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The sixth annual Space and Earth Science Data Compression Workshop and the third 
annual Data Compression Industry Workshop were held as a single combined workshop. 
The workshop was held April 4,1996 in Snowbird, Utah in conjunction with the 1996 IEEE 
Data Compression Conference, which was held at the same location March 31 - April 3, 
1996. 

The Space and Earth Science Data Compression sessions seek to explore opportunities 
for data compression to enhance the collection, analysis, and retrieval of space and earth 
science data. Of particular interest is data compression research that is integrated into, or 
has the potential to be integrated into, a particular space or earth science data information 
system. Preference is given to data compression research that takes into account the scien- 
tist's data requirements, and the constraints imposed by the data collection, transmission, 
distribution and archival systems. 

Topics of interest for the Data Compression Industry sessions include but are not limited 
to: multimedia (text, images, video, speech, music, maps, graphics, animation), medical 
imagery, security applications, wavelets, compressed imagery through low data communica- 
tion paths. All proposed topics address operating issues such as MIPS/MFLOPS required, 
throughput, hardware platforms, performance, etc. "This is applied compression." 
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TT-5 Mail Stop 238-420 
P.O. Box 1062 4800 Oak Grove Drive 
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This publication was prepared by the Jet Propulsion Laboratory, California Institute of 
Technology, under a contract with the National Aeronautics and Space Administration. 
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1. ABSTRACT 

The wavelet transform is nicely suited to image compression applications. The nature of the 
transform permits quantization and coding that provide reconstructions with quality supe- 
rior to that of many other techniques at equivalent bit rates. Superiority of the approach 
appears to  be especially evident at very low compressed rates. The simultaneous localiza- 
tion of both spatial and frequency content inherent in the standard Mallat decomposition 
allows successful implementation of coding strategies over a wide range of complexity. 

In this paper, a simple technique is described which exploits the structure of the wavelet 
decomposition to permit the progressive transmission of images on an interactive basis. This 
technique is ideally suited to image transmission in a limited communications bandwidth 
environment. It may also be applied to image archive and browsing systems. A summary 
of the system is as follows. A scalar quantization and entropy coding scheme is used 
to produce a database of available imagery. Users submit requests for imagery to the 
database via a graphical user interface. Upon initial request, a low resolution version of the 
image, which corresponds to the lowest resolution coefficients in the wavelet decomposition, 
is transmitted and reconstructed. The user can then isolate specific regions of interest 
within the image and request additional levels of detail. If all levels of detail are sent, the 
transmitted image is visually indistinguishable from the original. Processing requirements 
are outlined and the efficiency of the progressive transmission strategy is examined as a 
function of communications bandwidth and processor speed. 

2. INTRODUCTION 

The wavelet transform, pioneered by the works of Mallat [I] and Daubechies [2,3], has be- 
come a useful tool for many problems in signal processing. For grayscale images it provides 
a convenient framework for exploiting the spatial localization of image detail at many scales. 
Such exploitation might take the form of image compression, in which the various decom- 
position levels are represented with different fidelity. It might also involve multi-resolution 
analysis, in which different spatial regions are examined at different resolutions. 

An application that spans both arenas is interactive progressive image transmission. For 
purposes of this paper, progressive image transmission is defined as the transmission of 
an image such that certain regions may be represented with higher spatial resolution than 
others. Furthermore, transmissions are ordered from lowest to highest resolution within a 
region so that the final product is built or refined in a layered fashion. A desirable property 



is that the maximum resolution representation be, at minimum, visually indistinguishable 
from the original image. 

In this paper it will be shown that simple wavelet transform-based image compression 
provides an excellent framework for progressive transmission. Furthermore, the spatial 
localization of the transform can be exploited to make the progressive transmission in- 
teractive in a client /server environment. While useful for archive/browsing architectures, 
the application seems most suited to image transmission over severely limited communi- 
cations channels. Necessary computational resources are discussed in relation to available 
communications bandwidth. 

3. WAVELET IMAGE COMPRESSION AND PROGRESSIVE TRANSMISSION 

Many references address wavelet-based image compression. A brief overview is presented 
here. For more in-depth treatments, the reader is referred to [5]. 

In the basic wavelet compression architecture, the pyramid decomposition of Mallat, as 
shown in figure 1, is performed as the first step in the process. Low-pass and high-pass 
filters are applied (separably) in each direction with the results down-sampled by a factor of 
2 in each direction. At the image boundaries, the finite extent of the convolution is typically 
handled by reflection. This results in a transform with a number of elements equal to the 
number of pixels in the original image. The decomposition is typically repeated upon the 
all low-pass branch as permitted by the original image size and filter length. 

The second step in the compression process is typically a resolution-dependent quantiza- 
tion. In general, the wavelet transform isolates the most crucial image information at  the 
lower resolution levels of the decomposition pyramid. Thus, quantizers for those levels 
typically have smaller widths and therefore introduce relatively little distortion. Transform 
coefficients at  higher resolutions tend to be less important in reconstructing the image, and 
thus the corresponding quantizers are typically wider. Quantizers can be scalar or vector, 
they can be uniform or variable-width, and they can be fixed across a decomposition level 
or spatially adaptive. Unless the quantization strategy is image independent, sufficient 
information regarding the quantizer must be stored to allow reconstruction during image 
expansion. 

In the final step of the compression process, one typically performs entropy reduction coding 
on the quantized coefficients. Run length coding is often employed to reduce redundancy in 
areas of little detail. Huffman or arithmetic coding is then applied to perform final entropy 
reduction. In either case, sufficient information regarding the code must be stored to permit 
decoder reconstruction, i.e., the code it self, a sufficient description of the probability model, 
etc. 

The reconstruction process is a straightforward inversion of the compression steps. The 
entropy code is undone to produce the quantized coefficients. The de-quantized coefficients 
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Figure 1: Wavelet decomposition flow diagram and pyramid structure. 

are produced from knowledge of the quantization process. Finally, the inverse wavelet 
transform is applied as in figure 2 to produce the expanded image. 

This hierarchical image representation naturally provides a mechanism for constructing a 
progressive transmission system as defined in section 2. In particular, a layered approach to 
increasing image resolution is easily achieved. To make this more specific, consider the two- 
level decomposition illustrated in figure 1. Initially, a low resolution version of the image 
is available in the form of sub-image LL2. This sub-image roughly represents the original 
image degraded in resolution by a factor of 4 in each direction. Even though sub-image 
LL1 is not directly present in the pyramid, it can be obtained by appealing to the recursive 
nature of the wavelet decomposition and inverting the transform used to obtain sub-images 
LL2, LH2, HL2, and HH2. If sub-image LL2 is already on hand, only the the additional 
detail sub-images must be transmitted. A similar recursion allows LLO, the original image, 
to be obtained from the reconstructed LL1 and all of the high-pass details at that level. 

Proof that multiple resolutions are available within different reconstructed regions requires 
only the observation that the decomposition involves filters of a finite length. More specif- 
ically, consider a particular region of size w by h pixels in the original image. Using filters 
of length L, that area is mapped to a region of size L+h-1 by 9 samples in each 
of the four resulting sub-images. No values outside the resulting regions are required to 
reconstruct the original higher resolution area. Again appealing to the recursive nature of 
the decomposition, the same argument can be extended to account for regions of an image 



Figure 2: Inverse wavelet transform flow diagram. 
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as they propagate down the transform pyramid. Thus multiple image regions can be recon- 
structed at  differing resolutions. Another way to visualize this process is to consider that 
one has the entire wavelet decomposition available. Selectively setting coefficients equal to 
zero results in a loss of some resolution level in a given region. The effect of this operation 
is the inverse of progressive transmission, where initially all coefficients are unknown and 
the receiver steadily and selectively gains more knowledge of their values. 

Since the compression process can be separated from the transmission process, the final 
part of the system definition can be satisfied. In particular, it is possible to determine 
compression system parameters that provide a visually lossless result when the maximum 
level of detail in a given region is requested. Some of the issues involved in selecting 
compression options to facilitate progressive image transmission are discussed in the next 
section. 

~ H P F  

4. TAILORING COMPRESSION TO PROGRESSIVE TRANSMISSION 

- 

Superior compression performance is generally obtained with more sophisticated compo- 
nents in the description above. For example, arithmetic coders are known to outperform 
Huffman coders in most circumstances, though they are comparatively somewhat more 
complicated to  implement. Progressive transmission presents a number of operational and 
architectural requirements that favor simple or uncommon strategies for compression. This 
section addresses several aspects of the specific choices in the compression architecture that 
were made to  facilitate progressive transmission. 

HL 

4.1. Filtering and Decom~osition 

- 

As shown in section 6, the time required to update a region in this progressive transmission 
architecture is directly proportional to the length of the reconstruction filter(s) . Thus, this 
system uses short convolution kernels, typically the Daubechies 4 of 6-tap filters. While 
superior compression performance can be obtained with other kernels, such as the bi- 
orthogonal 7-9 kernel, these advantages are typically realized at compressed rates much 
lower than those required for visually lossless reconstruction. 
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An unconventional choice is preferred regarding handling of image edges. The system typ- 
ically operates on either 1024x1024 or 512x512 pixel image chunks. Padded values of zero 
are added to the edges to accommodate the finite convolution extent. This allows extremely 
large images to be blocked into chunks and compressed independently with minimal pro- 
cessing impact on the reconstruction system. If a desired region spans two chunks, the 
linearity of the wavelet transform allows addition of the required coefficients after proper 
alignment. This in turn allows a single convolution sequence to reconstruct the adjacent 
regions from the two chunks. Note that if reflection or circular wrapping logic is applied 
during the decomposition, independent convolutions must be applied to extract each of the 
adjacent regions separately. Padding the image with zeros does imply additional storage 
cost. For a chunk of w by w pixels and a filter length of L taps, roughly 2Lw additional 
transform samples must be stored than in the edge reflection case. Again, when targeting 
visually lossless compressed rates, this choice does not impose a major storage penalty. 

4.2. Quantization 

In this application, a uniform scalar quantizer is preferred to  others for a variety of reasons. 
First, the uniform scalar quantizer can be communicated with a single parameter - the 
bin width. De-quantization is performed by a simple multiplication, or if table look-up is 
desired, a non-iterative process can be used to construct the table. A ~ l o ~ d - ~ & x  quantizer, 
in contrast, would require either iterative construction during de-quantization, or storage 
of a large library of pre-computed tables: either choice would place additional burden on 
the expander. 

A vector quantizer might provide some performance gains but would suffer two drawbacks: 
the codebook for each decomposition level (or region) would have to be transmitted as over- 
head sometime during system operation, and additional expander logic would be required 
to extract only the desired coefficients from the vector quantized blocks. A state-dependent 
quantizer, such as a trellis-coded quantizer, would imply that st ate information be trans- 
mitted as required, e.g., at the end of each row of a region, to resynchronize the decoder 
st ate. For small rectangular regions, this resynchronization information would comprise a 
relatively large fraction of the transmitted packets. 

4.3. Entropy Coding 

All decomposition levels (other than the all low-pass sub-image) are assumed to have coef- 
ficients that obey a Laplacian distribution. The Laplacian parameter is easily estimated by 
the absolute mean of the coefficients. Furthermore, given the quantizer width, a Huffman 
code that matches the expected coefficient distribution can easily be constructed at  both 
the compressor/server and the expander/client. Communicating the entropy code therefore 
requires only a single parameter. At the relatively high compressed bit rates required for 
visually lossless compression, rate control using this quantizer is simple due to consistently 
accurate estimation of the coded bit rate. 

Stable compressor rate control is also a factor that influences the choice against run-length 



coding. A more critical factor, however, is that 'interesting' image regions, those most 
likely to be updated in a progressive fashion, typically contain few coefficients equal to 
zero. Furthermore, even in the presence of some zero coefficients, the run-length coder 
would likely benefit the server only, since updated regions are typically much smaller in size 
than the original image, and run-lengt h coding benefits would therefore be proportionally 
reduced. 

5. APPLICATIONS 

Two major applications are envisioned for interactive progressive image transmission. The 
scheme fits nicely with image archive and browse architectures. It also directly supports 
image transmission over low bandwidth channels. Each of these applications is addressed 
briefly in the sections that follow. 

Under this scenario, the image is compressed to a relatively high target rate, perhaps 2.5 to 
3.0 bits per pixel, so that visually lossless, archive quality is achieved. (A residual coding 
scheme could be employed to allow fully lossless reconstruction.) The compressed images 
are available via server, and the transmission rate is assumed to be very high - local area 
network, ethernet, or higher rates. 

The user can browse 'thumbnails' of the available imagery simply by viewing the all low- 
pass version of each available set. When an image of interest is found, the desired image 
can be requested at any resolution &, i = 1, . . . , N, where G is the original resolution 
of the image and N is the number of levels in the wavelet decomposition. The required 
resolution levels are then provided to the browser where the wavelet transform is inverted. 
Alternatively, the need for decoding software at the browser can be eliminated by allowing 
the server to perform the inverse transform and then transmit the result. 

In either case, network transmission is minimized by providing the image only at the 
resolution required by the browser. The emphasis in this application, however, is on the 
compressed image and its format. The wavelet compression process on its own significantly 
reduces the storage costs associated with the archive. At the same time, it naturally 
provides a sequence of lower resolution overviews to aid users in selecting a piece of data 
appropriate to  their needs. 

5.2. Limited Communications Bandwidth 

Suppose that the user at the end of a low bandwidth communications link (perhaps as low 
as 2.4kbits per second in some problem environments) desires useful imagery in as little 
time as possible. Transmission of an entire high resolution scene at  full dynamic range 
would be prohibitive due to time constraints. The following strategy might dramatically 
improve the situation. To begin, send a low resolution version of the image; this corresponds 
to transmitting the all low-pass portion of the wavelet transform. If the wrong image is 



transmitted, little time has been lost because the low-pass portion of the wavelet pyramid is 
small relative to the original image size. If the image appears correct, the client can request 
another level of detail for any image subsection. In that case, the appropriate subset of 
transform coefficients is extracted from the compressed file by the server and transmitted 
to the client. The client then inverts the wavelet transform only for the requested region 
and updates that portion of the image to the next higher resolution. The process can be 
continued until the desired level of fidelity is achieved in all areas of interest. 

In this scenario, the emphasis of the application is on the compression savings and the spa- 
tial localization properties of t he wavelet transform. Exploiting these properties can result 
in a reduction in the time required to transmit and receive a useful image product. The 
exact nature of the savings is determined by the specifics of the transform, the transmission 
link, and the client's processing capabilities as illustrated in the following section. 

6. COMMUNICATIONS/PROCESSING TRADE 

An image of a certain width and height is transmitted across a link of fixed rate. The initial 
transmission is a low resolution version of a large image. A user selects a region of interest 
in the low resolution version, and requests it at twice its current resolution. The request 
can be honored in one of two ways. Raw pixel data for the entire requested region at the 
higher resolution can be transmitted. Alternatively, wavelet progressive transmission can 
be used so that the higher resolution piece is obtained by filtering operations applied to 
the current piece and a transmission of additional image detail. The preferred method is 
to be determined based upon minimal time consumption. 

In the development that follows, the following definitions will be used: 

L = length of decomposition filter, pixels 

B = precision of original data, bits/pixel 

R = transmission link rate, bitslsecond 

F = processor rate in floating point operations (flops)/second 

It will be assumed that the computational cost of inverting the wavelet transform dominates 
the processing time for the client. Note that this assumption neglects any cost of memory 
management that the client must perform. Memory management involving the image 
display is likely to be roughly equal for each of the approaches. Memory management 
costs associated with input/output of received transmission are also likely to be roughly 
equivalent. For large images, however, memory management in computing the inverse 
wavelet transform may be non-negligible. Analysis of these effects would require specific 
knowledge of the implementation platform and are beyond the scope of this paper. 

Now assume that a region of size by 5 is present and it is desired to increase the resolution 
by a factor of two. The resulting image will be w by h pixels in size. Each of the resolution 
enhancement strategies is now analyzed in terms of total time required. 



6.1. Increased resolution from raw ~ i x e l  data in reauested region 

In this case, raw data for each of the desired wh pixels must be transmitted. This operation 
will reauire a time 

seconds. The time required to display the received image is neglected and assumed equal 
for both strategies. 

6.2. Increased resolution from decom~osed data and inverse filtering 

It is first necessary to derive an expression for the total number of operations required to 
invert a single level of the wavelet transform as illustrated in figure 2. In this development, 
it is assumed that w, h >> L, so that additional operations due to the finite convolution 
extent are negligible compared to those required for the central region. In the column 
filtering stage of reconstruction, all four detail sub-images of width 5 are upsampled to an 
output width of w. Computation of each output point requires only $ multiplications and 

additions, since half of the upsampled points are known to be zeros. Since the output 2 
width of this stage is f, a total of 4(5 + $ ) t h  = 2Lwh operations are required to perform 
the inverse column filtering. Pairs of the resulting data streams are added together at  this 
point, requiring a total of wh additions. 

Now the row filtering operations begin. By similar analysis, the number of operations 
need to perform the high-pass and low-pass row filtering is 2Lwh flops. Finally, the two 
filter outputs of width w and height h are added, requiring wh flops, to form the higher 
resolution output. The total number of operations to reconstruct the initial image from its 
first decomposition level is then: 

Since the wavelet decomposition is a floating point operation, the difference in transmitted 
coefficient precision must be addressed. In the progressive transmission architecture as 
described, each decomposition level is quantized so that a given target bit rate is achieved. 
Thus exact analysis of the number of bits required to send the required coefficients is 
difficult. For convenience, it is assumed here that the resulting decomposition coefficients 
are truncated to the precision of the original image. The analysis is therefore pessimistic 
regarding the time required to transmit the required wavelet data. (This discrepancy is 
addressed in the following section.) 

One of the four sub-images of size Y by $ that will be filt,ered is already present. Three 
sub-images must therefore be transmitted, each with a precision of B bits. The time for 
transmission is 



seconds. After reception, the inverse filtering for one level must be performed. From the 
development above, this will require 2(2L + 1)wh flops and require 

seconds. The total time for this method is then 

seconds. 

6.3. Timing comparison 

The methods require equal time when 

then the transmission of raw pixel data is time optimal: otherwise, the filtering method is 
preferred. This result is independent of the number of pixels desired and depends only on 
the link rate, the data precision, the length of the reconstruction filter, and the processor 
speed. 

This relation shows that under conditions of severely limited bandwidth or abundant pro- 
cessing power, a progressive transmission system based on image subbands is preferable to 
transmission of raw data if overall speed is the only factor that must be optimized. To 
make the illustration more concrete, assume typical values for image dynamic range B of 8 
bits and filter length L of 6 taps. Then the ratio of progressive transmission time required 
to raw transmission time required is 

The factor of at the front of this expression can be traced to the fraction of samples 
transmitted in the progressive transmission case relative to the raw case. Had the analysis 
taken into account the compression savings achieved by the approach, this factor would 
instead be :a, a < 1, SO that 



with a typical value of a zi f corresponding to 3:l compression. 

The above expression provides two insights. First, in order for progressive transmission to 
make sense, the time ratio must be smaller than 1. This is achieved when > 13. This is 
generally true for even modest desktop computers when the communications link rate is near 
modem rates. (For example, a 1 megaflop machine combined with a 38.4kbps link provides 
5 m 25.) Second, the ultimate time savings given infinite processing speed is limited by 
the pyramid structure and the compression ratio to a factor of 5. Under these conditions, 
assuming approximately 3:l compression, the maximum savings in time is a factor of 4. 
Such savings can be critical in tactical applications, or can make imagery-based products 
more appealing in consumer applications by substantially decreasing response latency. 
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Abstract 

The discrete wavelet transform has proven to be an effective technique for the compression of digital imagery at 
very low rates. This has lead to increasing interest in commercial, intemational, medical, and governmental arenas 
in the wide-spread use and standardization of this technology. As the popularity of wavelet based image 
compression systems grows, issues regarding the transmission of wavelet-compressed imagery must be addressed. 
The analysis, correction, and containment of bit errors in the transmission of wavelet-compressed imagery 
represents a challenging area of research. 

The focus of this paper is to investigate transmission error effects in an adaptive wavelet image coder that 
utilizes universal trellis-coded quantization (UTCQ) [I, 21 and adaptive arithmetic coding [3 - 51 to generate coded 

-5 -3 
bitstrearns, and propose a re-initialization mechanism for error recovery. Bit error rates (BERs) in the 10 to 10 
range are considered and the visual manifestations of bit errors in the reconstructed image are shown. The usage 
of a trellis quantizer complicates error containment since corrupted quantization indices may lead to loss of 
tracking of the trellis state and propagation of decoding error. Comparisons to NZTFS-JPEG, where restart 
intervals are mandated to minimize error propagation, are made. 

1. Introduction 

Wavelet image compression systems suffer unique difficulties in a noisy environment. In addition to the 
customary problems associated with entropy-coded data streams, the hierarchical nature of wavelet systems can 
increase the effect of transmission errors in the reconstructed image. Given a wavelet filter of length N, and a dyadic 
pyramid k levels deep, the spatial extent of reconstructed image pixels affected by an error in a single wavelet 
coefficient can be shown to be MxM pixels, where M = 2k + (2k - l ) (N - 2)  . For an &tap filter pair and 5 level 
pyramid, an error in one of the lowest resolution wavelet coefficients will affect an area of 218 x 218 pixels. 
Coefficients nested deep in the resolution hierarchy will have a more profound impact on the image reconstruction 
should an error occur there. On the other hand, the non-hierarchical P E G  modes do not suffer from this problem 
since the error effects are constrained to the 8 x 8 DCT block in which the coefficient in error is located. 

Error resiliency to transmission errors can be obtained by careful design of the compressed representation; it 
does not necessarily exclude any particular image representation schemes such as transform coding, vector 
quantization, or wavelets. Unfortunately, compression algorithms are usually designed assuming an idealized noise- 
free channel. A key aspect of any practical compression implementation for transmission is the interaction of channel 
errors with the compressed data stream. In general, transmission error effects can be considerably minimized or even, 
in certain cases, completely eliminated by providing error protection using error detection codes and forward error 
correcting codes (FEC) on the compressed bitstream. The selection and implementation of an appropriate error 
detection and error correction mechanism, known as channel coding, depends on the characteristics of the 
transmission channel. Traditional designs approach source coding and the channel coding separately. This approach 
is reinforced by network protocol stacks such as the IS0 7-layer stack. This layered approach allows a modular 
solution that can be readily reconfigured for different scenarios. However, overall throughput can be maximized 
when the source and channel coding are jointly designed. This is especially true for low bandwidth noisy channels 
rather than high bandwidth ethernet, FDDI, and ATM networks. 

The National Imagery Transmission Format Standard (NITFS) [6] addresses the problem of image transmission 
in noisy environments. The current set of algorithms are extensions to JPEG that accommodate error detection and 
recovery using re-initialization points, called restart intervals, in the data stream. Depending on the application, 



image regions in which errors are detected can be marked as erroneous or, in duplex transmissions, a protocol can be 
implemented to re-transmit such data segments. NITFS has adopted the Tactical Communications Protocol 2 
(TACO2) as part of its suite. TACO2 provides a packet-based communications protocol designed to operate in 
arenas not addressed by other protocols [7]. Imagery sent over noisy, low-bandwidth, simplex communication 
channels is an example. An image compression system which provides some measure of robustness to noise is 
necessary, but these considerations must include the communication protocol in use. 

2. Adaptive Wavelet-UTCQ Image Coder 

Wavelet based compression has many attractive features due to its multiresolution nature. Figure 1 shows the 
analysis process for a one dimensional signal. A single level decomposition yields two outputs: the output of the 
high pass G filter contains high-resolution details from the signal and the output from filter H is a low pass filtered 
version of the input. Subsampling at the output of each filter prevents the number of output samples from growing 
relative to the input. The filters H and G are carefully designed to ensure perfect reconstruction, even after 
subsampling, in the absence of quantization errors. After the fust level of decomposition, the low pass signal is then 
further analyzed using the same filters, as shown, until the original has been split into a desired number of subbands 
which are the outputs of a series of filters with logarithmically reducing pass bands. 

In the case of two dimensional images, separable wavelets can be used where the one dimensional analysis 
described above is applied independently in the horizontal and vertical directions. After the first level of the 
decomposition we have four subimages which we term: LL, LH, HL, and HH where H indicates high pass (output of 
filter G) and L indicates low pass (output of filter H). The first letter indicates the type of filtering applied in the 
horizontal direction with the second relating to the vertical processing. Again the low pass image (LL) is further 
decomposed as shown in Figure 2 leading to a multiresolution decomposition. The values in the subarrays, known as 
wavelet coefficients, are then quantized, losslessly encoded and transmitted. In the adaptive wavelet based image 
coder under consideration here, UTCQ [I, 21 is employed to quantize the wavelet coefficients, and adaptive 
arithmetic coding [3 - 51 to losslessly encode the quantized coefficients. Since this algorithm is known to perform 
well at low bitrates, it is being considered for inclusion as a second generation bandwidth compression algorithm in 
the NITFS. 

FIGURE 1. Block diagram showing the wavelet 
decomposition in one dimension. 

FIGURE 2. Two dimensional wavelet decomposition 
over 3 levels. 

Trellis coded quantization (TCQ) [8] is a form of quantization where a sequence of data is quantized not sample 
by sample but as a whole. In this way, TCQ is a form of vector quantization. Scalar codebooks are partitioned into 
subsets and assigned to the branches of a trellis. The trellis limits the choice of codebook subset in a manner that 
allows use of a larger (greater rate) codebook than that of a scalar quantizer while maintaining the same rate. 
Entropy-constrained trellis coded quantization (ECTCQ) [9, 101 was developed to improve the high-rate 
performance of TCQ and allow easier access to non-integer coding rates. It has been shown to be an effective 
technique for quantizing memoryless sources with low to moderate complexity. ECTCQ achieves mean square error 
(MSE) performance near (within about 0.5 dB) the rate-distortion bound at all non-negative encoding rates. ECTCQ, 
however, requires storage of codebooks and a computationally expensive training procedure. 



UTCQ was developed to address some of the implementation concerns regarding ECTCQ. UTCQ uses uniform 
thresholds and codewords for quantization. No stored codebooks are required. "On-the-fly" codeword training is 
performed for a small subset (four codewords, two on either side of the zero codeword) of the reconstruction levels 
during the quantization process. These trained codewords and the remaining uniform codewords are used during 
dequantization. It is a remarkable fact that by merely training four codewords, performance virtually identical to 
training all codewords is achieved. The overhead incurred by sending the trained codewords is minimal (3 bytes per 
quantized sequence). The quantizationtdequantization process is completely characterized by the trained codewords, 
uniform step-size and trellis. Performance of UTCQ is within 0.1 dB of ECTCQ for most encoding rates. 

Usage of stored codebooks limits ECTCQ to those rates for which codebooks were designed. UTCQ can access 
continuous rates for a given distribution. A simple modeling procedure must be completed for each distribution. 
From the viewpoint of entropy coding, UTCQ is preferable to ECTCQ. ECTCQ requires two variable-rate codes per 
quantized data sequence. For symmetric source distributions, UTCQ requires a single variable-rate code, reducing 
the number of codewords or calculations an entropy coder must have or perform. 

The performance of the wavelet-UTCQ image coder can further be improved by employing classification of 
wavelet coefficients [4]. From observation of wavelet coefficient amplitudes it is clear that even in a single subband 
the wavelet coefficients are not homogeneous. Thus it may improve coder performance if the coefficients were 
grouped into smaller, more similar sets. To improve the performance of the wavelet-based coding, an adaptive scan 
technique that classifies subblocks of wavelet coefficients into four classes based on their variance is used. This 
allows the rate allocation to better match coefficient statistics and allocate bits where needed. In the simulations 
presented here, this feature is not used for the sake of simplicity. 

3. "Spreading Error" Effect 

The hierarchical nature of the wavelet representation coupled with the filtering processes used in wavelet 
analysis and synthesis, leads to what we call a "spreading error" effect. A given wavelet coefficient in a subband, 
contributes to a specific region in a reconstructed image. The spatial extent of this region is a function of the wavelet 
coefficient's location in the resolution hierarchy and wavelet filter lengths. Figure 3 illustrates this concept. From a 
single coefficient error in a low resolution subband, as we synthesize, moving up in resolution level, the number of 
affected coefficients increases in number and spatial extent. 

