fine-grid TLNS-based optimization requires much more 
CPU time as compared to cases 4 and 5 (18.52 hr vs. 1.10 
hr and 6.78 hr). 

Finally, various optimized wing designs generated 
with different computational strategies (cases 3-6), are re- 
analyzed via the fine-grid TLNS-based flowfield computa- 
tions, and denoted as cases 3'-6'. These high-fidelity, post- 
optimization flowfield analyses provide a common mea- 
sure of merit for various optimization cases and illustrate 
the trade-off between computational efficiency and perfor- 
mance gain. A summary of these results is presented in 
Table 5. Note that CLICD values now compare differ- 
ently for these cases (3-6 in Table 4 vs 3'-6' in Table 5). 
It is observed from Table 5, that the optimized wing of 
coarse-grid TLNS-based computations (case 4') yields aero- 
dynamic performance comparable to that of the optimized 
wing of the fine-grid TLNS-based computations (case 6'), 
while retaining its higher computational efficiency. How- 
ever, the fine-grid Euler-based optimized wing design (case 
5' )  yields the lowest aerodynamic performance. 

SUMMARY AND CONCLUSIONS 

A gradient-based optimization procedure has been demon- 
strated for the viscous flow conditions, by optimizing an 



arrow wing in supersonic freestream. Initially, the viscous 
flow analyses have been successfully compared with those 
from a highly validated CFD code. The viscous effects, 
when properly resolved, dictate differences not only in the 
flow analyses but also in the sensitvity analyses and the 
shape optimization. The present studies also demonstrate 
the strong influence of the changes in the initial constraints, 
on the optimization path and the overall aerodynamic per- 
formance improvement. The drag- and lift-driven optimiza- 
tion renders better performance, as compared to merely 
a lift-driven optimization. However, the relative merits of 
each optimization strategy would not be understood, hence 
properly compared, unless a uniform and a reliable method 
of evaluating their final designs is devised and implemented. 
For the added value to the aerodynamic performance, the 
viscous fine-grid design strategy is the most effective, the 
Euler fine-grid design is the least effective, and the vis- 
cous coarse-grid design ranks somewhere in between. As for 
the CPU-time requirement of these three cases, the viscous 
fine-grid design requires the highest, the viscous coarse-grid 
design requires the lowest, whereas, the Euler fine-grid de- 
sign ranks between these extremes. 

From these results, it may be concluded, that to pro- 
duce an aerodynamically efficient design, i t  is imperative to 
include the viscous physics in the optimization procedure. 
This would be advantageous, even if the viscous effects are 
only approximately resolved, as it may be necessary due to 
the conceivable CPU-time constraints. Actually, to  better 
utilize the computational resources, it is recommended that 
a number of viscous coarse grid cases are initially explored, 
so to improve the optimization problem definition and the 
design space for the initial shape. Subsequently, the opti- 
mized shapes should be analyzed using high-fidelity (vis- 
cous, fine-grid resolution) flow analyses, to evaluate their 
true performance potential. Finally, a fine-grid shape o p  
timization should be conducted, using the AD1 method, to 
accurately obtain the final optimized shape. 
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Table 1: Efficiency and accuracy comparisons of various cases for flowfield analysis" 

Euier TLNS -- - 

Coarse Gnd Flne Gnd Coarse Gnd Fme Gnd 
( 4 3 x 1 5 ~ 9 )  ( 8 5 x 2 9 ~ 1 7 )  ( 4 3 x 1 5 ~ 9 )  ( 8 5 x 2 9 ~ 1 7 )  

Iterations 237 401 236 686 
CPU time (sec) 278.7 3202.1 281.5 5646.7 
Memory ( M W )  2.25 18.2 2.25 18.2 
C L  0.12762 0.13298 0.12515 0.11488 
C D  0.01248 0.01200 0.01629 0.01893 
(CL  / C D  ) 10.226 11.079 7.681 6.068 

'Computed flowfield for M, = 2.4 on initial arrow wing. 

Table 2: Efficiency and accuracy comparison of various cases for sensitivity analysis* 

Euler TLNS 
Coarse Gnd k me Gnd Coarse Gnd k me Gnd 
( 4 3 x 1 5 ~ 9 )  ( 8 5 ~ 2 9 x 1 7 )  ( 4 3 x 1 5 ~ 9 )  ( 8 5 x 2 9 ~ 1 7 )  

Iterations 
CPU time (sec) 

'Computed flowfield for Ma, = 2.4 on initial arrow wing; direct sensitivity 
method with t9(2.5) convergence. 