We may express the number of affected coefficients in the final reconstructed signal from a single coefficient 
error as follows: 

Where M(k) represents the number of affected coefficients k levels up from the original bad coefficient, and N is the 
length of the wavelet filter. A closed-form expression may be obtained as shown below. 

The spatial extent of the spreading error can become very large after synthesizing up only a few resolution levels. 
Table 1 shows this growth assuming 8-tap filters (similar to what would be seen with the (9,7) wavelets of 
Daubeschies 1171). 



Filter length, N = 3 
Resolution 

level original bad coefficient 
I 
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A - bad coefficients 5 I 218 
x - correct coefficients 
o - interpolation zeros 

Table 1. Spreading error as function of resolution 
levels, N = 8. 

FIGURE 3. Illustration of spreading error effect. 

Levels (k) 

4. Noisy Channels and Error Detection Using Re-initialization Points 

Error Spread 

A major concern of any image communication system is performance in the presence of errors. It is especially 
important when image compression is utilized because the very goal of compression is the reduction of irrelevant or 
redundant information. In the most efficient representation, there is no redundancy in the bit stream and every bit 
carries a maximum amount of information. In this case any bit error will have maximum impact on the reconstructed 
image. This is in contrast to uncompressed images where each hit only affects the pixel currently being transmitted. 
In efficient compression algorithms the compressed bit stream is the output of an entropy coder (Huffman or 
arithmetic) so that it consists of a sequence of variable length codes. The only way to identify where one code ends 
and the next starts is to decode the stream. Consequently, even a single bit error can, and most likely will, render the 
rest of the stream useless! This problem can be addressed by the insertion of "re-initialization" points into the 
compressed bit stream. 

4.1. Re-Initialization in NITFS-JPEG 

The JPEG standard [ll] provides a mechanism for separating the bit stream into a number of "restart intervals" 
which can be independently decoded. This is achieved by the insertion, on a byte boundary, of a two byte marker 
code which contains a modulo eight restart interval count. This feature was included in the JPEG algorithm to allow 
efficient parallel processing implementations. However, this same capability can be used to provide error resilience 
to the compressed stream. In the presence of errors, a smart decoder can recognize that an error has occurred and 
navigate the bitstream using the marker codes to resynchronize the decoding process. The following example shows 
how the susceptibility to transmission errors can be limited by the inclusion of restart intervals. 

In Figure 4, each block-row (every eight consecutive lines) of the image is coded as a separate restart interval. 
This is for convenience of exposition and not a constraint of JPEG. In this example, the second restart marker code 
is "lost" due to an error condition. The first two restart intervals correctly decoded but the decoder observes that the 
second marker code is missing. The decoder skips forward in the stream until it finds the third marker code at which 
point it continues decoding. The net result is the loss of the third restart interval, but the effects of the error are 
isolated from the remainder of the stream. Examples of NITFS-JPEG error recovery capability are given in section 
five. 
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FIGURE 4. Error recovery NITFS-JPEG. 

4.2. Adaptive Wavelet-UTCQ Coder Without Re-initialization 

Figure 5 shows the performance of the wavelet-UTCQ coder when no provisions have been made for re- 
initialization. The quantization indices from all subbands have been entropy-coded into a continuous bitstream. A 

random BER of 6x l0 -~  was applied to a 512 x 512 image encoded at 0.47 bpp. The header of the compressed file 
was not damaged, but approximately 113 of the way through the image, errors in the bitstream have caused the 
arithmetic coder to decode incorrect data. This shows the need for multiple access points into the entropy coded 
stream. Other simulations have shown that in general a Huffman encoded stream without restart markers will perform 
better than the arithmetic encoded stream. The opportunities for re-initialization by chance are more prevalent with 
Huffman coding. 

4.3. Re-Initialization in Wavelet Encoded Imagery 

Since wavelet encoding is not a block based approach, inserting restart intervals into wavelet encoded imagery is 
a more complex problem than in JPEG. Note that in a block based approach it can be guaranteed that the effect of 
errors will not cross the restart interval boundaries. The same is not true in wavelet encoding. As a result, the error 
effects can be visible throughout the image and may even render the entire image useless. This is illustrated in 
Figures 6 and 7 where the low-frequency subband (LFS) and high-resolution, high-frequency subbands have been 
removed from a four level dyadic pyramid coding of Lenna at 1.0 bpp. In Figure 7,314 of all coefficients have been 
removed and 40% of the compressed file. In Figure 6 the LFS represents 11256 of all coefficients and 3.2% of the 
compressed file. A lost coefficient in the LFS has significant energy and contributes roughly to 114 of the 
reconstructed image. A missing coefficient in Figure 7 has little energy and affects a much smaller local area. Clearly 
errors in the LFS and lower resolution subbands must be avoided. This suggest that a hierarchical FEC procedure 
should be applied in the communications protocol. 

Successful prevention of transmission error spread in the reconstructed wavelet encoded imagery can be 
accomplished by: 

e locating the data segments containing wavelet coefficient in error (error location). 

c providing a mechanism for the lossless arithmetic decoder, and the UTCQ dequantizer to correctly decode and 
dequantize the wavelet coefficients following those segments in error (partial decodability) . 

e completely negating the contribution of the wavelet coefficients in error by zeroing out the data segments 
containing them (negation). 



In an attempt to add some measure of error resilience to the wavelet-UTCQ coder, the entropy-coded 
bitstream was broken at subband boundaries. Each sequence of subband quantization indices is arithmetically 
encoded individually and pointers placed in the file header to the start of each entropy-coded segment. Each subband 
of coefficients is treated as a data packet, if a bit error occurs within a data segment the subband is nulled out. This 
will allow the decoder to attempt recovery of the compressed image by using those subbands that do not have bit 
errors present. Since the trellis quantizer starts coding at the beginning at each subband, we will not need to worry 
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about it propagating errors. Simulations were run with random bit errors at BERs in the range of 10 to 10 . During 
simulations the header was protected and no burst or addldrop bits were allowed. 

-5 
FIGURE 5. Wavelet-UTCQ, BER 6x10 , no re-initialization points. 

FIGURE 6. Wavelet-UTCQ, 1.0 bpp, low-frequency FIGURE 7. Wavelet-WCQ, 1.0 bpp, high-resolution 
subbands removed. high frequency subbands removed. 



Figure 8: NITFS JPEG compression with a restart interval of 64 macroblocks, CR= 6.12 
(1.307BPP). Reconstructed from (a) uncorrupted compressed bitstream. (b) compressed 
bit stream corrupted by average burst error rate of 9.77 x with 2 bits average burst error 
length. (c) compressed bitstream corrupted by average burst error rate of 1.95 x with 
2 bits average burst error length. 



5. Noise Performance 

Simulations were carried out by injecting burst errors and single bit errors at several rates into the 
compressed bitstreams corresponding to various images compressed at several bitrates. In general, the noise 
performance of NITFS-JPEG (with the restart interval mechanism turned on) compressed imagery was satisfactory 
even at high channel error rates. Figure 8 presents a reconstructed image from an uncorrupted bitstream and 
bitstreams corrupted by burst errors at two different burst error rates: 9 .77~10'~ (=lo4) and 1.95~10'~ (=2xl0-~) with 
an average burst error length equal to 2 bits. It contains an image compressed with NZTFS-JPEG. This simulation 
clearly illustrates the usefulness of restart intervals in NITFS-JPEG compressed imagery, particularly for 
applications where the reconstructed imagery is used by humans. It yields easily recognizable reconstructed imagery 
without unduly increasing the bitrate, thus offering the best compromise between quality and bitrate for transmitting 
compressed imagery over noisy channels. 

Figures 9 and 10 illustrate two realizations of bit errors introduced into a 52-band, 0.25bpp 
-4 

encoding. A BER of 10 was used for both images. These two figures represent the best and worst decoded images. 
Include with these images are coefficient maps indicating the subbands that incurred bit errors and were removed. 
Clearly the bit errors in the LFS of Figure 10 account for its poor quality. If bit errors are confined to high-frequency 

-3 
subbands as in Figure 9, the reconstruction is quite good. In general, bit errors of the order 10 produced no useful 

-5 
output and bit errors in the 10 range were usually not noticeable. 

F l a w  9(a). Wavelet-UTCQ. 0.25 bpp, BER FIGURE 9(b). Wavelet-UTCQ, 0.25 bpp, BER 10'4 
removed subbands are shaded. 



-4 
FIGURE lO(a). Wavelet-UTCQ, 0.25 bpp, BER ld4. FIGURE 10(b). Wavelet-UTCQ, 0.25 bpp, BER 10 , 

removed subbands are shaded. 

6. Summary and Conclusions; 

The proposed technique to insert re-initialization points into the wavelet-UTCQ coder proved to be simple and 
provided some measure of error recovery. Certainly the performance is enhanced over that shown in Figure 5. The 
overhead incurred by this technique is approximately 2 - 3 bytes per coefficient sequence. Compared with the 
NITFS-JPEG error recovery using restart intervals, using wavelet coefficient subbands for resynchronization is 
somewhat lacking. The number of coefficients in a given subband is too large and the entropy-coded data to long for 

-4 
BERs above 10 . Using subbands for re-initialization makes the error recovery a function of rate as well. As the 
encoding rate is increased, the length of entropy-coded data in a subband increases thus increasing the probability of 
a bit error occurring in a subband for a fixed BER. 

We have seen that which coefficients incur bit errors is important. The spreading error effect for low-resolution 
coefficients, coupled with their high energies, makes their protection paramount. As seen in Figure 7, the high- 
frequency subbands could be sent without any FEC at all. Non-hierarchical JPEG modes do not show this property. 
JPEG localizes its errors in an image and they are usually visible regardless of where they occur. Figures 7 and 10 
have shown that if we can constrain the bit errors in the wavelet-TCQ bitstream to the higher-resolution coefficients, 
we can achieve image reconstruction visually superior to JPEG. 

Future work will concentrate on producing a "packetized" wavelet-UTCQ system. Implementation of an entropy 
coder (Huffman or arithmetic) capable of producing fixed length data packets will allow for much improved error 
recovery. Each data packet will now correspond to a variable number of input coefficients. For the decoder to 
interpret the data stream in the event of a packet loss, the number of wavelet coefficients in each packet, location of 
the first coefficient in the resolution hierarchy, and trellis state associated with the first coefficient must be included 
for each packet. Packets occurring at the end of a subband may contain considerable empty space and tradeoffs 
between packet length, FEC overhead, and unused packet bytes must be investigated. This system would work well 
with the TACO2 protocol. If the packet sizes are synchronized between the communication and compression 
software, a lost communication packet will correspond to a lost data packet. 
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Abstract. Image compression with the JPEG DCT algorithm incorporated into the National Imagery 
Transmission Format Standard (NITFS) does not naturally extend to low bitrates due to the fairly small blocksize of 
JPEG (8 by 8) and the inefficiencies of interblock coding. A natural extension of JPEG to lower bitrates consists of 
resampling an image to a smaller size and compressing the smaller image with JPEG DCT at a higher bitrate. 

The JPEG standard [I] defines hierarchical JPEG compression with resampling by a factor of two in each spatial 
dimension, repeated as many times as necessary. The NITFS compression standard [2] does not include the 
hierarchical extensions to JPEG DCT compression, but does include data structures in its ancillary information 
fields for transmitting image reduction and zoom factors. These can be used to implement low bitrate compression 
with the JPEG DCT compression engine in the manner of hierarchical JPEG, but with arbitrary resampling ratios. 

1.0 Introduction 

Filters for resampling prior to compression and interpolation after reconstruction can be designed to satisfy various 
criteria. These include canceling all aliased copies of DC in the periodic spectrum of the discrete-position (spatially 
quantized) representation of an image prior to resampling or interpolation, having passband ripples in the resampling 
and interpolation filters with opposite phase so that the combined effect of the resampling and interpolation is 
maximally flat passband response, and minimizing total aliased energy throughout the compression and 
reconstruction chain. 

This presentation, paper, and demonstration present analysis of the joint filter optimization problem applying 
windowed sinc filters of equal length and jointly optimized windows, applying the time-domain duals of classical 
Nyquist filters, and also applying truncated sinc filters of jointly optimized unequal length convolved with spatially 
shifted sample-and-hold filters. Results and comparisons to hierarchical JPEG filters are presented both in terms of 
aliased and baseband power spectra in the processing chain, and in terms of compressed and reconstructed imagery. 

2.0 Image Models 

Modeling imagery as a 2-D Gauss-Markov stochastic process allows complete description of the stochastic process 
through definition of the functional form of its power spectral density. For most general purposes the models of the 
underlying continuous image processes should be circularly symmetric in the spatial and spectral domains, allowing 
the substitution of Hankel transforms in r and p for Fourier transforms in {x, y }  and {g ty}. However for practical 
purposes the downsampling and upsampling filters will be separable, so that the circularly symmetric image models 
must yield to separable models for designing row and column filters. 

For the purposes of this study the same basic modeling concept will be applied for both separable and circularly 
symmetric modeling: an image is taken to consist of regions of uniform intensity randomly tessellated by curved 
edges, with no correlation in intensity between pixels belonging to regions separated by an edge. With this model, 
the autocorrelation function of the image becomes a pure function of separation, proportional to the probability of no 
edge falling on a spatial segment of any given length. For randomly occumng edges this probability decays 
exponentially, so that the autocorrelation models and their associated power spectral densities become: 

Symmetric Model in r, p - 
R(r) - e-""" F~ (p) - Y 

(a + P ~ ) ~ ~  

Separable Model in x, 4 
n 



3.0 Motivation: Efficient Bitrate Hypothesis 

The motivation for this effort can be stated as the efficient bitrate hypothesis: that for JPEG (or any other fured 
resolution compression algorithm) there is an efficient bitrate at which the algorithm comes closest to reaching the 
limiting rate-distortion function for the chosen distortion measure, and that the optimal way to operate JPEG at 
lower bitrates is to reduce the input image size so that the algorithm can operate on the reduced image at its efficient 
rate. 

The efficient bitrate hypothesis is illustrated with 
sheaves of possible qualitylcompression ratio and 
rateldistortion curves for JPEG with varying degrees 
of subsampling. Note that for logarithmic quality 
scales such as the National Imagery Interpretability 
Rating Scale (NIIRS) and logarithmic mapping of 
compression ratios the shape of the curves is 
consistently similar but that scaling the input image 
shifts the curves down and to the right Shifting the 
curves down accounts for the irreversible losses 
introduced in the subsampling, and shifting the 
curves right accounts for the fact that identical P E G  

Compression Ratio (log Scale) operating bitrates reflect lower effective bitrates 
given higher subsampling ratios. 

Note also the existence of asymptotes both in rate and 
in distortion for each curve: the overhead bitrate of 
P E G  imposes a minimum bitrate, while the 
irreversible losses of subsampling will limit the 
algorithm's ability to code to arbitrarily high fidelity. 

The envelopes of the sheaves consist of similar points rd 

on separate curves, suggesting that for optimal rate1 5 
1 

distortion or quality/compression ratio performance ff 
m 

the compound algorithm should be operating at the 
same relative point (the "knee" or "elbow") on the 
JPEG operating curve, with the sampling ratio 
adjusted to choose an absolute operating point on the 
envelope of the subsampled JPEG operating curves. 

I 

Bitrate (log Scale) 

3.1 Searching for the Efficient Bitrate: The Diving-Bell Theorem 

The source coding theorem for a Gaussian random process source (unnamed by Gallagher [3], which I call the 
Diving Bell Theorem) states that for efficient coding of a Gaussian source to a squared error criterion, the coding 
distortion will be constant across all frequencies, except that frequencies for which the source power is below the 
distortion threshold shall not be coded. 

The diving-bell interpretation of this theorem is that if you plot the power spectral density of a source, the efficient 
distortion levels to which the source is ideally coded correspond to the various possible levels of the airlwater 
interface under a diving bell shaped as the power spectral density, filled with air from below. This is the source- 
coding dual of the more famous noisy channel coding Water Filling Theorein of Shannon [4]. 

The efficient bitrate of an ideal coder can be derived given a shape for the diving bell (i.e. a model for the functional 
form of the power spectral density of imagery), the source coding theorem, and Shannon's logarithmic relation for 
limiting bitrate as a function of signal power to distortion ratio for the Gaussian source [4]. The derivation proceeds 
by dividing the limiting entropy of the circularly symmetric Gaussian power spectral density coded to the distortion 



threshold D by the size of a critically sampled square image encompassing that portion of the power spectrum being 
coded (for which the power density is above the distortion threshold). 

In an arbitrarily densely sampled unitary Fourier 
transform relationship a real image of given square 
size transforms into a complex matrix of the same 
size, with conjugate symmetry about the midpoint. !3 
Thus the size of a critically sampled image is the 5 a4 
same as the size of a bounding square about the o oc 
coded frequencies, while the coded rate is bounded 
by the entropy integral (allowing distortion D) taken 

g 
4 

in a half-plane (only half of the complex frequencies 
are independent). In the entropy integral the entropies 
of the independent real and imaginary signal 
components must be added together. 

The same result can be established for the periodic 
even extension of an image, for which case the 
frequency domain is the cosine transform domain. 

cuioff I;C Frequency 

Diving Bell Interpretation of the 
Source Coding Theorem 

The cosine transform interpretation eliminates both complex values and conjugate symmetry in the transform 
domain, but assumes periodic even extension. Using the cosine transform interpretation is consistent with use of the 
DCT for decorrelation. The analytical result is identical in either case. 

3.2 Efficient Bitrate of an Ideal Coder for Inverse Cubic Power Spectral Density 

The efficient bitrate of an ideal compressor can be derived for an image model by taking the ratio of the entropy 
integral under the diving bell for the coded frequencies to the area of the bounding square of the coded frequencies. 

Taking the inverse cubic power spectral density 
model, the radius of the diving bell can be derived by 
equating the power density and the distortion: 

The critical bitrate expression can then be developed as a function of the signal power coefficient to distortion ratio 
P/D (which ratio is the same both for the complex power and distortion, and for their real or imaginary components). 
The coefficient P is simply a scaling factor to account for the unspecified units of power and unmade assumptions 
about total image power level; as P cancels out of the final analytical solution these assumptions need not be made. 
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Note that by taking the power spectral density model in the limit as a goes to zero this ideal critical bitrate becomes 
independent of the overall source power level P or the threshold distortion D: Varying the source power or the 
allowed distortion varies both the coded rate and the image size together, so that the overall bitrate is constant. 

For values of a other than zero the peak of the power spectral density about zero is rounded and finite rather than 
divergent. In this case the limiting bitrate above (-0.85 b/p) is an upper bound on the general ideal bitrate given the 
symmetrical inverse cubic power spectral density model, which in turn would be an approximation of efficient 
bitrates for practical compressors. 



For noisy or sharpened imagery a symmetric inverse square power spectral density model may be more appropriate. 
For this model the similarly derived efficient bitrate is 'V4 ln4, or 0.5665 blp. Finally, the preliminary results given 
in the demonstration are for JPEG operating at 0.65 blp. 

4.0 Desirable Qualities For Filters 

Ideal linear low-pass filters have a sinc(26x) impulse response, with$ defining the cutoff frequency in cycles per 
sampling interval. Practical linear low-pass filters are often designed by applying a suitable window function to the 
sinc(2x&x) impulse response to create a finite-length impulse response whose transfer function is approximately 
ideal. Nearly any actual finite-length lowpass filter can be designed in this manner, since the ratio of any desired 
filter's impulse response to the sinc(2.nfcx) function can be interpreted as a window function, except that the 
windowed sinc design constrains the locations of zero crossings in the windowed impulse response. 

The natural choice for a lowpass filter cutoff frequency is the Nyquist frequency corresponding to the lower of the 
two sampling rates, the target rate for aggregation (downsampling) and the source rate for interpolation 
(upsampling). The Nyquist frequency is half the sampling rate, and it is the highest frequency which can be 
represented in the sampled function without aliasing. Filtering at the target Nyquist frequency before downsampling 
limits aliasing of frequencies present in the source signal which cannot be represented in the aggregated image. 
Filtering at the source Nyquist frequency before upsampling (the same spatial frequency relative to features in the 
image as the target Nyquist frequency for downsampling) prevents interpretation of aliased source baseband 
frequencies as true baseband frequencies in the broader bandwidth interpolated image. 

4.1 Properties for Practical Filters and Sources 

Considering the design of actual anti-aliasing filters and specific functional forms for power spectral densities, 
added desirable characteristics can be specified. Whereas practical filters have frequency responses with ripples in 

their passband, it would be desirable to design the interpolating and aggregating filters to have passband ripples 180' 
out of phase, so that the compound frequency response due to both filters is flat. Furthermore, whereas natural 
imagery tends to have most of it's signal power concentrated around DC (constant intensity specifically and low 
spatial frequencies generally), having a filter transfer function with zeroes at all frequencies above baseband which 
correspond to an integer number of wavelengths in the sampling interval would reduce aliasing, since these 
frequencies are where the periodic spectrum of the sampled signal has the most power above the Nyquist frequency. 

Subsampled Nyquist 

Passband 

Desired Filter Transfer Function Hard Zeroes 

Inference of Bowmanapling Filter Characteristics Prom Signal PSD 



The desired downsampling filter characteristic is illustrated above. The desired upsampling filter characteristic has 
the same passband as the downsampling filter, but the period of the power spectrum of the downsampled image will 
be shorter. The hard zeroes would therefore be at frequencies above baseband corresponding to an integer number of 
wavelengths in the subsampled sampling interval (which is broader, so that the hard zeroes are more closely spaced). 

In summary, the desired characteristics of the downsampling and upsampling filters are: 
0 Evenly spaced zeroes in frequency response at nonzero even multiples of the original image Nyquist frequency 

for the downsampling filter, and at the subsampled image Nyquist frequency for the upsampling filter. 
Sharp transition in frequency response at the Nyquist frequency of the subsampled image for both filters. 
Flat joint passband response for the concatenation of both filters, especially about DC (where most of the signal 
power is). The filters will have rippled passband response, but the ripples should be designed to cancel out. 

5.0 Application of Nyquist Filter Design 

The problem of designing a finite-length filter with evenly spaced zeroes in the frequency domain is the Fourier 
transform dual of the traditional Nyquist waveform design problem from telegraphy. Nyquist [5] was concerned to 
design waveforms with finite bandwidth and evenly spaced zeroes in time for transmission of information over 
telegraph wires without interpulse interference. His results can be applied to the design of filters of finite length with 
evenly spaced zeroes in frequency response, and then extended to add other characteristics (such as a cutoff 
frequency) to the filters. 

Define the frequencies of the first hard zeroes about DC as gZ. Then following Nyquist, the filter impulse response 

is broken into two additive components: a rectangular pulse of length llfi, and a residual waveform of length 2/fz. 

The components have the following required properties: 
1. Both waveforms must have even symmetry about their midpoints. This causes zero response to centered sine 

waves of all frequencies. 
2. The left and right halves of the residual waveform must have odd symmetry about their midpoints (the quartile 

points). This forces zero response to cosines of frequencies knfi. 

Rectangular Pulse 

Residual Waveform 

: Position 

-l/fz - 1/2fz 0 1/2fz l/fz 
Components of Filter Impulse Response 

Nyquist demonstrated that the family of raised cosines can be decomposed in this manner, and proposed the use of 
waveforms with raised cosine spectra as telegraph pulses. If the properties of raised cosines were otherwise 
acceptable then raised cosine impulse responses could be used for downsampling and upsampling filters. However 
further desired properties have been specified above, and an optimal approximation (in the sense of sharpest cutoff) 
to the ideal lowpass filter can be explicitly derived for the constraints of the structure above. 

The steps of the optimal approximation are: 
1. Begin with the ideal sinc(2nfcx) waveform, truncated to the interval -1% < x < 1%. 



2. Scale the wavefonn for DC response of llfz. This is the same DC response as the ideal infinite length sinc 

waveform for upsampling, and it is the ideal DC response scaled by the sampling ratio for downsampling. 
3. Extract and retain the odd component of the positive and negative halves of the truncated scaled waveform. 
4. Add a rectangular pulse of length 21fz and height 112 to the extracted waveform (note that this is not the same 

length as the rectangular pulse in the diagram above). 

This one step shorter than, but operationally equivalent to subtracting out a shorter rectangular pulse scaled so as to 
zero out the DC response of the residual, extracting the odd component of the halves of the residual, adding the 
rectangular pulse back in, and scaling the final waveform for proper DC response. 

5.1 Illustration of Nyquist Design for Upsampling Filters 

The upsampling filters form a suitable example for illustration, since for them the relationship of the filter cutoff 
frequency fc to the first hard zero frequency fz is fixed regardless of the downsampling ratio (for all upsampling 

filters fc =fzt2). Applying the steps of the optimal approximation above for the upsampling case produces a fairly 

triangular impulse response with zeroes in the correct positions, but very poor cutoff at the Nyquist frequency of the 

downsampled image, fc =fa2. This is due to the lack of freedom to place additional zeroes between fc andfi, so that 

the filter must have its steep cutoff near its first zero, which is at twice the frequency of the desired cutoff. 

1 
For sharper cutoff additional zeroes are needed above 
fc, but not all the way out at fz. This will steepen the 2 
transfer function at fc as it falls toward the first zero. 5 
An alternative for producing steeper cutoff at f, in the !? 
Nyquist design paradigm would be to increase the e?l 0.5 

length of the filter, thereby increasing the density of H 2 
s 

zeroes. Increasing the length of the filter by any 3 
h integer factor less thanfz/fc gives discrete choices for H 

the downsampling filter (for which fc <fzt2). -1 -0.5 o 0.5 1 - 

However in the upsampling case any integer scaling Pixel Spacing 
of the length of the filter introduces a zero in the 
passband, which is obviously not desirable. 1 --KT--------- 

Designing a matched pair of filters with the Nyquist 2 
solution is difficult in general (with the subsampling 
ratio unknown a priori). Constraining the Nyquist % 
solution to raised cosine impulse responses doubles 2 0.6 - 
the density of hard zeroes above fz (but not atfzI2), P) 
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raised cosines there are too few free parameters to 
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optimize a frequency cutoff and still match the two 
filters to one another for flat passband response. 
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6.0 Convolved Truncated Filter Design 

A different method of solving Nyquist's problem consists of designing a filter as the convolution of two 
components, one of which has zeroes in the appropriate positions in its transfer function while the other is arbitrary. 
In this manner the discrete sizes of Nyquist filters are avoided, as the arbitrary component can have any length. 



The natural choice for the zero-fixing component is Nyquist's rectangular impulse response of length llfi, which is 

nothing more than a nearest-sample filter (a spatially shifted sample-and-hold filter) for a discrete-position sequence. 
Due to its flat response this choice has the desirable property that computing the convolution in many spatially 
shifted positions simultaneously by numerical integration is accelerated by reusing integrals over subintervals in all 
convolutions spanning the subinterval. 

Once the hard zeroes have been fixed by convolution with the nearest-sample filter, the remaining desirable 
characteristics of the arbitrary component are that it provide maximally sharp cutoff and that the passband ripples of 
the upsampling and downsampling filters be so arranged as to provide a flat composite transfer function, especially 
at DC (where the signal power is concentrated). 

The classical result for maximally sharp cutoff of a lowpass filter is the truncated ideal sinc(2nfcx) filter [6] .  Given 
truncated sinc filters and a predetermined cutoff frequency (the Nyquist frequency of the downsampled image) the 
only remaining freedom to match the filters to one another is to truncate them to unequal length, with the lengths so 
chosen as to produce the desired flat composite transfer function. 

6.1 Joint Filter Design Strategy 

Given filters of different length, the natural location for the shorter filter is at the receiver (for upsampling), for at 
least the following reasons: 
0 The receiver is more likely to be in a tactical environment where computing power is scarce, and therefore 

shorter filters are desirable. 
The upsampler translates imagery to a scale whose Nyquist frequency is above the anti-aliasing filter cutoff 
frequency, so that further anti-alias filtering can always be performed after upsampling if needed. 
Decompression and upsampling may be done many times for each time an image is compressed, again favoring 
keeping the upsampling less complex than the downsampling. 

For the shorter (upsampling) filter, sharpness of the cutoff of the frequency transfer function is of greater importance 
than for the longer (downsampling) filter, since the longer filter will always have a sharper cutoff given that both 
filters are truncated sincs. Thus, the chosen filter optimization strategy will consist of optimizing the upsampling 
filter independently of the downsampling filter, and then designing the longer downsampling filter to match the 
optimized upsampling filter. Fortuitously the downsampling filter fitted to the optimal upsampling filter is nearly 
optimal in its own right by the efficiency criterion used to design the upsampling filter. 

6.2 Design of the Upsampling Filter 

The criterion chosen for optimizing the upsampling filter is the length-normalized derivative of the DC-normalized 
transfer function evaluated at the cutoff frequency. 

Length normalization refers to constructing a figure of merit by dividing the transfer function derivative at the cutoff 
frequency by the length of the filter, since the derivative at the cutoff is inversely proportional to filter length except 
for an oscillating term. This normalization identifies filter lengths which are most efficient in terms of cutoff 
sharpness attained relative to their computational cost. 

For a symmetric truncated sinc waveform of length il the frequency response is 

Differentiating and evaluating at the cutoff frequency yields 

2 7 



Note that for Awe equal to even multiples of n, the derivative of the cutoff sharpness at q with respect to h is zero. 
The trend in the dependency of the cutoff sharpness above on A is that the derivative grows as -Ahwc, so that 

dividing the cutoff sharpness by that expression (which is directly proportional to computational complexity) and 
also by the DC response (to normalize) produces a figure of meritfor comparing filter lengths in terms of their 
computational eff5ciency in achieving cutoff sharpness for DC normalized filters. 

1.2 ---- 
Expressing the length of the filter in terms of the 1----- 

sampling interval of the downsampled image (also 
equal to the number of lobes of the sinc included in 
the truncation, with the main lobe counted as two 
since the sine in the numerator has two lobes in the 

main lobe of the sinc), where n = a%x, produces the 
adjacent FOM as a function of n. .- -n sin@)- A 
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The fxst two local optima above appear attractive as effective lengths for upsampling filters, but on inspection the 
first local optimum corresponds to a filter truncated inside the first zero crossings of the sinc (n c 2), at a point 
which is efficient more because it is computationally sparse than because of the sharpness of the filter cutoff. The 
second local optimum is shorter than a cubic spline interpolator (which is fairly close in shape to an n = 4 truncated 
sinc) but spans the first zero crossings of the sinc, so it is a plausible upsampling filter length. 

The precise locations of the local optima can be found numerically by first differentiating the FOM with respect to A 
and then solving for the roots of the numerator. These are the roots of the expression 

2 sin ( x )  ( A  
(A . cos(A) -sin (A)). j- - dr + (A -  sin(^)). sin(-) 

0 2 

These roots are found at n = { 1.171,3.612,5.28 1,7.615, ... }. The root chosen for the length of the upsampling filter 
is n = 3.612, and it would be desirable to have the downsampling filter length near n = 5.281. 

For fine-tuning the optimization above the effects of the convolution with the nearest-sample filter (a rect of length 
Ilf-) could be included in the figure of merit. For the downsampling filter the ratio of& to fc depends on the 

arbitrary downsampling ratio, but for the upsampling filter being derived above the ratio is known a priori (fz = 2fc). 
The effects of including the nearest-sample filter in the figure of merit would be a constant scaling of the cutoff 
slope in the numerator (which has no effect on relative choices of filter length) and a constant increment to 
computational complexity in the denominator (which favors slightly longer filters). 



U .A 

-3 -2 -1 0 1 2 3 0 0.5 1 

Pixel Position Frequency (5) 
Upsampling Filter Characteristics 

6.3 Design of the Downsampling Filter 

The downsampling filter was chosen above (section 6.1) to be the longer of the two filters, and therefore its cutoff 
sharpness is less of a concern for optimization, although it would be desirable to have the downsampling filter length 
be around n = 5.281. The selection criterion for the downsampling filter is that its passband transfer function at DC 
should complement the transfer function of the upsampling filter. Specifically, since both filters will be DC 
normalized and have zero derivative at DC (due to symmetry), the desired property is that the second derivative of 
the downsampling filter transfer function at DC cancel out the second derivative of the upsampling filter transfer 
function. Taking the second derivative of the transfer function (the function and its first derivative are in section 6.2 
above) and evaluatinn at DC. 

- a 2 
COS - . W c  --. - -  ( ) ( s i n ( c ) ,  W = O .  

(a)' 
For large values of A the cosine term dominates, and complementary filter lengths correspond to differences in filter 
length for which the argument of the cosine is n, which correspond to length differences of Ail =2voc, or An = 2. 

For the general case the filter length must be found numerically as the root of the expression for the second 
derivative of the compound transfer function at DC, expressed below in terms of Lu and Ld, where Lu and Ld are the 
downsampling interval normalized filter lengths A u q  and Ad% respectively (the subscripts identify up- or 

downsampling). From the optimization of the upsampling filter in section 6.2 above, L, = 3.61212.n; = 11.34781. 

The extra constant in the middle of the expression is the contribution of the nearest-sample filter to the second 
derivative of the frequency response of the upsampling filter. A similar term for the downsampling filter would be a 
function of the downsampling ratio, and therefore not known a priori. 

"o "o 
Solving numerically for the root of the expression above, Ld = 16.41896 => n = 5.2263. The precise shape of the 
downsampling filter and its transfer function still depend on the nearest-sample filter for the original image sampling 



interval, but of the four filter components in the system (two truncated sincs and two nearest-sample filters) that will 
always be the smallest and negligible for design purposes. 

Taking the downsampling truncated sinc of length n = 5.2263 and plotting its frequency response together with that 
of the upsampling filter yields the following results. 
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The joint passband response has a broader flat region around DC than either of the individual filters has, with a 
single positive lobe leading into the cutoff. Since the designs have been optimized for the sharpest possible cutoff 
the positive lobe is natural and desirable; it pushes the passband response below fc higher so that the fall atfc is 
steeper. 

7.0 Conclusion 

The P E G  image compression algorithm implemented in the National Imagery Transmission Format Standard can 
be efficiently extended to arbitrarily low bitrates by compressing imagery in a compound system where original 
imagery is reduced in size prior to JPEG compression, and then resized back to the original scale after P E G  
reconstruction. 

This paper, and the associated presentation and demonstration, describe the filters and procedures used for low- 
bitrate JPEG implementation in the NlTFS low bitrate evaluation. This implementation was competitive in 
performance and complexity with state-of-the-art wavelet algorithms entered into the evaluation [7]. 

The author gratefully acknowledges the support of the Central Imagery Office. 
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Abstract 

The current National Imagery Transmission Format Standard (NITFS) specifies use of the 
PEG-DCT algorithm for compression of image data f 11. The PEG-DCT algorithm has two 
shortcomings which may warrant the inclusion of several new algorithms to llfiU these needs. 
Baseline PEG-DCT compression does not provide adequate quality to users in the NITFS 
community at bit rates below 0.5 bits per pixel (bpp). In addition, multi-component images can be 
compressed with higher fidelity by removing the correlation present between the individual image 
bands. 

A call for candidate low bit rate and multi-component compression algorithms was 
amomced in January 1995 and continued through March 1 995. These candidate algorithms have 
undergone two phases of performance testing. This paper summarizes the evaluation procedure 
used, as well as draws some conclusions on actual algorithm performance. 

Introduction 

The National Imagery Transmission Format (NITF) is the designated format for 
transmission of digital imagery and image-related products by the Department of Defense and 
other departments and agencies of the United States Government [3]. The purpose of the NITF 
Standard (NITFS) is to provide a common standard for transmission of a fde composed of an 
image with subimages, symbols, labels, text, and other information that relates to the image [3]. 

The primary NITFS compression algorithm, JPEG-DCT, provides adequate compression 
performance for most users m the NITFS community. There is, however, a fairly large 
community of NITFS users which must receive imagery products over low bandwidth 
communications channels usmg computers of relatively low computational power. Compressing 
an image to rates below 0.5 bpp allows these users to receive the necessary image products in a 
timely manner. The PEG-DCT algorithm does not provide adequate quality to these users at the 
low bit rates they typically require. An evaluation is currently bemg conducted to identify 



compression algorithms which will satisfy the low bit rate compression requirements of this user 
community. 

The use of an algorithm to reduce the correlations present between components in a multi- 
component image prior to application of existing spatial compression algorithms can yield 
dramatic increases in compression performance. Multi-component images are images which are 
composed of multiple correlated bands, as is the case with multi-spectral images, stereo pairs, 
sequential spatial slices and MR.I images. The current NITFS compression algorithm includes no 
provision to handle images which contain more than three correlated bands of image data. An 
evaluation is currently underway to identify compression algorithms which will satisfy the needs 
of the NITJ?S c o ~ t y  for compression of image data which contains multiple correlated bands 
of image data. 

Evaluation Methodology 

A call for candidate low bit rate and multi-component compression algorithms was made 
through a Commerce Business Daily (CBD) announcement in January 1995. Since the number of 
participants responding to the CBD announcement was not limited, an initial evaluation was used 
to select a subset of algorithms to undergo rigorous performance testing in the second phase of 
the evaluation. An image quality goal was set for the low bit rate algorithms to not exceed a 
quahty loss of more than 0.5 on the National Imagery Interpretability Rating Scale (NIIRS) at 0.5 
bpp. For the multi-component evaluation, the image quality goal was set for algorithms to not 
exceed a quality loss of 0.5 on the Multi-Spectral Image Interpretabilty Rating Scale (MSIIRS) at 
a bit rate of 0.25 bits per pixel per band @pppb). The NIIRS and MSlIRS scales were developed 
to quaflte the utility of imagery based on a user's ability to idenhfy objects of a given size in the 
scene. Points on each scale define typical objects which can be indentified at that quality level. 
Compression art%acts which distort objects in the scene will have a negative impact on the NIIRS 
or MSIIRS rating for a given scene. 

In phase one of the evaluation there were 17 respondents who expressed interest in the 
low bit rate evaluation, and 7 respondents who expressed interest in the multi-component 
evaluation. Of these respondents, 15 low bit rate and two multi-component respondents actually 
participated in the phase one evaluation. 

The 15 low bit rate participants were asked to compress two visible, two radar, and two 
medical images to various bit rates includmg 0.5,0.25,0.125 and 0.0625 bpp. A visual 
engineering analysis was conducted to estimate the visual image quality loss induced by each 
algorithm. The results from this analysis were combined with results &om numeric image quality 
(i.e. Root Mean Square Error), and estimations of computational complexity, bit rate control, 
vulnerability to bit errors, portability, and compliance to existing standards. From the analysis of 
these results, four algorithms were chosen to undergo more extensive testing in the second phase 
of the evaluation. One of the four algorithms chosen in the low bit rate evaluation was the interim 
NITFS low bit rate algorithm [4]. 

The two multi-component participants were asked to compress four multi-component 
images to rates of 1 .O, 0.5,0.25 and 0.125 bpppb. Since there were only two participants in the 
phase one evaluation, there was no need to select a subset of algorithms to continue in the second 
phase multi-component evaluation. A brief phase one evaluation and analysis was conducted to 



verify the bit rates used in the evaluation as well as ver@ that the quality of the phase one 
algorithms was within reasonable bounds. Since there was room in the phase two evaluation for 
additional algorithms, two baseline algorithms were tested. 

The second phase of the evaluation included more rigorous testing than was performed m 
the phase one evaluation. For the low bit rate evaluation, the participants were asked to compress 
a total of 74 images which included visible, infrared, radar, fingapint, map and medical images to 
bit rates of 0.5,0.25,0.125 and 0.0625 bpp. For the multi-component evaluation, participants 
were asked to compress a total of 27 multi-component images to bit rates of 2.0, 1 .O, 0.5,0.25, 
and 0.125 bpppb. The 2.0 bpppb rate was added to the multi-component evaluation to provide 
performance feedback in the near-lossless range of algorithm operation. 

Phase Two Algorithm Description 

Due to proprietary issues, algorithms are referred to by a specific coded name for each 
algorithm. For the low bit rate evaluation, algorithms LBR1, LBR.2, and LBR3 all implemented 
wavelet compression variations. The remaining algorithm, the interim NTTFS low bit rate 
algorithm, preprocessed the image prior to PEG-DCT compression using variable subsampling. 

For the multi-component evaluation, algorithms MC1 and MC2 implemented different 
variations of a Karhunen-Loeve Transform (KLT) 1 wavelet algorithm, usmg the KLT for 
component &correlation followed by a spatial wavelet compressor. The first of the two multi- 
component baseline algorithms applied the current single band NITFS compression option (JPEG- 
DCT) to each band in a multi-component image, applymg the interim NITFS low bit rate 
algorithm to achieve bit rates below 0.5 bpppb. The second baseline algorithm used the standard 
KLT statistical decorrelation algorithm to decorrelate the image components before applying the 
JPEG-DCT / interim NITFS compression algorithm to each decorrelated band. The second 
baseline option reflected the performance gains which could be attained by including an image 
component decorrelation algorithm as a preprocessor to the current NITFS compression optiom. 

Phase Two Visual Image Quality Evaluation 

The phase two visual image quality evaluation was performed at the National Exploitation 
Laboratory (NEL) by imagery analysts. To limit evaluator fatigue, a subset of the full imagery 
set was visually evaluated. For the low bit rate evaluation, 7 visible, 7 infrared and 10 radar 
images were evaluated at all four bit rates (0.5, 0.25,0.125 and 0.0625 bpp). For the multi- 
component evaluation, 23 multi-spectral images were evaluated at four bit rates (1.090.5,0.25 
and 0.125 bpppb). 

Both evaluations were performed on high quality color displays. Each analyst evaluated 
the images over a two-day period (one day for the multi-component evaluation, the other for the 
low bit rate evaluation). The low bit rate evaluation was broken down into three segments, by 
sensor type (visible, radar, and infrared). The multi-component evaluation included only one 
segment (multi-spectral). The ordering of the segments in the evaluation was randomized for 
each participant. The presentation order within a given segment was randomized by scene, 
compression algorithm, and compression rate. 



The evaluator was allowed to flicker between 2X magnifications of the original and 
compressed / expanded images. The evaluators had the capability to scroll within the scene to 
examine the effect of compression artifacts. For each image, the evaluator rated the compression 
loss in NIIRS for the low bit rate evaluation or m MSIIRS for the multi-component evaluation. 

Each evaluator was asked to answer a subjective question concerning the effect of 
artifacts on the utility of the compressed / expanded image using a predefined subjective scale. 
Tie points were defined on the scale to maintain consistency between evaluators. The rating and 
defjnition of each tie point can be found below m Table 1. 

Table 1 - Subjective Quality Scale 

Phase Two Numeric Image Quality Evaluation 

Defmition 

No noticeable difference between the two images. 

Slight loss in utility between the two images; 
Adequate to perform exploitation. 
Notable loss in utility between the two images; 
Adequate to perform exploitation, but may seriously affect the 
accuracy of exploitation. 
Signrficant utility loss between the two images; 
Unusable for exploitation, but usable for briefings, image 
overlays, and orientation. 
Severe utility loss between the two images; 
Unusable for any purpose. 

Tie Point 

NoChange 

Slightly 
Hinders 
Moderately 
Hinders 

Significantly 
Hinders 

Excessively 
Hinders 

All images in both compression evaluations were tested for numeric accuracy. For the low 
bit rate compression evaluation, 17 metrics were used. For the multi-component evaluation the 
low bit rate compression metrics were applied to each band. To study interband relationships, an 
additional 12 metrics were used across all bands. Several of these metrics, which were specific to 
multi-spectral images, were applied only to the multi-spectral images in the multi-component 
evaluation test set. In order to study the numeric image quality evaluation metrics, a correlation 
test was performed on the data produced £kom each of the metrics. In the case of multiple 
correlated metrics, detailed results were produced for just one of the correlated metrics. To 
simplify the analysis process, RMSE was chosen to be the primary numerical evaluation metric. 
In the cases where an evaluation metric captured new information regarding numerical accuracy, 
the results £kom the metric were analyzed and reported. The combined explanatory power of all 
the metrics provided a better estimation of the numerical accuracy produced by each compression 
algorithm. 

Associated 
Rating 
0 

2 

4 

6 

8 



Other Evaluation Factom 

The other evaluation factors in the S image compression evaluations inchded, 
computational complexity, bit rate control, vulnerability to bit errors, portability, and compliance 
to existing standards. The performance of an algorithm in each of the factor areas was 
detemhed fiom data obtained fiom a q u e s t i o ~ e  which was sent to each participant. 

The goal of the computational complexity evaluation was to test the compression 
algorithm, not the specific implemmtatioa To determine the complexity of a given algorithm, we 
estimated the relative complexity of each component of the compression algorithm (i.e. the 
complexity difference m Huffban encoding versus arithmetic encoding). These complexity 
numbers were verified by two methods. The first was to combine the number of each type of 
operation with the time required to execute that operation on a givm platform to obtain a 
predicted execution time. The second verification was provided by timing the executable 
decompressor on a specific platform Each verification could not be relied on for actual 
performance numbers since they were determining the complexity of the implementation. The 
verifications did provide adequate feedback as to whether a component complexity estimation was 
approximately accurate. 

The robustness of each algorithm m the presence of bit errors was determined by 
evaluating the effect of a channel error on the compressed bit stream. Using the supplied error 
recovery method fkom the questionnaire, we were able to estimate the effect of a bit error on the 
decompressed image. The estimation of algorithm robustness was verified by injecting errors into 
the compressed bit stream, decompressing the bit stream using the supplied implementation, and 
observing the propagation of the error through the expanded image. Estimations of relative 
algorithm robustness using an advanced error recovery method were also determined. This 
information provided an estimation of algorithm robustness in the event of a bit error in its current 
and optimized states. 

The rankings for each algorithm for the remaining evaluation factors were determined 
directly from answers provided by the algorithm supplier. Each of the factors was combined with 
the image quality results to form a matrix for evaluation of algorithm performance. The 
importance of each of the evaluation factors to users in the NITFS community will be used to 
judge which algorithms, if any, merit inclusion in the NITFS. 

Results 

For the low bit rate visual evaluation, algorithm LBR2 performed slightly better across 
most image types at the lower evaluation bit rates (less than 0.25 bpp). Algorithm LBRl and the 
interim NITFS algorithm performed similarly across most image types and bit rates. Algorithm 
LBR3 performed slightly worse than the other algorithms across most image types and bit rates. 
In the numerical evaluation, looking only at RMSE results, LBRI , LBR3 and the interim NlTFS 
low bit rate algorithm performed similarly across most bit rates and image types. Algorithm 
LBR2 performed slightly better than the other three algorithms at bit rates lower than 0.25 bpp 
and worse than the other algorithms at the higher bit rates, a trend not shown in the visual 
evaluation results. Further investigation into this trend showed that at the lower bit rates the 
LBR2 algorithm introduced a textured d a c t  which was visually pleasing, but numerically 



inaccurate. Results for the visible class of imagery can be found in Figures 1,2 and 3. The 
magnitude of the ratings varied across the other innage types, but the relationslhrps en 

fairly constant. 

- Low Bit Rate Evaluation Figure 2 - Low Bit Rate Evaluation 
Ratings for Visble Imagery Subjective Quality for Visible Imagery 

Figure 3 - Low Bit Rate Evaluation Figure 4 - Multi-Component Evaluation 
Average RMSE for Visible Imagery Delta MSILRS Ratings for 3,4,5 Band Images 

Algorithm LBR2 was generally more complex than the other three algorithms across all 
bit rates. This algorithm used an advanced quantization strategy which is more complex 
standard quantization methods. Algorithm LBR3 and the interim NITFS low bit rate algorithm 
showed a strong complexity dependence on cornpressed bit rate. This is due to the use 
arithmetic encoding by ILBB and the variable subsampling implemented by the S 



low bit rate algorithm. At the higher evaluation bit rates, these algorithms were more 
computationally complex than the LBRl algorithm. 

In their current implementations, algorithms LBRl and LBR2 generally did not recover in 
the presence of a bit error. Algorithm LBIU recovered &om a bit error, but stopped 
decompression at the location of the bit error. This generally produced an image whose quality 
was too low for practical use. The interim NITFS low bit rate algorithm recovered fiom a bit 
error, but generally all data between the location of the bit error aad the next restart marker was 
lost. This produced unacceptable results in horizontal stripes of the image affected by the error, 
but the remainder of the image was left utlcormpted. 

For the multi-component evaluation, algorithms MC1, MC2 and the KLT baseline 
algorithm all showed a dependence between image quality and number of bands. The results for 
the multi-component evaluation have been separated into two groupings by band number (images 
which contained 3,4 or 5 bands, and images which contained 8, 12 or 16 bands). For the visual 
evaluation, algorithms MC1 and MC2 performed s ~ l y  across the various bit rates and band 
groupings. The KLT baseline algorithm performed slightly worse than the MC1 and MC2 
algorithms at the lower bit rates, especially for images which contained the most bands. The 
baseline algorithm which performed no component decorrelation, performed substantially worse 
than the three other algorithms, especially for images with the most bands. At the higher bit 
rates, the KLT baseline algorithm performed similarly to the MC1 and MC2 algorithms. Figures 
4,5,7 and 8 graphically depict the multi-component visual evaluation results. 

Figure 5 - Multi-Component Evaluation Figure 6 - Multi-Component Evaluation 
Subjective Quahty for 3,4,5 Band Images Average RMSE for 3,4,5 Band Images 

In the numerical evaluation, algorithms MC1 and MC2 performed similarly across most bit 
rates and band groupings. The KLT and the non-decorrelating baseline algorithms performed 
worse than the MC1 and MC2 algorithms across all bit rates and band groupings. Additionally, 
these results showed that at the highest bit rate, the KLT baseline algorithm actually performed 
worse than the non-decorrelating algorithm. Further investigation showed that the process of 
integerizing the KL transformed bands for compatibility with JPEG contributed signtficantly to 
this inefficiency. Figures 6 and 9 show the results, separated by band groupmg, for the analysis of 
RMSE. 



classScation accuracy, we see that the KLT baseline alg 
of the other thee algorithms at the lower bit rates. Visual ex 

of the results fiom the MCl and MC2 algorithms showed a tendency to induce spectral 
distortions m localized areas of the image. These distortions would negatively impact a machine- 
based exploitation as was shown with the supervised classification accuracy metric. At the higher 
bit rates, algorithms MCl and MC2 show advantages in supervised classification accuracy. 
Figure 10 shows the supervised classification accuracy results for a single 16 band image. 

Figure 7 - Multi-Component Evaluation Figure 8 - Multi-Component Evaluation 
Delta MSIIRS for 8, 12,16 Band Images Subjective Quahty for 8,12, 16 Band Images 

Figure 9 - Multi-Component Evaluation Figure 10 Multi-component Evaluation 
Average RMSE for 8,12,16 Band Imagery Classification Accuracy for a 16 Band 

. . C~qutationdlly~ the nom3-deconelaling baseline algorithm performed the best. The 
three algorithms were all slowed by the time r e q ~ e d  to perform the K L  bransfom 



This was especially true for the band grouping which contained the most bands, sime the KLT 
complexity is related to the square of the number of bands. At the higher bit rates, the KLT- 
JPEG baseke algorithm performed next best, followed by the MC2 algorithm. A bit rate 
dependence forced the MC1 algorithm to be more computationally complex than the MC2 and the 
baseline KLT-JPEG algorithms at the higher bit rates. This was largely due to the use of 
arithmetic coding by the MC1 algorithm. At the lower bit rates, the three algorithms performed 
similarly. 

Algorithms MC1 and MC2 did not recover &om a bit error in their m e n t  
implementation. The two baseline algorithms recovered with the same mechanism as the interim 
NlTFS low bit rate algorithm. For the non-decorrelating baseline algorithm, the error was 
localized to the band in which it occun-ed. For the KLT baseline algorithm, a single bit error 
affected all image bands, although the magnitude of the effect varied according to the original 
energy content of the area in the transformed band which the bit error affected. In algorithms 
MC1 and MC2, the same holds true, although the effect of a bit error would generally be less 
catastrophic if an advanced recovery method is used. This is due to the ability of the wavelet 
algorithm to maiutain some degree of accuracy in the region affected by the error depending on 
the location of the error in the data stream. 

Conclusions 

With experimental error included, all low bit rate algorithms only met the image quality 
criterion for the Mared imagery type. The interim NITFS low bit rate algorithm produced results 
which were similar in image quality to the submitted algorithms. Implementation of shorter length 
filters in the interim NlTFS low bit rate algorithm should produce similar image quality at a lower 
computational complexity. 

In the mult-component evhtion,  algorithms MC1 and MC2 met the image quality 
criterion only for the band grouping which contains the most bands. The MC1 and MC2 
algorithms induced spectral distortions at the lower bit rates which affected the quality of machine 
based exploitation tasks. The perfonmince of these algorithms needs to be improved if machine 
based exploitation is important at these bit rates. 

The use of the KL transform produced dramatic increases in quahty for images which 
contabed a large number of conelated bands. However, the use of the KL transform can &ease 
complexity beyond what many users are capable of handling. A system which has a large amount 
of bandwidth available for transmission and uses computers of low computational power may find 
it faster to send each band at a higher quality level with no component decorrelation. 

AU algorithms in both evaluations which were not JPEG based did not produce acceptable 
results in the presence of bit errors in their current implementation More work must be done on 
these algorithms to improve their performance for implementation in noisy channels. The 
implementation of advanced recovery methods with these algorithms should increase their 
performance in noisy channels beyond the current NITFS JPEG-DCT implementation with some 
image quality loss. 

The final results from this evaluation will be used to decide which, if any, of the evaluated 
algorithms merit inclusion in the NITFS. This evaluation effort is still ongoing, but should be 
completed in the Spring of 1996. 
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Abstract 

The advent of MPEG-1 has resulted in a standard method for compressing audio and 
video, producing VCR-like video quality at data rates in the range of 1.5 Mbls. A natural exten- 
sion of these techniques is to use MPEG compression to transmit live audio and video over com- 
puter networks. With MPEG, it becomes possible to deliver good quality video and audio at rea- 
sonable data rates, using existing networking infrastructures (Ethernet/Token Ring in the local 
area, T1 and T3 pipes in the wide area). Moreover, the new MPEG-2 encoding scheme allows 
delivery of broadcast-quality video at rates between 4 and 15 Mbls, using network technologies 
such as ATM or Fast Ethernet. 

This paper addresses the issues related to transmitting live MPEG streams over traditional 
packet switched computer networks. After a brief introduction, we discuss the three main issues 
in transporting live MPEG, namely, encoderldecoder synchronization, error control, and latency 
(which is important in interactive applications such as videoconferencing). Finally, we discuss 
issues related to transporting MPEG streams in current network infrastructures. 

1. Introduction 

The advent of MPEG-1 has resulted in a standard method for compressing audio and 
video, producing VCR-like video quality at data rates in the range of 1.5 Mbls. Moreover, with 
MPEG-2, it is possible to produce broadcast-quality video in the 4 to 15 Mbls range. Once real- 
time MPEG encoders and decoders are available, a natural extension of these techniques is to use 
MPEG compression to transmit live audio and video over traditional computer networks, as de- 
picted in Figure 1. The important issues related to transporting live MPEG streams over com- 
puter networks are: 

* This work was funded in part by NSF under SBIR grant number DMI-9460280. 
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Figure 1 : Transmission of Live MPEG Streams over a Computer Network 

EncoderDecoder clock synchronization: The encoder produces data according to its own 
internal clock at a certain nominal rate. The decoder (which may be located on another city 
or even on another country) consumes data at the same nominal rate. However, if their 
clocks are not synchronized, the decoder will eventually ovefflow or undefflow due to the 
mismatch of rates. 

0 Error Recovery and Control: Typical computer networks operate in a "best-effort" mode: 
they will try their best to deliver the data, but no guarantees are given - a packet can be si- 
lently dropped (for example, in case of congestion). Excessive loss, however, will degrade 
the video quality to unacceptable levels. This is specially true of compressed video, since 
loss of data in a frame might cause a glitch which will persist for several frames. 
Latency: Latency is defined as the time between the moment a frame of video enters the en- 
coder, and the moment the same frame is displayed at the decoder. Some iterative applica- 
tions, such as video-conferencing, require latency to be low, typically under 250 ms. Other 
applications, such as remote teaching, where the interaction between the participants is more 
structured, can tolerate higher latencies. Latency is an issue in MPEG, due to the processing 
and buffering required, and due to the fact that, to compress some frames, the algorithm re- 
quires knowledge of future frames. Therefore, the encoder must wait for this future frame 
before it can encode the current frame. A similar comment can be made for the decoder. 