"Parameters as defined in Figure 1. 

Table 3: Summary and rationale of optimization cases 

Case no. Equations Grid CL,,,~,, CDrnax Initial constraints0 
Lift Drag 

1 Euler coarse# 0.15000 0.01285 0.14923 vt -0.02879 I 
2 TLNS Coarse 0.14710 0.01678 0.14925 V -0.02901 I 
3 Euler Coarse 0.15297 0.00984 0.16575 V 0.26830 V 
4 TLNS Coarse 0.15000 0.01285 0.16570 V 0.26800 V 
5 Euler Fine* 0.15940 0.00946 0.16575 V 0.26832 V 
6 TLNS Fine" 0.13698 0.01479 0.16569 V 0.26794 V 

*Coarse: 4 3 x  15x9  points; *Fine: 8 5 x 2 9 ~ 1 7  points; **Fine: 8 5 ~ 2 9 x 9  points. 
f ~ i f t  = 1 - CL/CLrni,, Drag = CD/CDrn,, - 1; t ~ :  violated, I: inactive. 

Rationale Eitect of Constraints Effect of Viscosity Effect of Grid 

Cases Euler 1 Vs 3 Coarse 1 Vs 2 11 3 Vs 4 Euler 3 Vs 5 
TLNS 2 Vs 4 Fine 5 Vs 6 TLNS 4 Vs 6 



Table 4: Optimization results for cases 1-6  

Case 1' Case 2 Case 3 Case 4 Case 5* Case 6 

CL 0.13790 0.13541 0.13156 0.12839 0.13425 0.12453 
CD 0.01290 0.01680 0.01075 0.01438 0.01073 0.01673 
C L / ~ D  10.69 8.06 12.24 8.93 12.52 7.44 
Lift constraint 0.0807 0.0794 0.1399 0.1441 0.1578 0.0909 
Drag constraint 0.0037 0.0012 0.0923 0.1188 0.1333 0.1317 
Aspect ratio 0.862 0.877 0.775 0.725 0.786 0.607 
% ~ i n I t i a I  

mid. 101 99 80 86 107 119.6 
y0vinitral 95 92 81 80 106 107 

~ ~ Z d e g )  69.4-72.4 68.9-71.9 72.6-74.3 70.8-73.9 72.5-74.6 70.473.5 
3.7 3.8 2.29 2.1 3.0 2.2 

(t/~)root,mid,tip (%) 3.1 3.0 1.97 1.62 2.7 1.4 
1.5 1.4 1.41 1.44 1.5 1.54 

0.10 0.11 0.13 0.23 0.05 0.25 
(t~st)roor,mid,tip (deg) 0.08 0.09 -0.03 -0.11 0.01 0.14 

0.01 0.01 -0.07 -0.16 -0.01 -0.01 
Lift change (%) 8.05 8.19 3.09 2.59 0.96 8.97 
Drag change (%) 3.35 3.13 -13.86 -11.76 -10.58 -11.62 
1-D searches 36 37 57 73 31 82 
Gradient evaluations 4 4 11 10 3 8 
Memory (MW) 3.58 3.60 3.58 3.60 20.99 12.37 
CPU time (hr) 0.63 0.58 1.15 1.10 6.78 18.52 

'Cases 14 with coarse grid: 43x 15 ~ 9 .  
#Case 5 with fine grid: 8 5 ~ 2 9 x 1 7 ,  Case 6 with fine grid: 8 5 ~ 2 9 x 9 .  

Table 5: Aerodynamic performance and efficiency comparisons 
of optimized shapes from various cases*: 

Case 3' Case 4' Case 5' Case 6' 

CL 0.11915 0.12323 0.11558 0.12453 
C~inviscid 0.00966 0.00991 0.00974 0.01037 
CD viscous 0.00701 0.00680 0.00708 0.00636 
C~totsi 0.01667 0.01671 0.01682 0.01673 
CL /CD 7.15 7.38 6.87 7.44 
CPU# time (hr) 1.97 1.92 7.63 18.52 

TLNS flowfield analysis for M, = 2.4, 8 5 ~ 2 9 x 9  C-H grid. 
#Includes respective optimization and current flowfield analysis 

Figure 1: Wing Parameterization. 
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Figure 2: Comparison of chordwise pressure coefficients on 
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Figure 3: Effects of grid refinement and viscosity on 
the chordwise pressure coefficient distributions. M=2.4, 
aoad.5-deg. 
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Figure 8: Evolution of objective function and aerodynamic 
coefficients from optimization cases 3-6 