2. EncoderLDecoder Synchronization 

As pointed out in Section 1, the clock used in the decoder to control the playback of the 
video data must be synchronized with the encoder clock used to generate it. If it is not, the de- 
coder will either ovefflow or undefflow. Consider, for example, a case where the decoder clock 
is running at a rate slightly lower than that of the encoder clock. MPEG data will slowly 
"acc~mulate~~ at the decoder, until its buffer overflows. Similarly, an underflow situation will 
occur when the decoder clock is running slightly faster than the encoder clock. Therefore, the 
two clocks must be kept synchronized. There are two options to achieve this synchronization: 

Use a network-wide clock for synchronization: This approach is, in principle, feasible when 
using public communication networks, since they are all synchronized to the same master 
clock. However, in LAN environments, this kind of network clock is not available. 



Use time-stamps the time stamps in the stream and a PLL to recover the clock [I]: In this 
approach, a PLL (Phase-Locked Loop) is used to keep the local decoder clock synchronized 
to the encoder clock. This synchronization is achieved by comparing the time-stamps in the 
received MPEG stream with time-stamps from a local register, which is driven by the de- 
coder clock. From this comparison, a phase error can be derived to adjust the decoder clock, 
as shown in the block diagram of Figure 2. For this technique to work well, the delay in the 
network must be constant. Small variations (delay jitter) can be accommodated by the loop 
filter. Delay jitter, however, may be a problem in congested networks. 

Received + Recovered Clock 
Time Stam~s Filter VCO 

Figure 2: Clock Recovery at the decoder 

3. Error Control 

No computer network is perfect: at one time or another, data will be lost or corrupted. 
Data can be lost in two ways: the first is congestion in the network. Traditional data traffic is 
bursty; the backbones of most networks are designed taking this fact into account. Therefore, if a 
large number of computers decide to transmit at the same time, there will not be enough capacity 
in the network and data will be lost, either by contention or by buffer overflow. The second loss 
mechanism is link error: bits may be corrupted in the network links due to noise. Virtually all 
network protocols add CRCs and checksums to packets; a packet with invalid CRC is typically 
discarded by the network hardware. Therefore, link errors are equivalent to data loss1. 

When communicating MPEG streams through a computer network, it is necessary to deal 
with data loss in the received stream. There are two parts to this issue: first, if data is lost, how 
to recover it; second, what to do if the lost data is not recovered. In the remainder of this section, 
we address these two questions. 

3.1 Recovering Lost Data: Retransmission or Forward Error Correction? 

There are basically two ways of recovering from lost data: (i) the receiver can request a 
retransmission of the lost data, or (ii) the transmitter can include redundant information in the 
data stream, from which the receive may be able to restore the lost data (FEC - Forward Error 
Correction; more specifically, Erasure Codes). Both methods have advantages and disadvan- 
tages. Retransmission has the advantage that no additional data needs to be transmitted in the 

Since in today's optical networks the bit en-or rates are very low, it has been proposed that errored packets be 
passed to the higher level software with an appropriate indication, since most of the data is still usable. 

4 3  



absence of errors, but it requires that data corresponding to at least one round-trip delay be buff- 
ered both at the sender and at the receiver (to allow the receiver time to request the lost packet 
and receive it before the time that packet is needed to play the stream), thereby increasing the 
delay and eventually making this method unusable for real-time transmission. Moreover, in a 
point-to-multipoint scenario (one sender, multiple destinations), the sender might be swamped by 
requests from the destinations if many of them miss a packet. Erasure codes, on the other hand, 
introduce very little latency, but the transmission overhead is used all the time. In this section, 
we present a performance comparison between retransmission and two selected erasure codes in 
terms of error correction capability and overhead introduced. For the performance evaluation, we 
chose the Parity Erasure Codes described in [2]; the reader is referred to [6] for other codes, es- 
pecially chosen for MPEG. We selected two specific codes, which we will denote by PE-SP and 
PE-TP. In PE-SP, one parity packet is added to each group of G packets; a single packet loss 
within these G + 1 packets can be recovered. In PE-TP, two parity packets are added to the 
group of G packets, and two losses out of the G + 2 packets can be recovered. For implementa- 
tion details, see [2,3]. 

For the analysis, we make the following assumptions: 

1. Bit errors are an independent, identically distributed process. 
2. Bits are arranged into packets of a given size. Any bit error in a packet will cause that packet 

to be lost. The probability of undetected bit errors in a packet is assumed to be zero. 

The justification for assumption (2) is that packets are protected by a hardware-computed CRC at 
layer 2, a header checksum at layer 3, and a payload checksum at layer 4. A packet with incor- 
rect checksum or CRC is dropped. Since it would take a very specific pattern of errors for a 
packet with bit errors to appear to be a valid packet, we assume that the probability of that event 
is, for all practical purposes, zero. 

Definitions: 

packet size, in bits 
group size, in packets 
MPEG stream data rate, in bitslsecond 
aggregate stream data rate (data plus parity) 
number of parity packets per group 
bit error probability 
probability that there is at least one error in a packet (causing it to be lost) 
packet loss probability afer error correction (i.e., probability that an error 
escapes the error correction mechanism) 

Our objective, in this analysis, is to find PC and A as a function of p for: 

retransmission (denoted by P C ,  and As ); 
l-packet erasure code, PE-SP (denoted by PC,, and A, ); and 

s 2-packet erasure code, PE-TP (denoted by PC,, and 4). 



If the bit error probability is p, the probability that a packet contains one or more errors (thus 
causing it to be lost) is: 

If we use the 1-packet erasure code, uncorrected packet loss will happen if there are 2 or more 
losses in a group of G + 1 packets: 

Similarly, if we use the 2-packet erasure code, uncorrected packet loss will happen if there are 3 
or more losses in a group of G + 2 packets: 

In the case of retransmission, uncorrected packet loss will happen if both the original packet and 
the retransmission are lost. Since the losses are independent, the probability of this event is just 
P' . However, to compare the loss probability under retransmission to the numbers in equations 
(2) and (3), we need to artificially divide the packets in groups of G and compute the probability 
that there is one or more (uncorrected) losses in this group of G packets. Since the losses are 
independent, this probability is: 

The aggregate data rates under erasure codes are not a function of the bit error probability, since 
K packets are added to each group of G packets: 

G + l R  
For 1-packet erasure code: A, =- 

G 

For 2-packet erasure code: 
G + 2  A,=- R 

G 
(6)  

Under retransmission, the aggregate data rate is a function of the bit error probability, since the 
packets are retransmitted "on demand": 
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Figure 3: Performance for G=5, 1400-byte packets 

For a given bit error probability p, the performance of the error correction schemes (as 
measured by A and PC ) is a function of the packet size B and the group size G. For the numeri- 
cal evaluation, we chose a packet size of 1400 bytes (roughly equivalent to the Ethernet maxi- 
mum packet size) and a group size G of 5 packets. Results for other packet sizes and group sizes 
are similar. Figures 3 (a) and (b) show the packet loss and aggregate rates for the three error 
control schemes, when the group size is 5 packets. The plots indicate that packet loss probability 
of the retransmission scheme lies between that of the 1-packet correction scheme and of the 2- 
packet correction scheme. However, for reasonable bit error probabilities (i.e., in the range of 
lo9 or less), the overhead associated with retransmission is less than that of the error correction 
schemes. Note that this analysis assumes only one destination. If there are more destinations, 
there is no change in the Erasure Code curves, but the overhead for retransmission (Figure 3(b), 
equation 7) will increase with the number of destinations. 

3.2 What if lost data is not recovered? 

No error correction mechanism is perfect. Therefore, there will occasions when data is 
lost and cannot be recovered. In this section, we discuss the recommended procedure at the re- 



ceiver in such situations. To accomplish that, it becomes necessary to characterize the impact of 
such errors in the image quality. This evaluation is, by nature, subjective; what one viewer may 
consider acceptable quality, another may deem unacceptable. Therefore, the conclusions pre- 
sented in this section reflect the opinions of the authors on what is acceptable video quality. 

Data loss will manifest itself as a glitch. If audio data is lost, the audible result is a 
"click". There is very little that can be done in case of audio loss; therefore, we will consider 
only the video. The duration of a glitch can go all the way from a single frame (33 milliseconds) 
to a whole GOP (0.5 second). In order to characterize the glitches as seen by the viewer, we took 
MPEG-encoded streams (video rate 1.1 Mb/s, audio rate 128 kbls) and simulated packet loss 
when playing them. We assumed 1400-byte packets, and that an errored packet would be deleted 
from the stream. To the viewer, the glitches appear as: 

1. rectangles of a different color briefly appearing at certain points of the screen; 
2. part of a frame freezing momentarily; and 
3. tiling effects. 

We varied the packet loss ratio from under 1% up to 10%. The main conclusion is that the video 
quality for a packet loss rate in the range of 0.1% is acceptable. Moreover, the MPEG decoder 
tested (Optivision's decoder) was very resilient to loss. Therefore, our conclusion is: for packet 
losses on the order ofO.l%, no special error handling and concealment is necessary. 

4. Latency Issues 

As pointed out before, one of the requirements for interactive communications is low la- 
tency. Subjective studies made for voice have found that the maximum latency human beings 
can tolerate is on the order of 250 ms; the same figure also applies to live video communications. 
The 250 ms figure applies to the end-to-end latency; i.e., the time between the instant a frame of 
video is grabbed at the encoder and the instant that same frame is displayed at the decoder. Fig- 
ure 4 shows the components of the end-to-end latency in a MPEG communications system. 

camera monitor 
--. 

network 

Encoder Host TX Network Host RX Decoder 
Delay Delay Delay Delay Delay 

Figure 4: Components of the End-to-End Latency 



The components in the communications latency depicted in Figure 4 are: 

Encoder Delay: this is the delay through the encoder hardware. It is a function both of the soft- 
ware implementation and the frame structure of the compressed signal. Intra-coded frames 
(I-frames) can be encoded without reference to any other frames; in theory, they can be en- 
coded as they are digitized. Predicted frames (P-frames) need data from the previous I-frame 
or P-frame to be encoded; since this information is already at hand when the frame is being 
digitized, the theoretical absolute minimum latency is also (almost) zero. However, Bidirec- 
tional frames (B-frames) need data both from the previous I- or P-frame, as well as the next I- 
or P-frame. Therefore, a B-frame cannot be encoded until the next I or P frame is captured, 
which means a minimum theoretical latency of two frame times (67 ms at 30 frameslsecond). 
Of course, the software implementation adds additional latency over the minimum. 

Host Software Delay (TX): this is the delay between the moment the video encoder passes the 
data to the host and the moment that data is transmitted through the network interface. It has 
two components: (1) processing on the host, and (2) network transmission delay, which is a 
function of the available network data rate. The different frame types (I, P, B) have different 
average sizes, but they are still generated at 30 frameslsecond. Therefore, the intrinsic data 
generation process at the encoder is inherently bursty (although the average data rate is very 
precisely controlled). Tf the network requires a constant fixed data rate, a buffer must be 
provided to "smooth out" the burstiness; this buffer will introduce additional delay. For ex- 
ample, the average size of an I-frame at 1.15 Mbls is about 13,000 bytes; if the network can 
only support constant data rate (as, for example, in a T-1 link), the delay on this buffer would 
correspond to about 95 ms. On the other hand, if the network is a 10 Mbls Ethernet segment, 
the data can be transmitted in a burst at about 10 times that speed, bringing the delay down to 
about 10 ms. 

Network Delay: this delay is a function of the network infrastructure, and the distances involved. 
If the encoder and decoder machines are in the same Ethernet segment, this delay is negligi- 
ble. On the other hand, if they are in different cities, there may be a significant delay in the 
network. 

Host Sofhvare Delay (RX): this delay has two components: (1) the network buffer delay, and (2) 
the host processing delay. The network buffer is responsible for smoothing out the delivery 
of data to the video decoder by removing the network jitter, and buffering the data as needed 
for the network protocol. For example, if the system uses a retransmission strategy, the net- 
work buffer delay must be at least equal to one round-trip delay. However, if the system uses 
forward error correction, the network buffer needs only to contain one block of data. For ex- 
ample, if the system uses 1400-byte packets and uses a block size of 5 packets, this delay 
would correspond to about 49 ms at 1.15 Mbls. The additional host processing delay corre- 
sponds to the time required to demultiplex the audio and the video. 

Decoder Delay: The decoder delay has similar components to the encoder delay. First of all, if 
B frames are used, there is a minimum 2-frame delay while the decoder is waiting for the in- 
formation to decode the frame. Other implementation-specific delays are: 

VBV (Video Buffer Verifier) Delay: this is similar to the network transmission delay; 
typically, the decoder is not aware of the network bandwidth, and will assume the worst 
case (i.e., constant bit rate delivery). This means that the decoder will pre-buffer a certain 



amount of data prior to start decoding; the latency introduced is equivalent to the network 
transmission latency discussed for the host software in the transmitter. 

s Video Output Delay: Current decoders pipeline decoding and displaying. This pipeline 
may introduce one to two frames of delay. 

As indicated by the above discussion, the latency can easily exceed 250 rns in the worst case, 
without even considering the network delay. The keys to reducing the latency in MPEG are: (1) 
do not use B-frames; (2) use the highest available data rate, to reduce buffer latencies. 

5. Network Infrastructure Issues 

5.1 Protocol Issues 

If traditional network infrastructures are to be used to transport MPEG streams, the 
stream must be packetized and use the same protocols as data in the network. The most common 
network layer protocol today is the IP protocol, which is supported by most network devices 
available today. At the transport layer, MPEG streams should use UDP rather than TCP, because 
the flow control and recovery mechanisms of the latter are unsuitable for video. The industry 
seems to be moving towards putting MPEG directly in the raw UDP payload; Optivision's 
transmission systems support this format. Optivision also uses a proprietary format where a se- 
quence number is added for error control and recovery. For ATM networks, the ATM Forum is 
proposing the use of MPEG-2 transport packets directly as AAL-5 PDUs; in particular, 
2 transport packets (376 bytes) fit exactly into an 8-cell AAL-5 PDU with no padding. 

5.2 Local Area Networks 

The most common local area networks are Ethernet (10 Mbls) and Token Ring (4 or 
16 Mbls). These networks have the capacity to support a small number of MPEG streams, de- 
pending on the individual stream bandwidth [4]. The main problem with these networks is giv- 
ing priority for video over data; Ethernet does not have any mechanism to implement priorities, 
and while mechanisms exist in Token Ring, they are typically not implemented in most devices. 
Our experience is that, although it is possible to mix video and data in the same network, per- 
formance for data users will be greatly degraded. In these networks, video and data should be 
kept in different segments. 

5.3 Wide Area Networks 

By and large, wide area networks are point-to-point links that connect switching devices 
such as routers. It is possible to use these wide-area links either by injecting the MPEG streams 
in a LAN connected to a WAN router, or by having the MPEG encoderldecoder directly termi- 
nate the WAN link. Optivision's MPEG transmission systems support both options. 



ATM is intended to be a single standard both for the local and the wide-area networks. 
Since it is switch-based and not shared-medium, the available bandwidth increases linearly with 
the number of ports. Moreover, ATM has a signaling protocol that allows for priorities and re- 
source reservation. During the current transition period, ATM will be adopted first in the back- 
bone and for devices that need a high-speed connection, and then will migrate to the desktop [5]. 
As pointed out in Section 5.1, the ATM Forum is in the process of standardizing the transport of 
MPEG-2 over ATM networks. 
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Abstract 

This paper presents algorithms for inferring global and spatially local estimates of the squared-error distortion 
measures for the Embedded Zerotree Wavelet (EZW) image compression algorithm. All distortion estimates 
are obtained at  the decoder without significantly compromising EZW's rate-distortion performance. Two 
methods are given for propagating distortion estimates from the wavelet domain to the spatial domain, thus 
giving individual estimates of distortion for each pixel of the decompressed image. These local distortion 
estimates seem to provide only slight improvement in the statistical characterization of EZW compression 
error relative to  the global measure, unless actual squared errors are propagated. However, they provide 
qualitative information about the asymptotic nature of the error that may be helpful in wavelet filter selection 
for low bit rate applications. 

1 Introduction and Motivation 

An image compression algorithm encodes data from a two-dimensional information source for efficient trans- 
mission and later reconstruction by a decoder for some intended receiver. The receiver performs some sort 
of analysis of the image. Lossy compression algorithms produce reconstructed images that are not in general 
equal to the input image. Any measure of the error or the nature of the error induced by a compression 
algorithm is commonly termed a distortion measure by data compression technologists. In this context, 
distortion is a more general term for error which must not be confused with the image distortion of optical 
aberration theory that refers to the spatial variation of the magnification from input to output of an optical 
system (e.g. pincushion or barrel distortion) [I]. Many distortion measures for image compression have 
been devised and studied [2]. Probably the most commonly used distortion measures are those related to 
the sum-of-squares of the errors, such as the peak signal-to-noise ratio (PSNR), mean squared error (MSE), 
and root-mean-squared error (RMS error). These measures fit in nicely with the standard error analysis 
methodologies used in most science and engineering work [3, 41. The distortion measures that may be in- 
ferred using the algorithms presented here are these squared-error measures. For convenience, only MSE will 
be presented in the graphs and tables. 

Compression with global and local distortion inference is a step toward the design of an image com- 
munication system in which the compression algorithm is optimized for a receiver intending to perform 
an uncertainty analysis based upon the data. For example, a scientist (or his computer program) may be 
measuring some parameters of his hypothetical model based upon an EZW-compressed image. A typical 
approach to this problem is to perform Monte Carlo simulations of the compression/analysis system and 
generate uncertainty estimates in the derived results on the basis of simulation. Error estimates based on 
how well the data fits the model may also be generated. Distortion estimates obtained by global and/or 
local distortion inference can be used to supplement this approach and may lead to more accurate uncer- 
tainty estimates for the model parameters. In addition, the inferred compression distortion may assist in 
determining when and where deviations from the simulated conditions occur. 

Section 2 describes the EZW algorithm. Section 3 explains two methods for global distortion inference 
and shows the measured and inferred distortion-rate curves for five test images. Section 4 describes two local 
distortion inference methods, presents a comparison to global distortion inference based on error coverage 



factor, and discusses results. Images are shown that illustrate qualitative results. Section 5 is a summary 
and conclusion. 

2 Description of the EZW Algorithm 
The Embedded Zerotree Wavelet Algorithm was introduced by J. Shapiro [5]. It simultaneously possesses 
several desirable features including progressive transmission (the image can be reconstructed at intermediate 
points during decompression), embedded coding (different bit rates and distortions can be obtained by simply 
truncating the compressed file), and fast speed (relative to the standard DCT-based algorithms) due to the 
wavelet transform. Its principal disadvantage is a large memory buffer. The basic operation of the EZW 
image compression algorithm can be expained as follows: 

Transform the input image hierarchically with a discrete orthonormal wavelet of choice. Consider the 
resulting wavelet coefficients to be linked in a tree structure based on spatial location. Consider each top- 
level (LL subband) coefficient as the parent of three coefficients (one each in the top-level LH, HL, and HH 
subbands). Consider the remaining coefficients to be linked with four children per parent, all from subbands 
of the same orientation (e.g. HL parent has four children in the HL subband on the next level down). 
Subtract the mean of the LL coefficients and code it in a header with high accuracy. It is helpful to apply 
the filters with shifts based on the center of energy of the filters [6] so that the wavelet coefficients are stored 
in locations that correspond well to the location of the spatial-domain data upon which they most strongly 
depend. See [7] or [6] for separable wavelet transformation details. 

Regard wavelet coefficients as insignificant with respect to a threshold T if they are less than T, and 
significant otherwise. Consider the set of known significant coefficients to belong to the subordinate list and 
the rest of the coefficients to belong to the dominant list. Initialize T large enough that all coefficients 
belong to the dominant list. Consider subtrees of wavelet coefficients to be zerotrees with respect to T and 
the top-most parent of a zerotree to be the zerotree root whenever it and all its descendants are insignificant 
or on the subordinate list. Consider an insignificant coefficient to be an isolated zero if it is insignificant, but 
at least one of its descendants is not. 

Dominant pass: Use a four-symbol adaptive arithmetic coder [8] to entropy code one of the following 
symbols: zerotree root, isolated zero, positive significant, and negative significant. Code a symbol only if 
the coefficient is on the dominant list and if its insignificance is not already known due to a previously coded 
zerotree root symbol. Move significant coefficients to the subordinate list as they are found. Divide T by 2 
after completing the pass. 

Subordinate pass: Use a two-symbol arithmetic coder to refine the significant coefficients by encoding 
the next-most-significant bit. 

If the the target bit rate or distortion is reached at any time during dominant or subordinate passes, 
terminate the coding. Otherwise continue on to the next dominant pass. 

Decoding is the inverse of this process. Dominant list coefficients are inverse-quantized to zero. Subordi- 
nate list coefficients are inverse quantized by inserting a 1 bit in the position below the least significant bit 
decoded and multiplying by the value of T at the time the subordinate coefficient was last refined or was 
moved to the subordinate list. This inverse quantization method places reconstruction points in the center 
of quantization bins of width 2T and T for dominant and subordinate list coefficients, respectively. 

A more detailed description is given in the Appendix. 

3 Global Distortion Inference 
The wavelet transform assumed here is orthonormal and separable. Low-pass filter coefficients therefore sum 
to 1/2 and the sum of squares of the coefficients is 1. The sum of high-pass filter coefficients is 0. Orthonormal 
wavelet decomposition is a unitary transformation. As such, energy ,is preserved across the transformation, 
i.e. the sum of squares of the wavelet coefficients is equal to the sum of squares of the input image. Moreover 
quantization error in the wavelet domain leads to an image reconstruction exhibiting the same error energy. 
Because of this it is possible to know the squared-error distortion (and its relatives PSNR, MSE and RMS 
error) precisely in the encoder by maintaining running sums of dominant and subordinate list quantization 
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Figure 1: MSE distortion vs. rate curves for five test images. Measured (meas), global inference method 1 
(infl), and global inference method 2 (inf2) curves are indicated. 

error energies. The distortion for each bit rate can be inferred at  the decoder from estimates of the wavelet 
coefficient error energy. 

At all times during the EZW coding total energy remains constant (Etot = EDL + ESL, where Etot is the 
total energy of the image, EDL and ESL are the energy of coefficients on the dominant and subordinate lists, 
respectively). The error energy can written E,,, =  ED^ + Eerr,SL, where E,,, is the total error energy in the 
reconstruction, and Eerp,SL is the error energy in the subordinate list coefficients. Dominant list coefficients 
are inverse quantized to 0, therefore EDL contributes directly to the error energy. 

With negligible increase in the number of compressed bits ( ~ 4 0 )  it is possible to accurately encode the 
total energy, Et,t. Energies may then be estimated in the decoder using 

The following method of estimating Eerr,s~ works well. Set E,,,,~L to 0 (the subordinate list is initially 
empty). As each significant coefficient is found during a dominant pass, update E, , , ,~~ based on the 
assumption that the quantization error of the subordinate coefficients is uniformly distributed. The energy 
of each subordinate coefficient is therefore (since the significance threshold, T ,  is the current quantization 
bin width for significant coefficients). The update equation for the dominant pass is therefore 



This is performed every time a significant coefficient is found during a dominant pass. Prior to a subordinate 
pass, T is halved, resulting in the update equation 

To estimate subordinate list energy, begin by initializing E s L  to 0. Basing subordinate list energy on the 
sum of squares of the (would-be) inverse-quantized wavelet coefficients leads to the update equation 

for the dominant pass, and for each coefficient refined during the subordinate pass 

aT2 + T w  if current LSB (least significant bit) = 1 
EsL = ESL + 

- ;T~  - T w  otherwise, 
(6) 

where w  is the (integer) word containing the bits that have been decoded for the current significant coefficient. 
In the above, the current bit is already assumed to be shifted into w. 

The above estimate for ESL is inadequate for reasons explained in the next section. A second method 
that gives better distortion inferences is now explained. Before each dominant pass, the encoder transmits 
the fraction of energy that will remain on the dominant list at the end of the pass, along with the number 
of coefficients that will be found during the pass, An. From this, the decoder determines an energy change, 
6~ = e, to use during the current dominant pass. It adds 613 to ESL every time a coefficient is moved 
to the subordinate list: .. .. 

ESL = EsL+~E,  (7) 
and performs no update during the subordinate pass. The encoder can calculate the energies for all passes 
in the process of calculating Etot, thus little computational burden is added to the encoder. This approach 
assumes that the increase in subordinate list energy during a dominant pass is directly proportional to the 
number of coefficients found significant since the beginning of the pass. This method differs from the first 
method only in the way the subordinate list energy is estimated and the small additional amount of overhead 
information (less than x60 extra bits per bitplane). 

3.1 Global Distortion Inference Results 
Five test images were compressed to evaluate the accuracy of distortion inferences using the methods de- 
scribed above. Four stages of wavelet decomposition were performed using the Beylkin 18-tap filter [6] with 
periodic extension used at image boundaries. The adaptive arithmetic coder used a maximum frequency of 
127 and a 9-bit code point [8]. A constant 73-bit coding delay between encoder and decoder was empirically 
determined, and the rate measured in the encoder was increased accordingly. 

The measured and inferred MSE distortion vs. rate curves are shown in Figure 1. The images were: 
gnoise (i.i.d. Gaussian noise with p=128 and r7=20), unoise (i.i.d. uniformly distributed noise with p=128 
and a=20), mamo (a mammogram image), lenna (ftp://ipl.rpi.edu/pub/image/still/usc/g/lena512.ras), 
and astro (a high-resolution astronomical image from simulation work of the f is t  author [9]). All images were 
512x512 pixels stored in floating-point format. It is interesting that the EZW performance was insensitive 
to the distribution shape for the noise files. 

Figure 1 shows that Method 1 yields poor global inferences of the MSE. This is because, first, at interesting 
bit rates there are few coefficients on the subo~dinate list, yet their sum-of-squares, EsL, constitutes a large 
fraction of the total energy. Both Etot and ESL are very large numbers, the difference of which must be 
accurately known to infer EDL. Appropriately small errors in subordinate list coefficients lead to large 
enough errors in their squares to render EDL nearly useless. Second, Eerr is consistently too low, due to 
positive bias in ESL. The bias is probably caused by use of the quantization bin center as the reconstruction 
point, in spite of the slight slope of the typical wavelet coefficient probability density function across a 
quantization bin. For high bit rates and at  the end of each of the subordinate passes, Method 1 gives its 
best performance and is perhaps acceptable for some applications. The Method 2 distortion inference curves 
shown in Figure 1 are very good. For each image the inferred distortion-rate curve is difficult to distinguish 
from the measured curve. 



4 Local Distortion Inference 
The work in this section was motivated by the observation that much of the structure of an image is typically 
visible in the error image, thus the compression error is spatially nonuniform. This can be demonstrated 
very easily by compressing an image at a moderate-to-low bit rate with most any compression algorithm, 
and viewing the difference image between input and output. The structure of the input image will appear 
in the error image as regions of larger errors in the locations where edges and fine details occur. This 
is so because of the low-pass nature of nearly all lossy compression algorithms. The desire to reduce the 
spatial nonuniformity of error without penalizing compression performance led to the analysis and algorithms 
described below. 

A method of spatially whitening the compression error is to add a dither sequence prior to quantization 
and subtract the dither after inverse quantization [lo]. Pondering the application of this technique to EZW, 
however, one realizes that the dither sequence will appear as noise to the coder whether it is added in the 
spatial or wavelet domain. One will actually expend more bits to produce a reconstruction that has higher 
average error than the reconstruction obtained without dithered quantization. 

Since the relatively low error in smoother regions of an image is available for free using the EZW algorithm, 
a more efficient approach is to allow the nonuniformity to occur and to model it. A method of doing this, 
here termed local distortion inference, is to use what information is known in the decoder about the accuracy 
of wavelet coefficients to estimate errors in the decoded image. The resulting noise image is then propagated 
into the subsequent image analysis, leading to improved error characterizatioh for the resulting data products. 

Both methods of local distortion inference described next use an estimate of error energy for each wavelet 
coefficient, referred to collectively as the wavelet-domain noise image. This can be calculated by allocating 
the appropriate portion of Et,t to each coefficient depending upon its membership in the dominant list, the 
subordinate list, and the final state of the decoder. If termination occurred partway through a subordinate 
pass, each coefficient that was refined should be allotted 114 of the error energy allocated to each remaining 
subordinate list coefficient. If the algorithm terminated during a dominant pass, all coefficients examined 
directly or indirectly (by being descendants of zerotree roots that were decoded) are allocated 114 of the 
energy of the coefficients not yet significance-tested. 

4.1 Error Propagation Transform for Local Distortion Inference 

The filters involved in inverse wavelet filtering are especially designed to cancel the aliasing distortion due to 
decimation of the forward-transform filter outputs. But this cancellation is complete only in the absence of 
quantization error. One way to model the hierarchical inverse wavelet transform in the presence of significant 
quantization error is to simply regard it as the application of ordinary linear finite impulse response (FIR) 
filters at  the various resolutions involved. A method of inferring distortion locally in an EZW reconstruction 
can be based on this view by applying the error propagation equation common in measurement uncertainty 
analysis [4] to the inverse filtering process. 

To apply this approach, error energy estimates are first obtained for each wavelet coefficient based on 
precision and significance list membership information as discussed previously. For each FIR filter application 
xj = aum +bun + - ., where j, m, and n represent appropriate position indices, error variance and covariance 

2 2 estimates azm, a,%, aumun, . . ,, for the filter inputs can be propagated to the filter output using 

This equation is based upon consideration of the spread of the values of xj resulting from combining the indi- 
vidual "measurements" (inverse-quantized wavelet coefficients um, u,, . . .) about an assumed most probable 
value Zj = f (ti,, On, . . .) = afim + bfi, + . . - [4]. 

Application of this error-propagation formula, neglecting the covariances, aZmun,. . ., can be implemented 
very simply: inverse transform the wavelet-domain noise image using the squares of the inverse wavelet filter 
coefficients (a2, b2, . . .), rather than the filter coefficients themselves (a, b, . . .). Any explicit subtractions 
must replaced with additions as well. This error-propagation transform has equal complexity to the inverse 
wavelet transformation. Discussion of the effects of ignoring the covariance terms is deferred to Section 4.3. 



Table 1: Error coverage factors for global and local distortion inferences, and error propagation transform 
of wavelet-domain squared error for three filters (H2=Haar, D12=Daubechies, B18=Beylkin). 

4.2 An Iterative Method of Local Distortion Inference 

Image Filter 
astro H2 
astro Dl2 
astro B18 
mamo H2 
mamo Dl2 
mamo B18 
lenna H2 
lenna Dl2 
lenna B18 
unoise H2 
unoise Dl2 
unoise B18 
gnoise H2 
gnoise Dl2 
gnoise B18 

Inverse hierarchical wavelet transformation is a linear operation. This means that for any two images of 
wavelet coefficients, the inverse wavelet transform of the sum of the coefficients equals the sum of the inverse 
transforms of the two wavelet coefficient images. Considering the quantization error added to wavelet 
coefficients by lossy compression as one of these images, one realizes that for any such quantization-error 
image, the quantization error image in the spatial domain can be obtained through inverse transforming the 
wavelet-domain error image. 

The iterative method for local distortion inference is to update the necessary statistic (the sum of squares) 
in the spatial domain after each of many samples of pseudorandom error images are inverse transformed. All 
pseudorandom images are generated to be consistent with what is known about coefficient precisions and list 
membership as described in Section 4. After completing the desired number of iterations, the accumulator 
image containing the spatial domain energy resulting from all iterations, is divided by the number of iterations 
to obtain a spatial-domain noise image. This method has the advantage that any desired noise distributions 
and correlation models can be simulated by modifying the random number generation process. It is also 
possible to accumulate other statistics, such as the absolute sum which would give a local estimate of the 
mean absolute error (MAE). 

Rate MSE 
0.077 217.5 
0.060 98.0 
0.063 93.4 
0.103 576.0 
0.118 480.2 
0.117 484.8 
0.578 22.2 
0.455 17.9 
0.233 37.9 
6.517 0.093 
6.516 0.093 
6.518 0.093 
6.525 0.093 
6.525 0.093 
6.526 0.093 

4.3 Local Distortion Inference Results 

Global Inference 

Table 1 gives the results of an experiment to investigate the local distortion inference performance using 
the error propagation transform of Section 4.1. The eight most significant bitplanes of quantized wavelet 
coefficients were encoded using the EZW algorithm for each of the five test images. Three filters were used, 
the Haar, Daubechies 12-tap, and Beylkin 18-tap filters [6]. Method 2 for global distortion inference was used. 
Since coding was halted after a complete bitplane (after the eighth dominant pass), distributing error energy 
was easier to implement than in the general case: the subordinate list error energy, E ~ ~ ~ , ~ ~ ,  and the dominant 

Local Inference 

k95.5% k99.7% 

2.024 4.051 
2.017 3.434 
2.012 3.410 
2.138 3.536 
2.126 3.508 
2.123 3.521 
2.136 3.625 
2.117 3.698 
2.139 3.910 
1.972 2.769 
1.983 2.887 
1.987 2.917 
1.974 2.781 
1.980 2.875 
1.987 2.917 

-- 
MSE 
216.6 
97.4 
92.8 
573.4 
477.6 
483.0 
22.1 
17.8 
37.8 
0.093 
0.093 
0.093 
0.093 
0.093 
0.093 

list energy, E ~ ~ ,  were divided evenly among suljordinate and dominant list coefficients, respectively. The 
error propagation transform was then applied to these energies to produce the local inference image. A 
propagated error image was also generated by applying the transform to the actual wavelet-domain squared 
errors. Although actual error is not normally available at the decoder, the performance of this prediction 
gives some indication of a limit to the achievable performance of more sophisticated techniques of estimating 

Prop. Error 

k95.5% JG99.7% 

1.909 2.513 
2.245 3.540 
1.994 3.004 
1.932 2.568 
2.092 3.176 
1.961 2.903 
1.889 2.498 
1.972 2.871 
1.944 2.887 
1.895 2.434 
1.950 2.753 
1.965 2.817 
1.893 2.431 
1.947 2.738 
1.967 2.820 

k95.5% k99.7% 

2.073 4.655 
2.033 3.565 
2.026 3.474 
2.147 3.567 
2.138 3.536 
2.139 3.585 
2.139 3.607 
2.129 3.732 
2.183 4.056 
1.983 2.887 
1.988 2.939 
1.992 2.957 
1.982 2.885 
1.986 2.940 
1.989 2.965 



(a) astro (b) Decoded (c) Error2 (d) Local Inf. (e) Prop. Error 

Top Row: 
Haar wavelet 
filter. 

Middle Row: 
Daub. 12-tap 
wavelet filter. 

(f) Decoded (R) Error2 (h) Local Inf. (i) Prop. Error 

Bottom Row: 
Beylkin 18-tap 
wavelet filter. 

(j) Decoded (k) Error2 (1) Local Inf. (m) Prop. Error 
blk=O,wht=255 blk=O,wht=200 blk=O,wht=140 blk=O,wht=200 

Figure 2: 72x72 pixel subimages associated with results in Table 1 for astro. Data numbers corresponding 
to black (blk) and white (wht) indicate scaling of images for display purposes. 

the wavelet-domain error energies. 
In addition to bit rates and MSE measures (actual and the global inference), the 95.5% and 99.7% 

coverage factors are given in Table 1. Coverage factor, kp, refers to the factor by which one multiplies 
the uncertainty u(xRMS error) in order to have confidence level p that the true value is within f kpu of 
the estimate [3]. For a Gaussian error distribution, u is equal to the standard deviation a, and 
k99.7%=3. The coverage factors in Table 1 were calculated from histograms of uncertainty-normalized error 
images. The normalization was done by dividing each error image pixel by the RMS error predicted by the 
distortion inference. Lower values of coverage factor are indications of improvement in the error estimate. 
The comparison of global and local distortion inference by looking at coverage factors is "fair" in the sense 
that all distortion estimates have the same total energy. 

Table 1 shows that and k99.7% were reduced on the order of 1% by using the local distortion 
inference. An exception was a 0.5% increase in kg9.7% for the Haar-filtered Lenna image. The most dramatic 
improvement occurred for the Haar-filtered astronomical image, for which local distortion inference reduced 
the coverage factors by 2.4% and 13%, respectively. The error propagation transform of the actual squared 
errors reduced k95.5% on the order of 5% for both filters. Reductions in kg9.7% occurred on the order of 
15% for the Haar and 25% for the Beylkin filter. The most significant reductions occurred for the files that 
compressed to lower rates. 

Portions of the decoded, squared error, local inference, and propagated error images are shown in Figure 
2 for the astronomical test image. There was a qualitative difference in the predicted squared error that 



depended upon the filter. Blocky artifacts appeared when the Haar filter was used. Grid- and streak-like 
patterns such as those in Figures 2(h), 2(i), 2(1), and 2(m) appeared when other wavelet filters were used. 
The tendency of higher or lower error predictions along particular rows and columns to form a grid pattern 
was unexpected and quite puzzling. Such grid patterns appeared in the predicted squared error images for 
all image types when compression was performed at sufficiently low bit rates. As the bit rate was increased, 
the grid patterns in the propagated error images became less coarse until they vanished altogether. 

Based on a suspicion that such patterns were not valid predictions, an experiment was performed using the 
iterative method for error propagation of Section 4.2. For the Haar filter, 16,384 iterations of pseudorandom 
noise generation, inverse wavelet transformation, and spatial-domain error energy accumulation was sufficient 
for the resulting image to converge very closely to the image calculated with the error propagation transform. 
For the Beylkin filter, 16,384 iterations produced an image that had not yet converged to the local inference 
image, but streaks had formed along the same grid lines. Thus the unusual patterns in local distortion 
inferences appear to be valid indicators of an asymptotic tendency of the spatial error energy distribution of 
statistically independent wavelet-domain quantization errors. 

It was found that filters for which the sum of squares of even- and odd-tap coefficients are equal seem to 
produce lower-contrast grid patterns in the local inference and propagated error images. The Beylkin 18-tap 
filter is good and the Haar is perfect in this regard, while the Daubechies 12-tap and most other wavelet 
filters are poor in this regard. Further study along these lines may yield interesting if not important filter 
design principles for low bit rate wavelet compression applications. At high bit rates, of course, the error 
image and any associated pattern approach zero. The patterns are only significant at low bit rates where 
the assumption of independent errors is perhaps not valid. 

The error propagation transform neglects contributions to the error due to cross terms of the wavelet 
filter coefficients (the terms multiplying the covariances in Equation 9). For example, consider the errors in 
a pair of adjacent pixels reconstructed using the Haar transform. The errors are the inverse transform of 
two wavelet-domain quantization errors el and e2. Some algebra shows that the errors in the spatial domain 

e2+e2 e2+e2 e2+e2 will be 6-2-2 + e1e2 and 6-2-2 - ele2, whereas the error propagation transform predicts an error of J+ for 
both samples. The difference can clearly be substantial. The situation is more complex with longer filters 
(e.g. the Daubechies Ctap filter [6] has 6 cross terms), but the cross terms continue to be significant. In a 
hierarchical wavelet decomposition, cross terms partially cancel due to contributions of opposite sign, but 
even if quantization error is independent, the cancellation will not be complete for the individual samples of 
reconstruction error that are of the greatest interest from a local distortion inference standpoint. Efficient 
use of covariance or other techniques to model effects due to cross terms remains a topic for further study. 

5 Summary and Conclusions 

Two methods of global distortion inference during decompression of EZW-coded images were described. 
Both required transmission of the total error energy from the encoder to the decoder. The second method, 
which required slightly more overhead, yielded very accurate distortion-rate curves. 

Two local distortion inference methods were presented. Reductions on the order of 1% in error coverage 
factor were obtained for the local distortion inference using the error propagation transform relative to the 
global distortion estimate. While not dramatic, they were realizable local error characterizations that require 
no rate overhead beyond that of the global distortion inference. The propagation of actual wavelet-domain 
squared errors gave significant improvement in terms of coverage factor. Although unrealizable in a practical 
decoder, it indicated that maximum coverage factor reductions of no more that 5-25% are to be expected of 
more sophisticated schemes of wavelet-domain error energy estimation. 

Images were shown that demonstrated the ability of the local distortion inference using the error prop- 
agation transform to give qualitative information about the asymptotic nature of the compression error at 
low bit rates. The occurrence of grid- and streak-like patterns in the resulting local squared-error predictions 
was discussed and the iterative method for local distortion inference confirmed their existence. 

The main contribution of this paper was to study a wavelet-based compression algorithm in the context 
of uncertainty analysis. This led to a natural way of viewing the wavelet reconstruction process in the 
presence of quantization error. Further investigation of wavelet based compression in this context may lead 
to improved filter designs and compression algorithms, particularly for low bit rate scientific applications. 
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Appendix 
A more detailed description of the authors' implementation of the EZW algorithm is given below. 

1. Wavelet transform the input image, remove the mean of the top-level coefficients, and consider the 
coefficient relationships as described in Section 2. 

2. Scalar quantize the wavelet coefficients by dividing by a small threshold, Tmin, and keeping the integer 
portion. Represent negative integers using signed-magnitude format. 

3. Place the quantized coefficients from each subband in a Peano-scan order (consecutive coefficients 
spatially adjacent) in a 1-dimensional array (qc). Make sure the order is consistent from level to  level 
so that the children corresponding to the same parent are consecutive as well. See [ll] for an illustration 
of the Peano-scan ordering and alternative orderings. 

4. Create a significance map (sig-map), an array of integers. Initialize it by placing a 1 bit in each sigmap 
entry in the position of the most significant magnitude bit of the corresponding quantized coefficient. 
For each level of the pyramid, bitwise OR each group of four child entries with their immediate parent 
entry and store the result in the parent entry. 



5. Consider all coefficients to belong to the dominant list unless pointed to by an entry on the subor- 
dinate list (sub-list). As coding progresses, mark sub-list coefficients by setting the sign bit of the 
corresponding significance map (sig-map) entry. 

6.  Initialize slicenum to the bit position of the most significant bit (MSB) of the largest coefficient 
magnitude. Set slicemask = 1 << slicenum for testing and setting bits on the current bitplane. 
These variables represent the descending threshold T. The relationship is T = slice-mask x Tmin. 

7. Dominant pass: Encode the sign and position of the quantized wavelet coefficients having MSBs 
at the current bitplane. To do this scan through the sig-map and qc arrays, performing actions 
based on the value of parent and child sig-map and qc entries. For conciseness of explanation, con- 
sider a vector, v, to be comprised of four bits from the current sigmap and qc entries such that 
v = (MSBsig-map, CBBSigmmap, SGN,,, CBBqc). Here SGN indicates the sign bit and CBB means the 
"current bitplane bit" which may be tested by ANDing the entry with slicemask. Proceed as follows: 

(a) Check the contents of the sig-map entries of all parents (grandparents, etc.), beginning at the 
top of the tree structure. If a zero is found in the slicenumth bit position of any parent, the 
current wavelet coefficient (and its siblings) are predictably insignificant since they are part of a 
previously coded zerotree. Advance past them to the next entry. 

(b) If v=(l,x,x,x), where 'x' indicates a don't care condition, then the coefficient is already on the 
subordinate list. Proceed to the next entry. 

(c) If v=(O,l,x,l) a new significant coefficient has been found. Code it with a Positive Significant 
or Negative Significant symbol according to the value of the SGN,, bit, then set all the bits of 
the current sigmap entry. This both marks the coefficient as moved to the subordinate list, and 
prevents it from producing extra Zerotree Root and/or Isolated Zero symbols when visited on 
successive bitplanes. Effectively move the quantized coefficient to the subordinate list by setting 
the next pointer on sub-list to the address of the quantized coefficient entry. 

(d) If v=(O,O,O,O) then code a Zerotree Root symbol. All children (grandchildren, etc.) of this coeffi- 
cient are either already on the subordinate list or are not significant at the threshold corresponding 
to the current bitplane. No bits will be spent to encode them during the rest of the dominant 
pass. 

(e) If v=(0,1,0,0) then code an Isolated Zero symbol. This indicates that the current coefficient is 
insignificant, but has a significant descendent. 

(f) If a symbol was required above, code it using an arithmetic coder [8] of alphabet size 3 or 4 symbols 
according to the number of possible symbols (e.g. bottom-level coefficients have no children and 
therefore can't be Isolated Zeroes). Count the number of arithmetic coded symbols for later 
inclusion in the header. 

8. Shift slicemask right by 1 bit, decrement slicenum. 

9. Subordinate pass: Refine each coefficients on the subordinate list by one bit. The arithmetic coder is 
used with a two-symbol alphabet for 0 and 1. The pointers in sub-list are used to access the coefficients 
in the order that they were found significant, which is roughly in reverse order of their magnitude. 

10. Go to step 7. If at any time during steps 7-9 the target bit rate is reached, go on to step 11. 

11. Write a header (number of compressed bits, number of arithmetic-coded symbols, num-slices, and 
mean) followed by the compressed data. 

12. Decoding consists of the inverse of these steps. At each level a bitplane of sigmap is built up, 
allowing the same efficient determination of zerotree membership by checking the sig-map entries of 
the parents. Prior to inversion, each coefficient on the subordinate list is inverse-quantized by adding 
slicemask/2 and multiplying the result by f Tmin (depending on the sign of the coefficient). - This 
places the reconstructed value in the center of the quantization bin. 
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Abstract 

Wavelet transforms, when combined with quantization and a suitable encoding, can 
be used to compress images effectively. In order to use them for image library systems, 
a compact storage scheme for quantized coefficient wavelet data must be developed 
with a support for fast subregion retrieval. We have designed such a scheme and in 
this paper we provide experimental studies to demonstrate that it achieves good image 
compression ratios, while providing a natural indexing mechanism that facilitates fast 
retrieval of portions of the image at various resolutions. 

1 Introduction 

Wavelet based algorithms have become popular for image compression. These typically 
involve three steps: (i) the application of a wavelet transform to an image to create coefficient 
matrices (ii) the quantization of these floating point matrices to create integer matrices, and 
(iii) encoding the quantized matrices to obtain the compressed image. The original image 
can be reconstructed by reversing the steps mentioned above. Some loss in the quality of 
the image results from the fact that the second step cannot be inverted exactly. The three 
steps are discussed briefly below. 

A 2-dimensional wavelet transform maps a given image to another that resembles the 
original, with half the resolution. Three coefficient (or detail) matrices are also created. 
This process is referred to as decomposition. The detail matrices can be combined with the 
resembling image, through the application of a 2-dimensional inverse wavelet transform, to 
reproduce the original image. This inverse transform is also referred to as reconstruction. 
This process is illustrated in Figure 1. The decomposition described above can be recursively 
applied to the resembling image to produce smaller images at lower resolutions, as shown 
in Figure 2. This recursive process is carried out to a prescribed maximum depth, which 
depends on the application. The smallest resulting image obtained is called the thumbnail. 

'Supported by NSF/NASA/AWA Grant No. IfU[94-11330 



Figure 1: Image decomposition and reconstruction. 
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Figure 2: Multi-level decomposition of an image. 

The coefficient matrices obtained as a result of the previous step consist of, in general, 
floating point numbers. These floating point numbers are then quantized to integers in a 
smaller range. This step enables efficient compression of the coefficient matrices. 

In the h a l  step, further compression of the coefficient matrices is achieved by encoding 
the quantized matrices. The encoding schemes usually utilize the fact that the histogram of 
the quantized coefficients typically has a narrow distribution. 

In the Alexandria Digital Library (ADL) project at UC Santa Barbara, wavelets are used 
to support the hierarchical image storage and browsing: A typical ADL user will issue a query 
to access a set of thumbnails. Then the user will browse through the thumbnails, select the 
ones that he/she wants, and enlarge them to some desired resolution (or, more often, access 
just a subregion of a thumbnail of interest), using the wavelet reconstruction. We briefly 
discuss below the utility of a wavelet based compression scheme in the ADL environment. 

1. The image collection includes a large number of satellite and aerophoto images with an 
average size of 30MB. The storage scheme must be able to achieve a good compression 
ratio in order to store these images efficiently. Apart from influencing the storage 
requirement, effective compression also reduces the time required for reconstructing 
the image since the time taken for reading from the disk is reduced if the image is 
stored in less space. Wavelet based schemes have proven effective in yielding substantial 
compression. 

2. The size of the images are usually too large to display in their entirety at  the highest 
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Figure 3: Region reconstruction. 

possible resolution. Therefore the user typically either views the whole image at a 
lower resolution, or views a subregion of the image at a possibly high resolution, as 
shown in Figure 3. Retrieving a portion of an image from compressed data requires 
a sophisticated indexing scheme to make access fast. The challenge is to design a 
storage scheme with a fast indexing mechanism such that the compression ratio is not 
compromised while trying to reduce the time to access a subregion. 

There is extensive literature available on selecting the appropriate wavelet transform 
(e.g., [I, 7]), and for the quantization that will provide compression by minimizing the bit 
allocation, while preserving much of the image quality (e.g., [9, 3, 4, 21). To further reduce 
storage requirements, often an extra phase of compression is applied to the quantized values, 
typically using entropy coding, hybrid schemes using run-length/Huffman coding [I], or other 
methods [8, 63. In this paper, we describe a scheme that provides an alternative technique 
for this phase, which results in similar compression performance but with superior subregion 
retrieval speed. 

The storage scheme we implemented works on any naturally quantized coefficient matrix 
as input. Furthermore, care has been taken in the implementation of the storage scheme to 
allow flexibility on the data placement. In the experiments reported in this paper, all data 
are stored on a single disk but the algorithm can be easily extended to multiple disks or on 
hierarchical storage media. 

We describe the storage scheme in section 2 and report on the experimental results in 
section 3. 

The storage scheme 

The effective compression ratio of our scheme depends on the histograms of coefficient matri- 
ces. Theoretically speaking, any distribution of histograms is possible; however, in practice 
they are symmetrical peaks centered at zero [7], similar to the one shown in Figure 4. Using 
an appropriate quantization, the resulting matrices will contain many zeros. Furthermore, 
because of the locality observed in most images and the fact that coefficient matrices consist 
of difference values among weighted neighboring pixels, it is expected that very often many 
of the zeros in the quantized matrices will be adjacent and grouped to form Zdimensional 
regions consisting of zeros. 



Figure 4: A typical histogram of a coefficient matrix produced by wavelet decomposition. 

Matrix Quadtree 

. 
*. Huffman coded -_---- --- ................................................. 

Figure 5: The combination of quadtrees and Huffman coding in our storage scheme. 

A classical solution is to use quadtrees to compress coefficient matrices. Quadtrees are 
useful in eliminating unnecessary storage of 2-dimensional blocks of zeros. Furthermore, 
they provide a natural indexing mechanism to easily access image subregions as depicted in 
Figure 5. However, quadtrees built on image data usually are large, overhead for accessing 
and composing subregions is high and also compression ratio is not as effective as other 
methods such as Huffman coding. 

The peaked histograms of coefficient matrices suggest that the non-zero data in quantized 
matrices will compress well if Huflman coding is used1. For this reason we have used a hybrid 
method that takes advantages of both quadtree and Huffman coding: 1) Use the quadtree 
method to partition an image and 2) compress all the non-zero leaf areas of the quadtree 
using Huffman coding (see Figure 5) .  

The peaks of the histograms of coefficient matrices become shorter and wider as the level 

'Actually, this is not necessarily true if the quantized scheme does not use a constant bin size for each 
coefficient matrix. We have not experimented with quantization schemes that use many bin sizes for each 
coefficient matrix. 



of the decomposition increases. However, this does not affect the performance of our storage 
scheme, since the size of coefficient matrices becomes smaller as the level of decomposition 
increases. Note that just the matrices at the first level of decomposition add up to more 
than 75% of the total space size of coefficient matrices. 

2.1 Remarks on the storage scheme 
r We needed to eliminate internal fragmentation at the byte level, since often the com- 

pressed size of the non-zero leaf areas is not a multiple of 8 bits. 

e A compact representation of a quadtree is used. This is important since in many cases 
the size of the quadtree takes more than 50% of the total storage required. 

An adaptive control mechanism is provided that automatically prunes a quadtree to 
improve the compression, while making sure that the desired trade-off with the region 
retrieval speed is not violated. There is a trade-off in those coefficient matrices that 
do not compress well under quadtrees, so they require a minimal quadtree in order to 
compress well. But if the quadtree is too small, insufficient indexing may lead to a 
slow region retrieval. The desired trade-off is determined by a parameter that specifies 
the maximum non-zero area that is allowed to be a quadtree leaf. 

Buffering is used to seduce the number of disk reads when retrieving many s m d  non- 
zero areas. 

Experiments 
We demonstrate the performance of our scheme through experimental results. In particular, 
we test our scheme against the following three criteria: compression ratio, reconstruction 
quality, and region retrieval speed. 

The wavelet filters used in our experiments were designed to be very fast in reconstruction, 
since they are just %tap and only require integer operations2. But they violate the QMF 
criteria, and provide a slight degradation in reconstruction quality [I]. 

We tested our scheme with a very simple quantization scheme: the bin sizes are the 
same for all coeEcient matrices at any given level of decomposition, and they have half the 
width of the bin sizes at the previous level of decomposition. The bin size at the first level 
of decomposition is user-specified. A more sophisticated quantization should provide better 
reconstruction quality for a given compression ratio. 

We compare the performance of our scheme with that of a typical storage scheme that 
uses a combined run-length/Huffman entropy coder. Of course, for the comparisons to be 
legitimate, this scheme is using the same wavelets and quantization scheme as our storage 
scheme. 

We have experimented extensively with several representative images from the ADL (in 
particular, aerophoto and satellite images) and texture image collections. For the time being, 

2The reconstruction filters are 11 2 11 and 1-1 2 -11. 
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Figure 6: Typical observed histograms of the quantized coefficients, for varying levels of de- 
composition. The wider the histogram the larger the level of decomposition. The histograms 
have been normalized so that their height is 1. 

we considered images that allocate one byte per pixel, and have sizes varying from 65KB to 
4MB. 

3.1 Compression ratios 
The bin size used during quantization were set such that the distortion in the reconstructed 
regions was not visually disturbing. In Figure 6 the typical peaks of the observed quantized 
coefficient matrices are shown. The narrower the peak the better it compresses. Note 
that although the peaks at deeper levels of decomposition become wider, the size of the 
corresponding matrices becomes insignificant -the first decomposition level coefficients are 
more than 75% of the total. 

The typical compression we have obtained ranged from 75% to 90%. The worst compres- 
sion experienced was 72% for some texture images. These images have been shown hard to 
compress by other reseach groups and we expect around 70% to be very close to the worst 
case compression. The compression ratios achieved when using run-length/HufFman were 
similar. F'urthermore, as  one might expect, the compression ratio seems to improve as we 
consider larger images. 

3.2 Reconstruction Quality 

We measure the reconstruction quality using the peak-signal-to-noise ratio (PSNR) criterion. 
The PSNR for an N x M 8-bit image I and its reconstructed equivalent 1 is given in dB by 

PSNR = 20 log1,( 
255 

J& ~ j " = l  [ ~ ( i ,  j )  - i(i, j)12 
1 

The higher the PSNR the higher is the reconstruction quality. The compression ratios 
reported in the previous subsection were achieved with PSNR greater than 32 dB. 



Figure 7: A comparison of the image reconstruction quality versus the compression ratio. 
The tests were performed on the 512 x 512, 8-bpp Lena image. The solid line refers to our 
method and the dashed to the run-length/HufFman based method. 

The effect of changing the bin size in compression and reconstruction quality is shown in 
Figure 7, compared with nm-length/Hu&an. [5] provides results for other methods. 

3.3 Region Retrieval Speed 

We run our experiments on a SUN SPARC 5 (75Mhz) workstation with its own local SCSI-2 
disk. 

To test our region retrieval time we compared with the same run-length/Huffman coding 
scheme. Its disadvantage lies in that for each region retrieval from a matrix, this scheme 
requires the whole matrix to be loaded and uncompressed. However, while data loaded are 
more than that in our scheme, the number of disk seeks required is minimal. Once data is 
loaded, only those portions needed to reconstruct the desired region are actually used, and 
the computation is the same for both methods. 

In Figures 8 and 9 the two schemes are compared. Figure 8 shows the running times when 
fully reconstructing 128x128, 256x256, 512x512 and 1024x1024 regions. Figure 9 shows the 
running times for the reconstruction of a region of typical size (512x512) for 1 to 5 levels. 

4 Current Work 
We have been extending our scheme to a clientlserver environment, were coefficient data are 
progressively delivered by the server to the client, where the reconstruction is performed. 
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Figure 8: Retrieval+Reconstruction times for various region sizes. The regions were re- 
constructed for 5 levels. The solid line refers to our method and the dashed to the run- 
length/H&an based method. 

Figure 9: Retrieval+Reconstruction times for a 512x512 region for various levels of recon- 
struction. The solid line refers to our method and the dashed to the run-length/Huffman 
based method. 
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Figure 10: One need only have access to the subtree of the quadtree that "covers" the 
requested region, in order to be able to reconstruct it. This is demonstrated here for an 1-D 
region. The 2-D region is a direct generalization. 

Our scheme adapts very naturally to this environment, since the server does not have to 
uncompress the data before sending them. As indicated in Figure 10, only the part of the 
quadtree that "covers" the requested region and the Huffman-compressed non-zero areas at 
the region need to be sent to the client. Since the data are sent compressed to the client, 
the server work is less and network bandwidth is saved. 
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Abstract 

The JPEG international standards effort, under the auspices of ISO/IEC Joint Technical 
Committee 1, is currently revisiting the lossless image compression standard under a new 
work item. Two thrusts have emerged: high compressibility and low complexity. Several 
fine algorithms have been proposed for both thrusts, and a baseline has been determined. 
The current task is algorithm convergence for scalability to high compressibility. We present 
experimental results and discuss key ideas behind the results, and point out common points 
of the approaches for the prediction, error handing, local contexts and coding. 

1 Introduction 

A current agenda of the JPEG international standards activity is a new work item [l], in- 
volving the evaluation of new lossless and near-lossless image compression algorithms for 
possible standardization. Prior to the new work item, the state of the JPEG algorithm set is 
is available in book form [2]. After three international meetings (July 1995, November 1995, 
and February 1996), the JPEG low-complexity group has converged on a baseline algorithm 
for the new lossless image compression algorithm. Here we focus on the high-compessibility 
extensions the would employ more complex models coupled with an arithmetic code. Mod- 
eling includes determining a context, and then the probability-related parameters of the 
context's distribution that belongs to the next event. The coding part encodes statistical 
events of a designated probability distribution by operations that create the code string. 
Currently the work item calls for a near-lossless capability, where the peak loss is bounded 
by an absolute value (f 1, and f 3). 

2 JPEG Lossless Image Compression Contributions 

The Call for Contributions resulted in algorithms from eight organizations. The organiza- 
tions and their algorithms (in parentheses) are: Ricoh (Crew), Mitsubishi (Clara), UCSC (Js- 
lug and ALCM), NEC (LTC), Canon (APEC), WMS (CALIC), Hewlett-Packard (LOCO), 
and Kodak (DARC). The WMS contribution (CALIC) is from three individuals affiliated 
with three universities (X. Wu of the University of Western Ontario, N. Memon of North- 
ern Illinois University, and K. Sayood of the University of Nebraska). The algorithm LOCO 



(LOW Complexity) was the contender for the low complexity end, and CALIC the contender 
for the high compression end. 

A goal is to  make the complexity scalable, through a choice of parameters and options. We 
suggest addressing certain image classes directly through special parameter sets. For exam- 
ple, medical images fall into different modalities; and the following have different properties: 
computer-generated artwork, photographs, and composite images. 

For the second JPEG lossless WG1 meeting in Dallas, Texas in November 1995, ideas 
from other algorithms presented in Epernay were incorporated in a move toward convergence. 
CALIC performed best in the lossless category again, with ALCM in third place. Good ideas 
from the original proposals were incorporated into the other proposals. Further convergence 
efforts took place at  the third meeting of the JPEG lossless work item in Geneva in February 
1996. The new lossless baseline (low-complexity) algorithm was defined there, while the 
high-compressibility algorithms also continue to improve and further explore complex ideas. 
Intuitively it seems easier to describe and investigate low-complexity algorithms than to 
explore the solution space of high-complexity algorithms. 

This present work focuses on the authors' interests in higher compression, and thus includes 
ideas taken from the paper submissions of CALIC, ALCM, and Jslug to the November 1995 
WG1 meeting, including material from our meeting-agenda reports. 

3 Brief Overview of CALIC, ALCM, and Jslug 

3.1 CALIC 

The CALIC proposal stretched the technology in several directions. The proposal that 
favors the compression performance the most under the two conflicting considerations of 
high coding efficiency and low computational complexity was contributed by X. Wu, N. 
Memon, and K. Sayood. This lossless image coding scheme, which became later known as as 
CALIC (context-based, adaptive lossless image codec), puts heavy emphasis on image data 
modeling. 

Instead of using a static (fixed) predictor and a large collection of statistical contexts in 
which conditional probabilities are estimated for entropy coding, CALIC provides a large 
collection of predictor contexts and relatively few conditioning contexts for entropy coding. 
The reason for this is to alleviate the sparse context problem. Local gradient information 
provides the basis for the prediction, hence the name Gradient-Adjusted Predictor (GAP). 
Local difleerences in the causal template provide the gradients. The GAP predictor is fur- 
ther made adaptive to the recent source history via context-based error modeling and error 
feedback. 

The conditioning context for the error distribution has components of local texture and 
error strength. The error distribution has an innovative treatment with a context-sensitive 
error-feedback technique. Also, twin error distributions that are asymmetric about zero but 
have means of opposite sign undergo a sign-fiipping operation to combine them into a single 
distribution. This cuts down on the number of conditional probabilities used in entropy 
coding by half with a negligible loss in coding efficiency. The error values are encoded with 
an adaptive m-ary arithmetic code from the CACM++ package that was made publicly 
available by Moffat, Neal, Witten, Carpinelli and Salamonsen. 



For treating compound images, the CALIC system has two mutually exclusive modes: 
binary mode and continuous-tone mode. The binary mode is for situations in which the 
current locality of the input image has no more than two distinct intensity values. The 
system enters one of the two modes depending on the context of the current pixel. In 
the binary mode, a context-based adaptive ternary arithmetic coder is used to code three 
symbols: the two observed pixel values in a fixed neighborhood, and an escape symbol in 
case the current pixel is not one of the two said values. The mode selection is automatic, and 
completely transparent to the user. No side information about mode switching is required. 

For the November 1995 WG1 meeting, the binary mode decision was improved, a simpler 
energy estimate was employed, and the GAP predictor was simplified. Also, a scalable 
texture pattern was devised. Several CALIC ideas presented at  Epernay were tried by 
others and presented at  the Dallas meeting. 

3.2 ALCM 

The ALCM proposal uses an adaptive predictor based on 5 neighborhood pixel values (a 
5-point adaptive predictor). Prediction errors are encoded in one of several statistical con- 
texts depending on local activity. The activity, roughly speaking, measures the presence or 
strength of an edge. The treatment of the prediction error is influenced by the prediction 
error model of Rice and Plaunt [7]. The idea is to interleave negative prediction errors with 
positive prediction errors. The effect is to convert a double-sided exponential distribution 
(such as the Laplace) to a single-sided exponential distribution resembling the geometric dis- 
tribution. In the data model of [7], the interleaved prediction error position number is a run 
length, and so is run-length encoded with a Golomb code 1101 of an appropriate parameter. 
ALCM is not the only WG1 proposal that employs the prediction error model of [7]. How- 
ever, ALCM achieves further compression by using an adaptive binary arithmetic code on 
the bitstring generated by the Golomb code: the more efficient the Golomb code, the fewer 
the required binary decisions. For the Dallas WG1 meeting results, a 6-point neighborhood 
adaptive predictor replaced the 5-point predictor of the July 1995 WG1 results. 

3.3 Jslug 

The Jslug algorithm submitted to the July 1995 WG1 meeting, except for the ALCM pre- 
dictor, was essentially the model of (81, which was tuned to the earlier JPEG test image set. 
The algorithm used bucketed prediction error contexts of the W, N, and NE pixel locations. 
The W and N each used 7 buckets and the NE location used 3 buckets. The adaptive binary 
arithmetic coder was programmed by Speck, used scaled-counts of 0s and Is, and counts 
were halved when the total count reached 128. Subsequent work discovered the number of 
contexts could be greatly increased. Also, a simple gradient detector for the Horizontal and 
Vertical edges was devised, with good improvements. 



4 Model Variations 

4.1 Predictors 

ALCM 

Among the new predictors, ALCM proposed a single-context adaptive predictor [3] also used 
by Jslug. Each of the 5 or 6 pixel locations has a weight assigned, and the weights add up 
to a convenient power-of-two, 256. The prediction is formed by first forming the products of 
each sample value by the weight of its current location relative to the pixel location being 
predicted. The products are summed, then shifted right by the power-of-two representing 
the sum of the weights. 

For each prediction, if the prediction is correct, no weights are changed. If the prediction 
is too high, then the weight corresponding to the minimum in the prediction window has 
its weight increased by one. Similarly, the weight relative the maximum in the prediction 
window has its weight decreased by one. Since the minimum (or maximum) value may be 
shared by more than one location, a priority scheme on the locations breaks the ties. 

CALIC 

For the continuous-tone mode of CALIC, a context-sensitive error modeler using feedback 
improves the prediction. CALIC also does context-merging of pairs of distributions that are 
asymmetric about zero but with positive and negative means with a similar degree of bias 
by a "sign-flipping" technique. 

The most important contribution of CALIC is the idea of using a large number of modeling 
contexts to estimate some parameters of prediction errors such as mean, median, or variance. 
These estimated parameters are then used to improve a so-called gradient-adjusted predictor 
(GAP) via a closed error feedback loop, and to shape the error probability mass functions 
so that the underlying entropies are reduced. 

The gradient is determined using the technique of absolute local diflerences, without regard 
to sign, which drives an if-then clause that chooses the predictor function. This, plus the 
previously mentioned context-dependent constants and error feedback adapts the predictor 
to the local neighborhood. In contrast, the UCSC predictor [3] dynamically adjusts its 
constants to local changes, but uses one set of constants. 

In CALIC, local intensity gradients are estimated in the horizontal, vertical, and two 
diagonal directions. These estimates detect the magnitudes and orientations of edges at  
or near the current pixel, if the edges exist. Based on the gradient estimates, a gradient- 
adjusted prediction (GAP) I of I is made. The GAP predictor i is more robust than the 
existing JPEG (and many other) DPCM predictors, particularly at  the presence of strong 
image edges. 

Gradients alone cannot adequately characterize some of more complex relationships be- 
tween the predicted pixel and its surroundings. Since the GAP predictor I cannot completely 
decorrelate the neighboring pixels, there still exist some structures of the prediction error 
associated with the context of the predicted pixel. Therefore, context modeling of prediction 
errors can exploit higher-order structures such as texture patterns in the image for further 
compression gains, after the lower-order structures such as smoothness are captured and 
exploited by the GAP predictor. 



Specifically, the prediction value I is used to threshold the preceding pixel values in a 
causal templates into 1 or 0 depending on whether they exceed I or not. This binarization 
quantizes causal template of k pixels into 2k texture patterns. In addition, CALIC estimates 
the energy of the next prediction error by a linear regression of estimated gradients (local 
activity levels) and preceding prediction errors. The error energy estimator is quantized into 
8 levels and used for both context-based error modeling and entropy coding. 

Combining the binary texture patterns with quantized error energy estimate via Cartesian 
product yields the so-called compound modeling contexts. These compound contexts depict 
both the waveform and energy level of the intensity function. The prediction errors are then 
modeled under different compound contexts. Given a compound context, the conditional 
sample mean i? of the prediction errors under this context is fed back to I to generate a 
second and improved prediction I = I + 8. The modified predictor I is a context-based, 
adaptive, non-linear predictor that can correct itself by learning from its own mistakes made 
in the past and in the same context. 

Prediction Error Treatment: Error Feedback 

A consensus seems to be reached favoring use of error-feedback. Following a July 1995 
meeting, other proposer studied CALIC's scheme of context-based error modeling and error 
feedback. LOCO employs the error feedback notion, and Canon implemented a version called 
Sign Prediction. 

Context-based error modeling and error feedback did improve coding efficiency by 2-3% 
on a majority of the ISOIETC test images and with all prediction schemes that were under 
the proposers' investigation. The improvement was more significant when some particular 
predictors mismatch the image data. Thus context-based error modeling and error feedback 
appears to be robust. 

An exception to the observations made above is that error feedback could hurt coding 
efficiency when predictive coding is used to compress some of the compound images. Predic- 
tion schemes (as a form of data fitting) model the image smoothness and so break down on 
images or subimages lacking in smoothness. Here, the error feedback attempts to cancel the 
bias in the prediction value could cause the adjusted prediction value to alternately jump 
between a few widely-separated pixel values, increasing the entropy of the resulting error 
pmf. Having a binary mode could solve the problem. Here, the pixel values rather than 
prediction errors are coded. 

Data Modeling the prediction errors: Rice and Plaunt 

Another consensus is the data model for prediction errors, e.g., LOCO, ALCM, and CALIC, 
that use an approach developed by Rice and Plaunt [7]. 

4.2 Local Contexts 

The local gradient (local differences between adjacent pixels in the causal plane) is viewed 
as the best so far for local context. This represents another converging position. LOCO [5] 
employs the local gradient to advantage to condition error distributions and CALIC employs 
them in its gradient-adjusted predictor to "choose" the equation that determines prediction 



(as in a switched predictor). Recent experiments with the Jslug model at  UCSC also show 
that local differences provide error distributions with lower entropy. 

Another context or context component is some measure of the dispersion of an error 
distribution. Both CALIC and ALCM used a type of "activity measure" based on either a 
large difference between pixels or value of an error distribution variance. 

CALIC uses only a modest number (eight) of contexts in entropy coding. This ensures 
that good estimates of conditional probability mass functions (pmf) can be obtained via 
counting statistics to drive the entropy coder. This strategy of using a much larger number 
of contexts for error modeling than for entropy coding alleviates the problem of context 
dilution (insufficient number of samples in a given context for reliable estimation of error 
pmfs), because the rate of convergence of statistical estimates is higher for parameters of a 
pmf than for the pmf itself. 

4.3 Coding 

The method [7] of treating prediction errors (called the Fundamental Sequence) permits 
the use of a Golomb code; a prefix code developed by Golomb [lo] for run-length coding. 

CALIC has a clear separation of the error modeling module and entropy coding mod- 
ule, permitting easy interfacing of the CALIC modeler with either arithmetic or Huffman 
coding, allowing a choice between compression ratio and compressor throughput. The arith- 
metic coding version of CALIC obtains 3.6 per cent higher compression than its one-pass 
Huffman counterpart on the ISO/IEC set of test images for the purpose of evaluating can- 
didate proposals, while the former runs two times slower than the latter in the current C 
implementation of CALIC. CALIC employed an M-ary code (where M is the pixel depth) to 
encode the Fundamental Sequence. 

Binary arithmetic coding and the QM-coder 

Experiments performed with the Jslug algorithm, and reported at the February 1996 WG1 
meeting show that the scaled-count binary arithmetic code used outperforms the QM-coder 
on all but a few images. The performance for the scaled-count estimator on the test set was 
3.61 bitslsample, while the QM-coder version of Jslug yielded 3.73 bitslsample. Thus the 
QM-coder is 3.325% worse. (While 3.3% may not seem much, consider the following scenario. 
A 3.3% bandwidth increase on a $100,000 annual communications expense in exchange for 
a capital investment of an extra $1,000 investment for a high-compression option.) 

Binary arithmetic coding and the CJ-coder 

The Jslug and ALCM coders are binary. The coder is a direct implementation and spe- 
cialization of the generalized arithmetic coder algorithm reported by Christopher Jones [6]. 
The Jones algorithm, a pseudo-code version of which appears in the Appendix of his paper, 
is highly parameterized. The so-called CJ binary coder is the specialization to the binary 
source alphabet and radix-255 (not radix-256) alphabet. 



The byte value 255 (OxFF) signals a marker byte in the JPEG bitstream. In the current 
JPEG coded bit streams, the OxFF byte naturally occurs, on average, once for every 256 
bytes. When a OxFF byte is emitted, the coder must follow it with a 0x00 byte (the stuff- 
byte) which the decoder must subsequently discard. The term employed for the insertion is 
byte-stufing. The inefficiency of an extra byte every 256 bytes is approximately 0.00392, so 
the coding part loses about 0.4% in addition to other coding inefficiencies. 

The CJ coder uses radix-255 (OxFE in hex) instead of radix-256 (OxFF). The largest 
number in radix-255 system is 254 (OxFE in hex), therefore byte 254 (OxFE) is the largest- 
valued byte that can occur: no byte-stufing! Thus the byte value OxFF (hexadecimal) never 
appears in the code string. The application of radix 255 code alphabets remove the need for 
byte-stuffing and unstuffing in the coded bitstreams. 

The &bit code symbol alphabet codes log2256 or 8-bits of coded information. On the 
other hand, using 255 code symbols provides 1092255 bits, or 7.99435-bits of information. 
The redundancy over 8 bits is 0.0056766, which yields a redundancy of 0.0007058 bits per 
coded bit, or an overhead of 0.07% in inefficiency. 

Moreover, the Jones algorithm provides a solution to the carry-over problem that is in the 
public domain. If digits 254 are presented for output, and are subjected to a carry, the 254 is 
converted to  0 and the carry is propagated. To have something to carry into, a "guard byte" 
of value 253 or less is retained. Digits 254 that are subsequently output from the coder are 
simply counted in counter CTR until one of two things happens. If a carry-over occurs, the 
carry is propagated to the guard byte, and followed by the number of 0x00 bytes indicated 
by CTR. If instead, another non-254 value is emitted from the coder, then the first guard 
byte, followed by the number CTR of OxFE bytes, is output. The newcomer non-254 byte 
becomes the new guard byte. 

The Jones carry-over control method is very similar to, and a generalization of, that of 
Langdon7s for the binary code alphabet [9], where a blocking 0 is retained in case of a carry- 
over, and a count of the number of bits in the carry-over string is maintained. Similarly, 
if the arithmetic coding interval is delimited by values low and high as and alternative to 
delimiting method low (C-register) and high - low (A-register), then the technique that 
handles the carry-over problem in [12] applies. In other words, the method of Jones for 
carry-over control is the analog of the method published in [12]. Knowing one of the carry- 
over technique for one of these interval delimiting methods has an obvious conversion to  the 
other method of delimiting the arithmetic coding interval. 

Binarization of Prediction Errors 

The "binarization" of each have different approaches. Jslug decomposes the error values into 
zero or non-zero, and then decomposes the nonzero errors in the center of the distribution 
with a binary tree 181. The tails employ an idea described in Ill]. The position of the most 
significant bit of the error is encoded, which tells the decoder how many "extrabits" follow. 
Jslug encodes the extrabits using their position as context. A similar treatment was used in 
the arithmetic coding version of the current lossless JPEG algorithm [2]. 

A recent experiment replaced the adaptive binary coder in ALCM with an M-ary coder 
described in Jones [6]. The binary coder offered better performance than the M-ary coder 
on every test image. 



5 fituse Work 

A mixture of interesting ideas for doing still image compression was motivated by the JTCl 
new work item [I]. The algorithm convergence phase has created the need to evaluate the 
merits of various techniques and how well they work together. The question "Where i s  the 
compression coming from?" needs to be answered for each contribution that does best on 
certain images. We also note the trend toward simplification with little loss in compression. 

The task is to build upon the baseline algorithm, and increase the compression performance 
in a scalable way. We have already indicated several of the features to build upon: predictive 
coding, Rice's data model for the error, and use of local differences for a context component. 
From the beginning of the project, the dream was to have a Huffman code and arithmetic 
coding version, and a selection of predictors (as in the current lossless JPEG). 

5.1 Prediction 

For the prediction component, we are considering hybrid predictors using ideas from various 
contributions. Also, work needs to be done relative to knowledge available to the decoders, 
such as bits per pixel, and number of samples in the component of the image. For example, 
with large images the sparse context problem is of lesser concern but with 12-bits per sample 
the error distribution tails are expected to be sparse. Test image ct is such an example. 

5.2 Use of Lookahead 

CALIC has kept two scanlines of history data. Suppose instead we maintain one scanline 
of history, and one scanline of lookahead. Suppose we had an additional 16 bits of side 
information per 500 samples. The overhead would be 0.032 bits per sample. For images 
compressed to 3 bits per pixel, this is not a significant difference. Can representing knowledge 
so obtained be used to advantage? Can we identify two-toned or "few toned" regions, or 
large edges, etc.? 

5.3 Looking at the error distributions 

Several approaches model the error distributions with the Rice model, and with success. A 
closer look at what helps shape the distributions is an interesting project. 

5.4 Binary arithmetic coding 

A preliminary result based on ALCM favors binary arithmetic coding over M-ary. We have 
not experimented with the scaled-count part of the algorithm, or looked into an early attack 
(fast attack) to learn the statistics quickly at  the beginning by using less inertia. 

5.5 Polarity of Local Differences 

A preliminary study indicated that local differences for conditioning the error distributions 
give an improvement. So far, we have not considered the context component of the sign of 
the local differences; i.e., differentiating positive edge from negative edges. 



6 Results 

In this section we show how the algorithms under consideration have evolved. See Table 1, 
which is divided vertically in fourths; first Jslug, then ALCM, then CALIC. The last division 
shows a comparison with the current arithmetically encoded QM-JPEG lossless algorithm. 
The test images represent a selection from those used for the new work item. Hotel and 
Gold are the three-component images from the first JPEG test image set. The table entries 
for performance are in bits per sample. In the multicomponent (multiband) images, the 
compression performance value is calculated by dividing the code string length in bits, by 
the total number of scalar intensity values in the multicomponent image. 

The leftmost column names the test image. The three marked columns for Jslug, ALCM, 
and CALIC show the respective improvement of the current version, with the most recent 
CALIC results unknown at this writing. The third column within each division shows the 6 
improvement in bits/sample. The table shows only the lossless case. 

7 Summary and Conclusions 

This paper describ.es work-in-progress of the authors toward the definition of features beyond 
the baseline for lossless and near-lossless JPEG [I]. Topics include context-based error- 
feedback to correct the predictor bias, use of local differences for gradients as predictor 
and/or conditioning contexts, texture patterns, interesting adaptive predictors, new ways to 
model and shape error distributions, and new techniques to alleviate sparse context problem. 

We also offer a solution to the JPEG marker and carry-over problems. 
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This paper deals with compression of an important class of computer images, called aerial ortho images, 
that result from geodetic transformations. The associated computations introduce numerical noise, making the 
images nearly incompressible losslessly because of their high entropy (e.g., 7.65 bpp). The use of classical lossy 
compression schemes is not desirable because their effects on the original image are unknown, e.g., it is possible 
that the actual image is altered, while the noise is not removed. We then propose the use of image denoising 
capable of preserving selected image features, and coupled with lossless image compression. This paper 
compares two denoising schemes applied to the compression of aerial ortho images. The first scheme is based on 
a Donoho's wavelet shrinking scheme that preserves image smoothness. The second scheme is based on 
preserving pixel predictability, leading to a variant of planar predictive coding. The paper shows the effect of 
various shrinking parameter values on the compression ratio and image quality. The paper also describes two 
different predictive coding schemes, achieving a compression ratio of 2:l at 49.9 dB and 51.2 dB peak signal-to- 
noise ratio, with a difference between the original and the denoised images not exceeding one grayscale level. 

Aerial ortho images play an increasingly important role in regional development and utility planning 
because they provide accurate and up-to-date land-related information of rural and urban areas [Oswa95]. Such 
images are large with typically 5000x5000 pixels each and 8 bits per pixel (bpp) grayscale, thus requiring 25 
Mbytes of storage. This large size is due to high-precision required over a large area. For example, a 512x512 
zoomed-in portion of the urban image in Fig. 1 (which is used as the working image) still contains many details 
that are clearly visible [Kins94a]. Such large images are difficult to manage (i.e., to store and/or to distribute) 
without image compression. If the nature of the applications is not known, lossless approach should be used to 
preserve all the details in the images. 

Unfortunately, lossless compression of aerial ortho images is difficult because their first-order entropy is 
very high (typically 7.65 bits per pixel, bpp). This is due to geodetic transformations which compensate for the 
earth surface curvature and the camera movement. Such transformations introduce numerical noise (e.g., finite- 
register-length effects) due to extensive numerical computations. Lossless compression using arithmetic coding 
(AC) [Kins91], Gnu ZIP (GZIP), and lossless joint photograph expert group (LJPEG) [HuSm94] result in ratios of 
1.06: 1, 1 :08: 1, and 1.62: 1, respectively, and none can achieve a required compression ratio of 2: 1 or better. 

Such higher compression ratios could only be achieved by noise reduction techniques. However, 
traditional noise reduction schemes based on hard thresholding (such as truncation of bits either in timelspace 
domain or transform domain) are unacceptable because they affect the signal unconditionally. Other American, 
European, and Russian more refined approaches to signal extraction from noisy data by semi-hard thresholding 
include [Dono92a] (i) convolutional smoothers, (ii) stiffness-penalized splines, and (iii) Fourier-domain damping 
[WaWo75]. These methods achieve noise suppression only by broadening (or even erasing) certain features from 
the data. 

Consequently, we should use a newer approach capable of separating the useful signal from the unwanted 
noise, and suppressing the noise without altering the signal. This approach, called denoising, can be realized by 
several fundamental techniques including (i) preservation of the smoothness of the signal and (ii) prediction of 
singularities through local dynamical behaviour. Both are soft thresholding techniques. 



Fig. 1. A 5 12x5 12 portion of an urban area image, selected as the working image. 

The first denoising technique is achieved by shrinking noisy wavelet coefficients via soft thresholding, as 
introduced by Donoho [Dono92b], [DoJo92a-dl, [KrPi92]. This new approach offers alternatives to the existing 
methods, and has theoretical properties of adaptive minimaxity that far surpasses anything previously known. For 
example, it attains a root-mean-s uare error (rms) of size ((log N ) I N ) ~ / ~  , while the traditional linear or adaptive 
linear techniques attain only W1%, for N estimation observations [Dono92a]. 

Other soft thresholding techniques are being developed by S. Mallat et al. (at Courant Institute) through 
singularity preservation using wavelet maxima [MaHw92], R. Coifman et al. (Yale) through adaptive selection of 
orthonormal basis from a library of bases [CoMW92] (and also [DoJo94b]), Healy et al. (Darmouth), and R. A. 
DeVore (South Carolina) and B. J. Lucier (Purdue) through smoothness preservation [DeJL92]. 

The second class of denoising techniques is based on dynamics preservation [KoSc93], which can also be 
seen as another kind of soft thresholding. Signals are generally modeled as observations (or realizations) of the 
state of signal sources [OpWY83]. For timelspace varying signals (which are of interest in this paper), the sources 
are dynamical systems having certain degree of freedom (called dimension). On the other hand, the noise is 
modeled as a random process, produced by chance or by a dynamical system with a very-high dimension. Simple 
signals imply their sources are of low dimension. Furthermore, noise sources always generate realizations having 
complex behaviour. However, it has been shown that complex signals can also come from low dimensional 
systems, e.g., chaotic systems having fractional dimensions (called fractal dimensions) [Kins94b]. 

One way to estimate the source dimensions of a given signal is by using a successive measurement of 
scaling behaviour of some measures associated with the signals over some timelspatial scales. When a signal is 
contaminated by noise, the resulting signal shows signal scaling behaviour at coarse scales and noise scaling 
behaviour at finer scales. Hence, denoising schemes that preserve dynamics alter the contaminated signal to 
extend the signal scaling behaviour to finer scales in the successive measurement [KoSc93]. In practice, this 
means a denoising process must preserve (fractal) dimensions associated with the original signal. 

Different techniques for extending the signal scaling behaviour to finer scales have been suggested, 
including techniques by Kostelich and Yorke [KoYoBO], Schreiber and Grassberger [ScGr91], Farmer and 
Sidorowich [FaSi91], Sauer [Saue92], and Cawley and Hsu [CaHs92]. One technique that is of particular interest 
to us is based on signal prediction [KoSc93] because of its ability to extend signal scaling behaviour in a relatively 
simple scheme and its immediate applicability to compression. In fact, this paper shows that the well-known 
planar predictor [ChRa94] is a special case and one of the simplest implementations of the prediction-based 
denoising. 

It should be noted that most of the denoising work is directed toward improving data analysis [Lin94], 
and not for compression. Some exceptions include Saito's work [Sait94] that extends the work of Coifman to 
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Fig. 2. A basic denoising compression scheme. 

perform denoising for signal compression, and shows how denoising improves compressibility. However, Saito 
uses minimum description length as the soft thresholding criterion whose ability in preserving signal dynamics 
(i.e., extending the signal scaling behaviour) is unclear. 

Although wavelets play an increasingly important role in signal denoising based on soft thresholding 
because of their ability to provide (i) analysis framework for signal and noise characterizations and (ii) simple 
algorithms to implement the denoising, we also believe that the concept of fractality and multiffactality plays an 
even more central role in the design and evaluation of denoising schemes because of its practical ability in 
distinguishing complex signals from noise through the preservation of signal dynamics. The two concepts of 
wavelets and fractality have been shown indeed to be closely related (&ang96], [Kins94b], MuBA931, and 
IJvlaHw921). 

The remaining part of this paper describes the selected denoising schemes for compression of aerial ortho 
images. Section I1 formulates the denoising problem for compression. Section III describes a compression 
scheme using a wavelet-based denoising algorithm that preserves signal smoothness. Section N describes the 
second scheme using a predictor that preserves signal predictability. Although both schemes remove data (i.e., 
noise), they should be considered as near-lossless or lossless signal compression schemes because of the explicit 
effort in removing data that are not parts of the signal. This approach has been implemented in the laboratory and 
then converted into a product for Linnet Geomatic International [Oswa95]. 

11. COMPRESSION THROUGH DENOISING 

The purpose of denoising in this work is to reduce image entropy to obtain 2:1 compression, while 
preserving the image details. Letf(x,y) be a pixel value of an actual aerial image with N pixels, where integers x 
and y represent the row and column positions of the pixel. Let n(x,y) be the value of noise added to the pixel 
f(x,y) by the geodetic transformations. The resulting aerial ortho image has pixels g(x,y) defined as 

g(x,y) =f(x,y) + n(x,y) (1) 

The denoising problem becomes: Given g(x,y), minimize n(x,y) into G(x,  y )  such that 

i(x,y) = f (x,y) + %x,Y) 

has a reduced entropy for the required 2:l compression. The image i(x,y) is the denoised image. Once the 
entropy has been reduced, a lossless compression (such as Huffman, AC or LJPEG) can be applied to the denoised 

image i(x,y) to obtain the required compression ratio, as in the scheme shown in Fig. 2. We argue that this 
compression approach can be considered lossless because n(x,y) is affected mostly whilef(x,y) is not. 

In general, denoising is a difficult problem because the characteristics off(x,y) and n(x,y) are not known. 
However, aerial ortho images g(x,y) are special cases because theirf(x,y) represent natural images of landscapes 
with many uniform (coherent) subregions. The images (such as in Fig. 1) contain many man-made, regular 
objects, such as roads, houses, and parks, which have very different characteristics from highly irregular 
numerical noise n(x,y). Denoising methods are then based on removing parts of the signal data that have noise 
characteristics and do not have signal characteristics. 

Successful denoising is signified by several indicators [KoSc93], [Kins94b]: 

* The so-called log-log plot of measures such as correlation-sum [Kins94b] of the denoised signal i(x, y) has a 
consistent slope at a wide range of the plot's x-axis. This means the denoising preserves fractal dimensions of 

f(x,y). Furthermore, the multifractal measure (the generalized dimension Dq vs. q) of the removed signal (i.e., 

g(~,y)- i (x ,~))  represents a flat line approaching the dimension of image support (x,y). As explained in 



[Kins94b], noise has fractal dimensions as high as the dimension of the support, e.g., 2D white noise in the case 
of image denoising has dimensions of two because it fills the area (x,y). 

0 The i(x,y) is more predictable (explained later in the following section). This means one pixel has 
relationships with its neighbouring pixels, and they are not independent. 

The power spectrum density of i(x,y) is still similar to that of g(x,y), at least in the frequency range and 
spectrum shape. This means there is no frequency filtering taking place, as in the traditional denoising. 
Furthermore, this ensures that the fractal dimensions of fractional Brownian motion parts in the image are 
preserved [Kins94b]. 

The removed signal (i.e., g(x,y )-i(x,y)) should behave like a random process whose statistical behaviour 
matches that of the assumed noise model. For example, the cross-correlation between the removed signal and 

i(x, y) should be low. This is a logical consequence of removing additive noise. 

A. Smooth Signals and Noise 
A signal can be separated from noise based on its membership on a set of smooth prototype signals. 

Smooth prototype signals are first defined as members of a Besov space B", which is a space of signals having a 
P 

derivatives in a space LP [DeJL92]. Two signals are said to be of similar smoothness if they belong to a Besov 
space with the same a and p. Images can now be characterized based on their membership into Besov spaces. 
More specifically, let the noise be 

n(x,y = o z(x,y) (3) 
where o is a gain factor (or noise level) and z(x,y) is a normalized (i.e., unit variance) 2D Gaussian noise. An 
image f(x,y) may belong to a Besov space, while n(x,y) should not because z(x,y) does not have any derivative. 
This also applies to non-Gaussian noise. 

B. A Denoising Algorithm based on Wavelet Shrinking 
A wavelet shrinkage algorithm [Dono92b] extracts the denoised i(x,y) from g(x,y), using wavelet 

transforms and soft thresholding. The technique is based on minimization of the mean-squared-error expressed by 

subject to a condition that the membership of i(x, y) in the Besov space tends to be the same as that off(x,y) with 

a probability of almost 1 (where N is the total number of pixels). In other words, since i(x, y) is as smooth as 
f(x,y), the noise has been removed or reduced. 

The algorithm first obtains a 2D wavelet transform G ~ ( x ,  y) of the normalized input image g(x, y)l  f i ,  
where j is the wavelet scale, and (x,y) are the 2D spatial indices in the wavelet domain (see [LaKi94]). It then 

shrinks the value of Gj (x, Y) to become E j (S Y) according to 

G~(x,Y)-T; Gj(x,y) > T 
-T 5Gj(x ,y)IT 

Gj(x9y) +T; Gj(x,y) < -T 

where the reduction threshold T depends on the noise level o and the size of the image according to 



and is related to Stein's Unbiased Estimate of Risk [Stei81]. Notice that, in general, the noise level o is not 
known. A plausible statistical estimation of o suggested in [DoJo94a] is 

Finally, an inverse wavelet transform Gj(x, y) and denormalization are performed to obtain the desired i (x,  y). 

Notice that this algorithm was not developed originally for signal compression. 

C. Compression Results 
The denoising scheme has been tested using a Daubechies-8 wavelet on the working image shown in Fig. 

1 using a C program running on a SUN Sparcstation 5 under UNIX operating system. The denoised image i(x, y) 
has been compressed into a data stream, using a predictive-Huffman encoder, (e.g., [HuSm94]). The 

decompression is simply a predictive-Huffman decoder which recovers i (x,  y) from the data stream. Both the 
compression and decompression of the working image take less than 1 minute. 

The performance of any compression scheme must address two aspects: (i) compression ratio and (ii) 
peak signal-to-noise ratio (PSNR). In this scheme, the compression parameter is the wavelet reduction soft 
threshold T (see Eq. (5)). As shown in Table 1, the threshold determines how much noise is removed from the 
image. It is seen that a higher threshold removes more noise, resulting in a higher compression ratio, but a lower 
PSNR. The threshold estimated from Eq. (7) is 3 .76~10-~.  It should be noted that PSNR is not the best 
indication of compression performance in this case. The compressed images with PSNR as low as 35.58 dB (such 
as the one shown in Fig. 3) have edges as sharp as the original images, which is required for geodetic images. 

e 1. Compression performance 
denoising scheme. 

wavelet 

Fig. 3. A decompressed image with T = 0.01 1. 

IV. THE PREDICTABILITY TECHNIQUE 

Kostelich and Schreiber [KoSc93] suggest an alternative approach based on preserving signal dynamics. 
The approach is powerful because it preserves fractal complexity of the signal, hence can accommodate natural 

signals having noise-like appearances but are not noise (e.g., textures). The approach extracts i (x ,  y) so that the 



mean square error is minimized and its fractal dimensions are similar to those of fix,y). Prediction is now widely 
used in various compression methods [WEWSL96]. 

A. Predictablle Signds and Nobe 
One dynamic-preserving approach used in our work separates signals from noise based on their 

membership on a set of predictable signals. The concept starts by defining predictable signals as signals whose 
elements (or pixels) can be obtained or approximated using their neighbouring elements through linear or 
nonlinear functions called predictors [KoSc93]. In other words, the elements are self-consistent and have 
correlations among them. Intuitively, natural images containing natural objects must have such predictability 
characteristics because pixels of an object are related to one another, while noise pixels are independent of one 

another. Let the predicted pixel value at a position (x,y) be i(x, y). The predictable pixels i(x, y) resemble the 

denoised image. For predictable signals, the predictor i(x, y) minimizes the prediction error e* as 
P 

White noise always results in high e* because its pixels are either uncorrelated or just partly correlated (fractional 
P 

noise). Therefore, there is no predictor for white noise that can result in an arbitrarily low e* The denoising 
P' 

scheme is then designed to translate parts of g(x,y) into i(x, y) with a low e* This means that one must design a 
P' 

predictor capable of minimizing e* There can be more than one predictor that minimize e* In our case, we 
P' P' 

should use one that results in a low entropy of i(x, y) . 
I. A Linear Planar Predictor 

We have selected a linear planar predictor which is well known for its ability to predict natural images 
[ChRa94]. The predictor is defined as 

&,Y) = ali(x,y - 1) + a2i(x- 1, y) + a3i(x- 1, y - 1) + G(x, y) (9) 
or equivalently 

a x ,  y) = i(x,y) + e^(x,y) (10) 
where 

i(x,y) =ali(x,y-1) + a2i(x-1,y) + a&x-1,y-1) (11) 

The g(x,y) term represents the pure prediction of the pixel in location (x,y) by its three neighbours, with gain 

factors a l ,  aa, and a3, respectively. (We assume that the pixels outside image boundaries are zero.) The i(x, y) 

term represents a bias to force the value of e* to zero (perfectly predictable) by compensating the inability of the 
P 

pure predictor to represent unpredictable parts contained in the image. This bias term turns out to be a critical part 
in characterizing predictability, as shown next. 

2. Characterizing Predictability Through Predictor Residues 
The planar predictors allow us to characterize predictability through characterization of predictor bias 

e (̂x, y) instead of i(x, y) as required by Eq. (8). In general, all the gain factors a.  are fixed, implying that e (̂x, y) 

fully characterizes i(x, y) . Let us now have the same structure for g(x, y) as for i(x, y) in Eq. (10) by introducing 

e(x, y) according to 



g(x, Y) = a x ,  Y) + e(x, Y) 
Clearly the denoising produces the residual (i-e., removed noise) image r(x,y) as 

r(x, Y) = g(x, Y) -i(x, y) = e(x, y) - ;(x, y) 
Equation (8) becomes 

In other words, we can now remove the noise by processing (i.e., mapping) e(x, y( into i(x, y) as long as the 

following two requirements are satisfied: (i) Eq. (14) is minimized to satisfy the predictability requirement in Eq. 
(8) and (ii) the residue r(x,y) behaves as noise as required by Eq. (13). If they are satisfied, the predictability of 
the denoised image is guaranteed by Eq. (10). 

Given a projection from RN to kN that satisfies both requirements, we can develop a denoising scheme 
as shown in Fig. 4. The scheme consists of (i) a projection, and (ii) a predictor defined by Eq. (10). Given an 
input image g(x,y), the algorithm calculates the image e(x,y) recursively according to Eq. (13). At the 

beginning, i(x, y) is zero, hence i(x, y) is also zero. The projection block obtains i(x, y )  from e(x, y) and passes 

the resulting i(x, y) to the predictor. The predictor then generates the denoised image i(x, y) according to Eq. 

(10). 

Fig. 4. The predictive denoising scheme. 

3. Two Simplest Appropriate Selections of k 
We now focus on obtaining the mapping by defining a space iN c RN where images i(x, y) E iN and 

images e(x, y) E R~ for all possible input images. We can now define predictable images as those whose residues 

are all in kN and noise images are those having residues outside k N .  It can be shown that orthogonal projection 

from RN to kN minimizes Eq. (14) [Krey78], thus satisfying the first requirement. Furthermore, projections in a 
form of vector quantization (VQ) minimize Eq. (14) and produce noise residues, satisfying both requirements. 

Therefore, a VQ on e(x, y) E RN into ;(x, y) E kN results in a denoising that preserves the predictability. 
One disadvantage of using VQ as the projection is that the computational cost is high. We then study the 

use of scalar quantization (SQ) as the projection. The SQ can be seen as a simplest form of VQ, hence it satisfies 
both projection requirements. Although its performance (i.e., the quality vs. bit rate) is inferior to that of vector 
quantization, SQ can be extremely fast. This fact is especially important, because aerial ortho images are large. 

We then use two SQ projections (Projections 1 and 2) with their corresponding kN (which now can be 
represented by i because the N pixels are projected individually). Both projections result in the well-known 
differential predictive coding modulation (DPCM) scheme, with their corresponding i are I..., -9, -6, -3,0, 3,6, 
9 ...) and { ..., -6, -4, -2,0,2,4,6 ...I as in [ChRa94]. Hence, both Projections 1 and 2 guarantee that Ir(i j)l I 1.5 
and Ir(i j)l I 1, respectively. 



B. Compression Results 
Instead of compressing i(x, y) directly, the compression scheme is based on efficient representation of 

i(x, y), because it can be used to generate i(x, y) using Eq. (10). Furthermore, the set I? contains fewer integers 

than the set of &,y) values, and the pixel distribution is not as uniform as that of i(x,y). The compression 

scheme operates on images line-by-line (i.e., the procedure is repeated for each index x). It first produces i(x, y) 
using either Projection 1 and 2 and compresses it into data stream using an arithmetic encoder. The 

decompression recovers i(x, y) from the data stream, and produces g(x, y) using the predictor in Eq. (10). 
The scheme has been tested using the working image in Fig. 1, and is successful in attaining the target of 

2: 1 compression ratio. A C language implementation on an IBM PC 486-DX33 uses CPU processing times of 7.1 
s and 6.7 s for both the compression and decompression, respectively. The resulting decompressed images are 
indistinguishable from the original one, as shown in Fig. 5 using Projection 2. Tables 2 and 3 compare the 
performance of both SQ projections. Both have extremely high PSNR values for a 2:1 compression ratio. We 
have also generated two images compressed at approximately 2:l compression ratios using lossy JPEG coding 
implemented by a popular Unix program called xv [Brad94]. Both images (called PEG 1 and JPEG 2) are 
compressed using 96% and 97% quality settings, resulting in compression ratios of 2.08:l and 1.87:1, 
respectively. As shown in Table 3, the quality of the lossy JPEG compression is inferior to that of the denoising 

schemes despite of having more representation bits. Furthermore, the fact that I r ( ~ , ~ ) l  S 1 is also shown in the 

table, where the measured maximum error is 1 grayscale level. As shown in Fig. 5c, the residue resembles noise, 
where it has three pixel values, -1, 0, and 1, shown as black, grey, and white pixels. Although Projection 2 gives 
compression ratio slightly below 2:l for this test image, its compression ratio for the complete original image is 
2.20:l. This is because if the images are larger, the arithmetic encoder can optimize the compression ratio better 
due to the more complete knowledge of residue statistics. 

We have verified that the prediction-based denoising preserves fractal and multifbctal characteristics. 
The RCnyi generalized dimensions Dq have been calculated for the original, denoised, and residue images, as well 
as the PEG 1 and PEG 2 images. The results are used to calculate the spectra of singularities f(a) through a 

Table 2. Compression performance comparison for both Projections 1 and 2. The objective quality is very high, 
and the original and compressed images are visually indistinguishable. 

Table 3. Compression performance of the new denoising schemes as compared to other traditional compression 
schemes. Note that 8 bpp grayscale digitized images (such as the original image) is considered to have 
quality equivalent to 54 dB PSNR. 

GZIP 1.08 : 1 I n/a 
Arithmetic Coding I 1.06: 1 n/a 



(a) original image (b) denoised image (c) residue image 

Fig. 5. Denoising results on a portion of the original image. The original image in (a) and the denoised image in 
(b) are indistinguishable, and the residue image in (c) resembles noise. 

Legendre transform [Kins94b]. More than 600 points of q over an interval of [-30, 301 have been used in the 

calculation. The values of Dq andf(a) of the original and denoised images are extremely close. The average of 

the absolute differences of the Dq is 5 .71~10-~.  The same measurement on PEG 1 and PEG 2 images results in 
averages of 3.25x10-~ and 2.23x10-~, respectively, which is two order of magnitude worse. Figure 6 shows that 
the singularity spectra of the denoised and the original images coincide through out the range of a ,  while the 
JPEG images deviate significantly at high values of a. 

The denoising approaches discussed in this paper are best suited for compression of signals whose 
entropy is very high due to an unwanted noise. Although the original images and reconstructed images have 
differences, it has been shown that the differences do not belong to the expected class of signal and they have 
noise characteristics. Hence, it can be argued that the denoising schemes preserve the actual image losslessly. 
For example, the wavelet denoising approach preserves high-frequency information, so that sharp edges do not 
become blurred as in classical filtering methods. This is critically important, because the main feature of ortho 
images is in its flatness and its precision of edge position. The prediction-based denoising also preserves the 
edges very well. In addition, pixel deviation between the original and denoised images is limited within one 

Residual r 

Fig. 6. (a) Complete and (b) zoomed-in plots of the spectra of singularities of the original, denoised, residual, 
P E G  1, and JPEG 2 images. While the singularity spectra of the original and denoised images coincide, 
those of the JPEG images deviate at high singularities a .  



grayscale level (known as near-lossless reconstruction). This results in extremely high PSNR and superior fractal 
and multifractal preservation. In conclusion, wavelet and fractal denoising improves significantly the 
performance of high-quality image compression of aerial ortho images. 
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Wavelet Coding for Remote Sensed Data 
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Abstract 

A new algorithm for wavelet compression is presented. This algorithm was developed specifically for the 
Small Spacecraft Technology Initiative (SSTI) Clark mission which requires 3m ground resolution data to be 
transmitted down over a relatively slow data link. Hence the data needs to be reduced by at least an order of 
magnitude, yet has to maintain the high resolution as much as  possible. Our algorithm is based on the analysis 
of the communication channel as a whole starting at the image acquisition and ending at image restoration. The 
quantization maps for the wavelet coded data are developed using the information theoretical metrics that arise 
from this particular analysis of the visual communication channel. 

1. Introduction 

The demand for high resolution imagery cannot be overemphasized in current space missions. This demand 
creates the need for high data compression because of the limited bandwidth of the communication channels. The 
problem is that achieving high compression rates and preserving high resolution is inherently contrary: high resolution 
generally requires more data, and high data compression results in lower resolution. Hence a careful balance must 
be achieved between the demands of high data compression and high resolution, and it is only possible to achieve a 
certain resolution given a certain bandwidth. What imposes these constraints is the visual communication channel 
itself-starting a t  image acquisition and ending at image display. An information theoretical analysis of the channel 
is essential in providing a rigorous, quantitative characterization of its performance, and in optimizing its throughput. 
An optimal communication channel would be able to transmit the best possible image at  the lowest possible data 
rate, where "best" is defined in terms of some metric. Pre~iously, l-~ we have combined Shannon's information 
theory6 with Wiener's restoration filter7 and with the critical limiting factors that affect a visual communication 
channel to provide rigorous quantitative metrics for characterizing its design and evaluating its performance in terms 
of restorability. We now integrate lossy data compression into this framework to optimize data rates8 and evaluate 
its effects on image resolution. 

Figure 1 shows the visual communication channel. At the head of the communication channel is an image- 
gathering device which consists of a lens, a photodetector array, and an analog-to-digital (AID) converter. This 
device converts the radiance field incident on it into a quantized, digital signal which is then transmitted. At the 
tail of the channel is a receiver which resolves the signal and provides the information to an image display device 
(e.g. video monitor, or a printer) which, in turn, represents this information in a form suitable for interpretation by 
an observer. Between the output of the AID converter and the receiver, any number of digital image processing 

'Contact address: MS 473, NASA Langley Research Center, Hampton, VA 23681. Phone: (804) 864-6556. FAX: (804) 8647891. 
e-mail: z.rahmanOlarc.nasa.gov 

Figure 1: The visual communication channel 
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algorithms can be applied for image enhancement and efficient data representation and transmission. Traditional 
analysis of image compression and restoration algorithm is generally restricted to this stage only, neglecting the 
analog-to-digital conversion at image acquisition and digital-to-analog conversion at image display. This leads to an 
inherently incomplete model which results in restorations and compression rates which could have been better if the 
conversions at acquisition and display had been properly taken into account. 

The imaging process injects errors in the original information that is incident on the image gathering device. 
The combined spatial frequency response (SFR) of the lens and the photosensor array blurs the radiance field; the 
photosensor array and the A/D converter introduce electronic and quantization noise respectively; and the SFR of the 
display spot of the image-display device blurs the resolved signal. These errors result in a reduction in the amount of 
information that is received by the observer when compared with the information which was present at the beginning 
of the imaging process. Since for a lot of applications (e.g. remote sensing) the only information the observer has is 
this received information, it is advantageous to minimize the channel effects so as to maximize information. A rigorous 
mathematical analysis provides the framework to evaluate the performance of the communication channel and can 
thus be used to informationally optimize its design in terms of both resolution (restoration) and compression. We feel 
that this is essential in designing a channel which provides the most information, and hence the highest resolution, 
for the least data. 

2. Mathematics of the visual communication channel 

The visual communication channel is divided into five stages: image-gathering, decomposition, quantization, 
synthesis, and restoration. Though we present the mathematics of each stage individually, each stage builds on the 
preceding stages and the restoration filters depend upon the end-to-end process. 

2.1. Image gathering 

The image gathering device converts the incident continuous radiance field L(x, y) into the discrete signal s(x, y) 
(Figure 2). The combined SFR of the device optics and photosensor array aperture, rd(x, y), blurs the input L(x, y), 
which is sampled by the rectangular unit sampling lattice, - 111(x, y), and corrupted by the additive noise due to the 
analog-to-digital (A/D) conversion, NaId(x, y), and the electronics, N,(x, y) , producing s(x, y) 

where K is the steady-state linear radiance-to-signal conversion gain. The sampling lattice is - 111 = Cz,,=-, 6(x - 
m, y - n). Rewriting in Fourier domain, 

I 
Ne (I, Y) 

Figure 2: Image gathering: The radiance field L(x, y) is converted to signal s(x, y). 



Figure 3: Wavelet decomposition, quantization, and restoration 

where the notation $(v,w) refers to the continuous Fourier transform of a function ~ ( x ,  y) and q'(v,w) refers 
to the discrete Fourier transform of a function q(x, y). The Fourier transform of Ill(x, y) is given by lij = - - 
Cz,n=-m 6(v - m,w - n), with the associated sampling passband = {v,w : \el, lwl 5 0.5). The probability 
density function of the noise Nald(x, y) can be written as 

IE - IE 
p[Na/d(~, Y)] = -- 

%ma= (2, Y) - s p m i n  (x, Y) 'us ' 
for sPrnQI = ha, and sprnin = -kcs which specify the range of the signal; K is the number of quantization levels of 
the A/D converter; and u: = JB g,(v, w) dvdw. The power spectral density (PSD) of the signal gs(v,w) prior to 
quantization is 

3, (v, W) = E [S(v, w)S* (v, w)] (3) 

= ~ 2 8 L ( v , w ) l ~ d ( v , w ) ~ 2 ]  *fi+gNe(v,w), 

where E[] is the expectation operator, and * indicates complex conjugation. Assuming that the error within each 
quantization interval is uncorrelated with errors within other intervals, 

2.2. Decomposition 

Figure 3 shows signal decomposition, and synthesis and restoration. The signal s(x, y) is decomposed into N 
parts, at L levels using the discrete wavelet transform. 



where sl-l,l(z, y) is the "low frequencyn band from the previous level, TA,,, (x, y) are the wavelet analysis filters at  
the current level and 111 = XY CE=-, C:=-, S(v - mX,w - nY) is the downsampler by X = Y = fl. In 

-w 
the frequency domain this can be seen as dividing the passband into N segments each occupying 1/Nth the original 
bandwidth. 

where the ?A,,~(v, w) are, generally, orthogonal, and fiw = Z~I :  C:C~(V - F, w - 9 ) .  The signals L,p occupy 
different frequency bands. Each signal can possess quite different characteristics and hence be amenable to different 
methods and rates of quantization. This provides a versatile method for efficient signal representation. 

Equations 5 show the relationship between the signal s(x, y) and the decomposed signals sl,p(x, y) in terms of 
the wavelet analysis filters and the downsampler. More explicitly, using Equations 1, 

r l  

where 1 1 1  = CE=-, CF=-, 6 (v - f, w - e), is the combination of the uniform rectangular sampling lattice 
of the Gage-gathering device and the downsampler. It has sampling intervals of (X, Y) and associated passband 
B~(v,  w) = {v, w : 1 ~ 1 ,  IwI 5 2-(I+l). 

2.3. Quantization 

The wavelet coefficients are quantized in the spatial-frequency domain. Each coefficient, $~,p(v, w) contains a 
measurable amount of information 'H~,p(v, w) ($3). McCormickg et al., and Huck3- have shown that maximizing 
information leads to  maximizing the image quality. Hence the coefficients are quantized under the constraint 
of preserving a certain percentage of maximum realizable information. The quantization transforms the wavelet 
coefficient &,p (v, w) into a representation Q[Sl,p (v, w)]. The inverse process transforms the Q[Sl,p (v, w)] back to the 
coefficients plus, perhaps, a noise term. 

- .  

S!,I ( V ~ W )  = C S ; + ~ , ~ ( ~ , W ) ~ R ~ + ~ , ~  (v, w) 
p=1 

where Si,p(v,w) are the drquantized coefficients, and gQ,,,(v, w) represents the "noise" due to quantiza- 
tion/dequantization process. The initial conditions are given by 

Assuming uniform quantization for each wavelet coefficient between the range f kul,p(v, w) we can write the PSD of 
the wavelet quantization noise as 

where al,p(v, w) are the ensemble standard deviations for the coefficient at  frequency (v, w) in band ,8 and level I ,  
and tcp,l(v, w) is the number of quantization levels at that location. 



2.4. Synthesis 

The synthesis filters reconstruct the decomposed signals. When the coefficients are not quantized, this can be done 
perfectly.ll9 l3 With lossy quantization, however, the synthesis filters are generated by minimizing the minimum 
mean square error e2(v, w), where 

e2(v,w) = E [14,1(v,w) - 5;,1(v,w)I2] , 
&,l(v, w) is the input and 5{,,(v, w) is the output to level I + 1. Using Equations 6 and 8, 

- - 
where Qj-s,,,(v, w) is the PSD of 3.1jl(v, w), and (PN~,+,,, (v, W) is the PSD of the quantization noise in band I + 1. The 

a&,,(v, w) can be defined by a set of iterative equations 

where &, = xz=-, CF=-, 6(v - m/X1, w - n/Y1).  

2.5. Restoration 

The Wiener-matrix restoration filters G B ( ~ , ~ ) 5 9  l4 synthesize the N level-1 outputs Si,b(v,w) into a single 
continuous image 72 given by 

N 

where 
N 

O,(v,w) = ?L(v ,w)~~ . (u ,w)  C +;,,~(v,w) [T-l(v,w)] , 
a=l aP 

6 

@L(V, w), grue(v, w), 8~~~~ (v ,  W) and BNQl,, (v, W) represent the power spectral density (PSD) of the radiance 
field, the photodetector noise, the A/D quantization noise, and the level-1 quantization noise respectively. When 
~~,, , (v,w)?~, , , (v,w) = I+Ai,s(~,~)12S(P, a ) ,  the Wiener matrix filter reduces to 

The formulation of the Wiener-matrix filter takes into account the degradations due to not only the blurring and 
n&sef5, l6 but also due to insufficient sampling, the analysis filter response, and quantization. It also suppresses the 
blurring and raster effects in image display by interpolating the image-gathering lattice on an at least 4 times finer 
image-display lattice. 



3. Information 

The information rate, 'If, is used to evaluate the performance of the visual communication channel. The 
only information the observer has about the incident radiance field is that contained in the restored image. The 
degradations due to  aliasing and various noise sources appear as artifacts. The information at  each level in each 
decomposed band Xl,p is 

- 
@a-1.1 (v, w)l?~z,p(v,~)12 I dvdw. (16) 

@sl-l,r ( ~ l w ) l ~ z . , ( v ~ w ) 1 2  *I& + g ~ ~ ~ , ~  (v,  w) 

,. X-1 Y-1 where III_ = Cn=O 6(v - g,  w - F), m = n # 0, are the sidebands of the down sampler, and the PSDs 

6 S , , 1 ( ~ ,  W) are given by Equation 11. The total information for the visual communication channel is 

4. Algorithm and Simulation Setup 

Since Equation 16(a) provides a measure for the contribution of each wavelet coefficient to the total information, 
it can be used to devise the quantization scheme. The scheme is as follows: 

1. Quantize all the coefficients at the maximum rate. 
2. Determine the loss in information due to a reduction in the quantization rate for each coefficient. 
3. Reduce the quantization rate of the coefficient suffering the least loss. 
4. Iterate this process until either the bit bank is empty, or the required information tolerance2 is reached. 

Because this process uses a statistical measure, the quantization table thus obtained can be used for a wide range 
of input scenes, producing excellent results for input radiance fields which closely match the assumed @L and good 
results for others. 

Since it is virtually impossible to successfully estimate all the parameters of an image-gathering device from the 
received signal, we use simulated imagery to  test our algorithm. We use targets made up of randomly generated 
polygons whose mean spatial detail-the average distance between edges-p, is Poisson distributed and intensity 
levels are Gaussian distributed with standard deviation ~ T L .  The targets with mean spatial details p = 1 and 3 are 
shown in Figure 4. The associated radiance field L(x, y) is stationary and Gaussian. We assume that both the white 
N,(z, y), and the Nald(x, y) due to &bit A/D conversion, are uncorrelated with the radiance field. In addition, 

we model the SFR of the image gathering device with a Gaussian, ?d(v, w) = e - (2 l2 ,  where p = v2 + w2, and p,, 
which controls the width of the response, and hence the tradeoff between aliasing and blurring, is the point where 
+ d ( ~ , ~ )  = l /e  = 0.37 (Figure 5(b)). The restoration filters Qp are generated at  at least 4 times finer density than 
the sampling lattice to suppress the raster effects of the display deviceg. 

5. Results 

Figure 5(a) shows the maximum achievable information for a channel as a function of I(uL/cTNe and ?d(v, w) in 
the absence of compression. This set of curves allows us to design channels that maximize information for the given 
physical constraints. Since these designs provide the best image quality, they are used in investigating the effects of 
image compression on information and image quality. Table 1 summarizes three selected designs representing high, 
average, and low SNRs. 

*Tolerance, I is defined as 7 = 100 x 3i(r])/7imar, where 7fma, is the maximum achievable information and 7.1(q) is the information 
at a given number of bits. 



Figure 4: Random polygon targets: (a) p = 1 (b) p = 3 
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Figure 5: (a) 'Z as a function of p, for several SNRs I ~ u ~ / u ~ , .  The optimized design maximizes 'H for the given 
?d(v,w) parameterized by p,, and SNR K U L / U ~ ~ .  Information is maximum when mean spatial detail p = (b) 
The SFR .id(v, w) of the image-gathering device for several values of the parameter p, which controls the width of 
the response and, hence, the tradeoff between aliasing and blurring. 

Table 1: Characteristics of informationally optimized image gathering (from Figure5). 



Design 
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Figure 6: (a) Information 'H as a function of the ratio q/qmaz of the total number of bits for level-1 decomposition. 
(b)-(e) 'H as a function of the number of bits in each of the decomposed band. 7-1 is most affected by changing the 
number of bits in band 1 and least by changing the number of bits in band 4. The number of bits is decremented 
using the algorithm outlined in $4. 

Next we evaluate how wavelet decomposition and quantization affects the total information in the restored image. 
From Equations 13-16, the only additional component in this calculation is the quantization noise f i Q , , B ( ~ , ~ ) .  
Figure 6(a) shows how the quantization affects the total information. The information 'H is plotted as a function of 
the number of bits being used for quantization. Predictably, the change in information is slow at first but then picks 
up momentum. Because the bit allocation algorithm ($3) reduces the number of bits for the coefficient based upon 
the amount of information %(v, w) it contains, the initial reduction in the number of bits does not have a significant 
impact upon the total information. However, as more and more bits are discarded, the information content of the 
affected coefficients is higher, and the rate of information reduction increases. It is also interesting to look at the 
reduction in total information as a function of the reduction in the number of bits in each band (Figures 6(b)-(e)). 
The information content of coefficients in band 4 is very low, hence the number of bits can be reduced by about 15% 
before any impact is felt on the total information; coefficients in bands 2 and 3 have higher information content and 
have more of an impact on the total information; and the coefficients in band 1 have the highest information content 
as is evident by the sharp reduction in 7-1 as the total number of bits for band 1 decreases. 

A second point of interest is the the effect on 71 as a function of the channel design. Figure 6 shows that the 
total information for designs 1, 2, and 3 follows the same pattern as that in Figure 5(a) for all bit rates, though the 
difference becomes increasingly smaller at lower values. Thus, for a given number of bits, the reduction in information 
is highest for Design 1, and the lowest for Design 3 which suggests that greater data compression can be achieved 
for the channel that have lower SNRs. 



Figure 7: (a) The blurred and noisy signals (output of the image gathering stage). (b) the decomposed signals 
(output of the wavelet decomposition stage) at L = 3, and (c) The expected restored images. Results are shown for 
restoration done from level-1 components. The original scenes are shown in Figure 4. 

These curves also determine the number of bits required (i.e. the compression ratio) for a given 7. For example, 
if the goal is to achieve the maximum possible compression without letting the overall information rate fall below, 
say, 7 = 90 then the compression ratio can be determined from these curves. Conversely, given a target compression 
ratio, the cost in terms of information loss can be determined as well. 

Figure 7(b) shows the decomposed images of the targets shown in Figure 4, and Figure 7(c) shows the restored 
images. The results are shown for a tolerance level of 7 = 90. The restorations show some obvious artifacts, more so 
in the p = 3 image than in the p = 1 image. This is because the aliasing artifacts and colored noise are, to a certain 
extent, masked by the detail in the scene. Conversely, one sees loss of detail n the mu = 1 scene due to the loss 
of high-frequency information in the quantization process. These results point to the necessity of developing better 
filter banks for the restoration of images. 

6. Conclusions 

A new algorithm is presented for developing quantization masks based on the total information content of a signal, 
and the individual contribution of the coefficients to this total. The results are encouraging in that respectable data 
compression is achieved even before entropy coding. The ever present tradeoff between image quality and data 
compression is analyzed in terms of the tradeoff between data compression and the amount of information the 
channel transmits. We show that the total information of the visual communication channel is a monotonically 



the number of bits for transmission, does not increase the overall information in the channel. 

Though the algorithm outlined here is simple conceptually, it is computationally intensive and for that reason the 
results presented here are for the simplest case where the analysis filters are orthogonal. This reduces the number of 
computations significantly but at the same time provides good insight into the results which can be expected from 
this approach. But this also does not fully achieve the image quality that is expected of this algorithm. Current 
research is looking a t  improving the analysis/synthesis filters, as well as improving the robustness of the restoration 
filters. This will lead to both better image quality in terms of human perception, but also restorability in terms of 
the amount of detail resolved in the displayed images. 
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Abstract 

Phase information is crucial for seismic data processing. However, traditional compression 
schemes do not pay special attention in preserving the phase of the seismic data, resulting in the 
loss of critical information. In this paper, we propose a lossy compression method that preserves 
the phase as much as possible. The method is based on the self-adjusting wavelet transform that 
adapts to the locations of the significant signal components. The elegant method of embedded 
zero-tree wavelet compression is modified and incorporated into our compression scheme. Our 
method can be applied to both one dimensional seismic signals and two dimensional seismic 
images. 

1 Introduction 

The seismic method plays a prominent role in the search for hydrocarbons. Seismic exploration 
consists of three main stages: data acquisition, processing, and interpretation. Due to the massive 
data acquisition activities, the need to  compress the seismic data is paramount. Unlike other 
images, the seismic data are further processed, e.g. deconvolution, stacking, and migration, then are 
interpreted by geologists. So the goal of compression is not only to reduce the storage requirements, 
but also to  avoid any processing artifacts, and eventually lead to accurate geological interpretations. 

Seismic data are mostly floating point, thus less compressible compared to text when lossless 
compression method (Ziv-Lempel, run-length coding, etc.) is used. To achieve higher compression 
ratio, lossy compression method has to be used. Seismic data are well characterized as a series of 
transients (e.g. reflections) and thus the wavelet transform has bee shown to be effective in this 
data domain. Recent developments in wavelet based image compression (e.g. embedded zero-tree 
wavelet compression[ll]) have shown promising results. 

Phase information is crucial for seismic data processing. However, traditional compression 
schemes do not pay special attention in preserving the phase of the seismic data, resulting in the 
loss of critical information. Many of the seismic processing methods are phase sensitive. Loss of the 
phase information can be easily seen after such processing, e.g. deconvolution. The loss of phase 
information is extremely undesirable. 

Recently, the self-adjusting wavelet transform has been developed [8]. It can adapt t o  the 
locations of significant signal components, thus result in better representation of the signal and 

"This research is supported in part by TI, BNR, and Texas ATP grant. 



accurate phase information. In this paper, we will present a phase-preserving compression method 
for seismic data by combing the power of the self-adjusting wavelet transform and the embedded 
zero-tree coding scheme. 

2 Seismic Data 

Seismic data are gathered by making man-made seismic event, then collecting the reflections from 
earth. The primary impulse response of the earth is, 

where c; is the reflection coefficient at the ith layer. For many situations, c; can be approximated 
by7 

where vi is the velocity of wave propagation in the ith layer. A synthetic model of water bottom 
is shown in Fig. l(a). The impulse response of the earth also includes multiple reflections, e.g. 
surface, inter-bed, and intra-bed multiples. The strong multiple in the water bottom example is 
shown in Fig. l(b). As we can see, the primary reflection is less visible due to multiples. The 
seismogram x(t) that we collect is 

where w(t) is man-made signature wave (also called wavelet in seismic litera,ture), e(t) is the impulse 
response of the earth including multiples, and n(t) is the noise. The synthetic seismogram of the 
water bottom example is shown in Fig. l(c). The primary reflection is even less visible than in 
Fig. l(b). An example of real world seismogram is shown in Fig. 4(a). 

The time domain impulse response of the sampled signature wave used in the synthetic seis- 
mogram is shown in Fig. 2(a). The energy of the signature wave is conceiltrated a t  the beginning, 
i.e. it has minimum energy delay. The roots of the signature wave are inside the unit circle, c.f. 
Fig. 2(b). This type of signature wave is minimum phase. 

3 Seismic Data Processing 

The goal of seismic data processing is to  deduce the underground structure from collected seismo- 
grams [14]. One of the most important seismic data processing techniques is cleconvolution. 

3.1 Spiking Deconvolution 

Spiking deconvolution is a process that improves the temporal resolution of seismic data by com- 
pressing the basic signature wave. First we find a(t) such that, 

6(t) = w(t) * a(t). 

Then convolve the seismogram with a(t), 



Figure 1: The water bottom example. (a) Model with only primary reflections. (b) Model with 
both primary and multiple reflections. (c) Synthetic seismogram. 

Figure 2: The signature wave for the water bottom example. (a) The time domain impulse response. 
(b) Zero locations. 
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to get an estimate of the impulse response of the earth. a(t) can be found by solving the Wiener- 
Hopt equation. The key requirement for a(t) to be stable is that w(t) must be minimum phase. 
The spiking deconvolution result for the water bottom example is shown in Fig. 3(a), and the 
result of the real world data is shown in Fig. 4(b). Interpreters prefer the crisp, finely detailed 
appearance of the deconvolved section as opposed to the blurred, ringy appearance of the section 
without deconvolution. 

3,2 Predictive Deconvolution 

Multiples occur at fixed intervals, so they are predictable. The method of predictive deconvolution 
first finds b(t), such that 

d(t +At) = d(t)*b(t). (6) 

Then calculates the prediction error, 

This method is also called the predictive error filtering (PEF). PEF can reduce multiple as shown 
in Fig. 3(b). 

Figure 3: Processing results for the water bottom example. (a) The spiking deconvolution result 
based on the original data. (b) The predictive deconvolution result based on the original data. 

4 Compression Distortion and its Effects 

We use the ID embedded zero-tree wavelet (EZW) 1111 compression algorithm to compress the seis- 
mograms. Almost no visual differences can be detected. For real world pre-stack seismic images, 
30:l compression could achieve no visual differences. If we apply the same predictive deconvolution 
algorithm on the compressed and then decompressed data, the results are shown in Fig. 5 and 



Figure 4: (a) Real world seismic data. (b) The spiking deconvolutio~~ result based on the original 
data. 

Fig. 6. As we can see that it is far less crisp, and has much more ringings. From the theory of 
deconvolution, we know that the stable deconvolution requires that the wave is minimum phase. 
Non-minimum phase or near non-minimum phase will result in non-sta.ble or near non-stable decon- 
volution, e.g. ringings in the results. This suggests that the phases of the waves in the compressed 
image have been changed. Also from Fig. 5 and Fig. 6, we can see that using different wavelets 
and different relative locations of wavelets can change the PEF results dramatically. 

Similar experiments on real world seismic data suggest that, a.lthough there is no visual 
differences between the compressed and the original data, the phase of the signal has been changed. 

5 Self-adjusting Wavelet Transform 

The wavelet transforms not only provide a powerful multiresolution analysis of the signals, they 
also have built-in structures that allow us to construct huge amount of basis that have different 
timelspace and frequeacy/scale characteristics. Due to the inherent hierarchical structure of the 
wavelet transforms, fast algorithms that expand signals onto those basis, and efficient methods that 
find the best basis within the huge set, exist and are practical [9, 6, 13, 12, 5, 4, 10, 3, 21. 

One of the main ingredients in the wavelets transform is the downsampling at each scale. 
Although the downsampling reduces the output data rate and results in compact representation, 
it also introduces one artifact - shift-variance. The wavelet transform of a signal and the wavelet 
transform of a shifted version of the same signal is drastically different. The lack of shift invariance 
is one well known disadvantage of the discrete wavelet transform. 

For the point of seismic signal processing, the down-sampling means that the basis functions 
are at  some fixed locations. If the location of the significant signal component does not coincide 
with the location of one basis function, it will be represented by nearby basis function, thus results 
in phase shift. 



Figure 5: (a) The predictive deconvolution result based on the water bottom data compressed at 2.5 
bps using using EZW algorithm, standard wavelet transform, and the Daubechies 7-9 biorthogonal 
wavelets. (b) The predictive deconvolution result based on the water bottom data compressed at 
2.5 bps using EZW algorithm, standard wavelet transform, and the Daubechies length 6 wavelets. 
(c) The predictive deconvolution result based on the shifted water bottom data compressed at 2.5 
bps using EZW algorithm, standard wavelet transform, and the Daubechies length 6 wavelets. 

Figure 6: (a) The spiking deconvolution result based on the real world data compressed at 1.0 
bps using using EZW algorithm, standard wavelet transform, and the Daubechies 7-9 biorthogonal 
wavelets. (b) The spiking deconvolution result based on the real world data compressed a t  1.0 bps 
using using EZW algorithm, standard wavelet transform, and the Daubechies length 16 wavelets. 



The basic DWT building block has two downsampling blocks. We realize that we can either 
take the even or odd indexed downsa.mples, and are able to reconstruct tlie original signal. Equiva- 
lently, we can use all the basis function a.t even locations to represelzt the signal or use all the basis 
function at odd locations to represent the signal. Clearly, we need to chose one that preserve the 
phase of the signal. 

For a multiscale wavelet transfori~l, we need to choose a path from root to the leave from a 
full binary tree of all possible paths. In order to find the best cost and the best tree shape, dynamic 
programming method [I] needs to be utilized. The dynamic progralnmillg theory requires that any 
subpath of the optimal solution is optimal for the subproblem. The optinla1 solution can be found 
in O(N log N )  time. 

However, this is still not good enough, because one significant component could be better 
represented by even basis functions, while another significant component could be better represented 
by odd basis functions. we need to introduce the self-adjusting wavelet systems. The idea is quite 
simple, we can cut the input signal into several non-overlapping segments, and use different wavelet 
transforms on different segments. However, the task of finding the best time segmentations and the 
best wavelet transform on each segment is very hard, since the number of possible choices is huge. 
For example, for a length N signal, the number of different ways of segmenting the signal is 2N-1. 
Fortunately, if the cost function is additive, we can exploit the structure of the wavelet transform 
and construct a fast algorithm that finds the self-adjusting wavelet transform efficiently [7]. 

6 P hase-preserving Compression 

Because of the structure of the wavelet tra.nsform and the zero-tree algoritllm, our phase-preserving 
compression algorithm can be easily incorporated into the embedded wavelet compression scheme. 
The outlines of the phase-preserving coinpression algorithm are, 

1. Find the self-adjusting wavelet tra.nsform. 

2. Modified embedded wavelet compression. 

(a) Initialization. 
Determine and output the initial quantization-step and the initial phase. 

(b) Dominated pass. 

i. Determine the type of the coefficient, e.g positive significant, negative significant, 
isolated zero, or zero-tree root. 

ii. If the phase has changed from previous coefficient and the coefficient is significant, 
output a phase chailge symbol. 

iii. Output the type of the coefficient 

(c) Subordinate pass. 
Refine the values of the significant coefficients. 

(d) Half the quantization-step and go to 2(b). 

3. Adaptive arithmetic coding of the output symbol. 



The algorithm terminates when the available bits run out. Notice that the phase information 
is transmitted in a progressive and embedded way. Because of the localization of seismic events, 
the localization of wavelet basis, and the localization ability of the zero-tree structure, the above 
phase-preserving compression algorithm works very well. As we can see from the results in Fig. 7, 
both amplitude and phase information have been preserved. 

Figure 7: (a) The predictive deconvolution result based on the water bottoill data compressed at 2.5 
bps using EZ W algorithm, self-adjusting wavelet transform, a.nd the Da.ubechies length 6 wavelets. 
(b) The predictive deconvolution result based on the real world data compressed at 1.0 bps using 
EZW algorithm, self-adjusting wavelet tra.nsform, and the Daubechies length 16 wavelets. 

7 Summary 

Phase information is crucial for seismic data processing. However, the traditional compression 
schemes do not pay special attention in preserving the phase of the seisnlic data, resulting in the 
loss of this critical information and artifacts in subsequent processing. In this paper, we study the 
deconvolution and propose a lossy compression method that preserves the phase as much as possible. 
The method is based on the self-adjusting wavelet transform that adapts to the locations of the 
significant signal components. The elegant method of embedded zero-tree wavelet compression is 
modified and incorporated into our compression scheme. 
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Abstract 

Remote sensing systems typically employ pushbroom sensors (linear arrays "swept7' along by the satellite) to collect 
imagery. These line scan arrays contain pixel-to-pixel nonuniformity errors due to variations in the active area, 
thickness, doping, and temperature of each detector in the array. These errors are estimated and corrected using 
flat field calibration. Assuming the detectors exhibit a nominally linear response, this technique inputs flat 
radiance fields at two radiance levels, estimates the gain and offset of each pixel, determines correction factors and 
applies them to each pixel. The purpose of this paper is to describe the effects of performing this calibration 
through wavelet-based data compression. The two major steps involved in this calibration process-computing the 
correction coefficients and applying the correction coefficienwan be done prior to or afer the data compression. 
To minimize on-board hardware, it is preferable to compute and apply the correction factors after the compression, 
i.e., on the ground. We determined the feasibility of using this desired approach and compared it to: (1) the more 
ideal approach of computing and applying the correction factors prior to any data compression, and (2) an 
alternative approach of computing the coefficients prior to compression and applying the coefficients after 
compression. 

1. Introduction 

Data compression is an enabling technology in the remote sensing arena. Current high-end sensor data rates of 
remote sensing systems are pushing 2 to 4 Gbitslsec. Data rates in next-generation systems are growing due to the 
desire for larger ground coverage and swath widths, increased number of spectral bands, and multiple on-board 
sensors. Current commercial downlinks are only around 250 Mbitsisec. Therefore, assuming 12-bit input data, 
high-end systems will require a bit rate of 0.75 bits per pixel (bpp) (16:l) to 1.5 bpp (8: 1) with next-generation 
systems demanding 0.24 bpp (50:l) to 0.6 bpp (20: 1). Not only must this range of compression ratios be obtained 
but they must be supplied with negligible discernible degradation of image quality. Cost-effective hardware for 
these data compression systems must be available in a timely manner, and with a reasonable size, weight, power, 
and throughput configuration. Given these considerations, we determined that it is highly desirable to put a 
wavelet-based compression system on-board the satellite to realize the full potential of next-generation remote 
sensing systems. Wavelet-based compression provides low bit rate compression with high image quality and 
reasonable computational complexity. It offers better performance at low bit rates than other common techniques 
such as PEG, vector quantization, and DPCM [I] yet can still be implemented in a real-time system with realistic 
on-board size, weight, and power constraints. Ball and Aware are currently developing hardware towards this end. 

An important parameter in the overall design of a remote sensing system as well as to the remote sensing 
community, is to understand and assess the impacts of adding data compression to the satellite payload. In 
particular, it is important to address system issues such as end-to-end performance, bit error susceptability, and flat 
field calibration. This paper addresses flat field calibration. Typical remote sensing systems use a line-scan array 
oriented in the cross-track direction (perpendicular to the direction of travel) that is "pushed" along by the satellite. 
This sensor configuration is commonly called a "pushbroom sensor". Each detector in the array has a different 
gain and offset due to variations in the active area, thickness, doping, and temperature resulting in a different 
response to a uniform input. Without correction, this phenomenon would result in striping in the image (shown 
later in Figure 5). Thus, a necessary requirement for a remote sensing system is to correct for this striping. This 
correction process is straightforward without data compression in the system. However, this is not the case for a 
system with data compression and therefore we have undertaken a study to investigate the effects of wavelet-based 
data compression on this flat field calibration process. The purpose of this paper is to describe the results of this 



study. Section 2 of this paper discusses flat field calibration for remote sensing applications. In section 3, a brief 
overview of wavelet-based compression is provided. Section 4 presents results of the study, while section 5 offers 
some conclusions. 

2. Flat Field Calibration 

Flat field calibration is performed on focal plane arrays to try to mitigate the effects of pixel-to-pixel 
nonuniformities. For a line scan array this calibration process is implemented by: (1) inputting two known 
radiance values to all pixels and obtaining the pixel responses, (2) spatially averaging each pixel along the in-track 
direction (same as direction of travel), (3) determining the gain and offset for each pixel from the averaged 
responses, (4) computing the correction factors required to give all pixels the same nominal gain and offset value, 
and (5) applying these correction factors on a line-by-line basis to the array. 

Note that the flat field calibration data can be taken with or without data compression in the system (since real- 
time data requirements can be relaxed when gathering calibration data). Also, assuming the real-time system (for 
collecting remotely sensed imagery) will contain data compression, the correction factors can be applied prior to or 
afer the data compression. To minimize on-board hardware, it is preferable to apply the correction factors after 
the compression, i.e., on the ground. This paper determines the feasibility of this desired approach and compares it 
to the more ideal approach of computing and applying the correction factors prior to any compression of the data. 
The performance of the calibration is evaluated on both flat field images and images representative of remotely 
sensed imagery. 

2.1 Simulation of Calibration Flat Field Images 

Parameters from a typical remote sensing line-scan sensor were used for the simulation. The pixels on each line 
have normally distributed gains, m, with a mean of 1 and standard deviation of 5%. They also have normally 
distributed offsets, b, with a mean of 1300 e- and a standard deviation of 15% of 1300. The LSB of the analog-to- 
digital converter is equal to 100 e-, i.e., there are 100 e-/count. The low radiance calibration value, Q, is 3,800 e- 
and the high radiance calibration value, x', is 150,000 e-. Temporal noise, n, was added which includes shot 
noise' and other noise sources equal to the least significant bit, i.e., this noise is modeled by a normally distributed 
random variable with zero mean and variance of pixel value + 100'. The resulting data values are 12-bits wide and 
are stored in 16-bit integers. Taking into account the above information, the flat field images (at low (k=O) and 
high (k=l) radiance values) were generated by 

yk = round((=, + b + n) / c) where c represents countsfe- (nom. = 100) (1) 
or 

yk = (mx,  + b + n) 1 r + n, where a, is the quantization noise, U[-.5,.5] (2) 

For an individual pixel i, we have 

ykTi = (mixk + bi + n) / c + n, where mi, bi are the gain and offset for pixel i 

2.2 Determining Correction Factors 

Ideally, we want each pixel to have the same response: 

' Shot noise is Poisson distributed but can be approximated by a Gaussian distribution for large values 



,. 
where 6i and b are the sample means of the gains and offsets, respectively 

Estimating xkSi from (3), we have 

Note that 

Plugging (5)  into (4), we get the corrected response for each pixel 

The expected value of f , is 

and therefore, the gain and offset correction factors are, respectively 

To check that these correction factors give the desired result, we further expand and simplify the expected value of 

f k , i  

which agrees with our idealized response in (4). 

3. Wavelet-based Compression 

The first step in wavelet-based data compression is wavelet decomposition. This consists of decomposing the input 
image into different frequency subbands at different spatial resolutions via multiresolution analysis (MRA). In 1-D, 
an MRA consists of a pyramidal algorithm where level j of the pyramid contains a 2' resolution smooth 
approximation of the input signal as well as a 2' resolution error or detail signal. The detail signal represents the 
difference in information between the signal approximations at resolutions 2'+' and 2'. This detail information can 
be extracted by decomposing the signal on a wavelet orthogonal basis[2]. The smooth and detail signals at 
resolution 2' are simply computed by convolving the smooth signal at resolution p' with a lowpass filter (dilated 
and translated version of the "scaling" function) and a bandpass filter (dilated and translated version of the 
"wavelet" function), respectively, and decimating each filtered signal by 2[3]. Thus, for a 1-D signal, the smooth 
approximation at level j will contain half the pixels as the smooth approximation at level j+l . The "other half' of 



the pixels will contain the detail information. Extending this to 2-D images (which are treated in a separable 
manner), we have that the number of pixels to represent the smooth approximation at level j is 114 of the number 
of pixels required to represent the previous smooth approximation at level j+l ((112 due to vertical decimation by 
2) X (112 due to horizontal decimation by 2)). The other 314 of the pixels that comprised the smooth 
approximation at level j+l now contain detail information at level j. Hence if the error (detail) between 
approximations at successive levels is small, the overall wavelet decomposition will be sparse (see Figure 1). 

Figure I .  Sample input image and 3-level wavelet decomposition. Note sparseness of decomposition with exception of upper left block. 

This sparse representation of the image allows many coefficients to be discarded (or allocated a small number of 
bits) after quantization. The steps following computation of the wavelet decomposition are quantization and 
entropy encoding. The quantization step consists of intelligently quantizing the wavelet coefficients so that the 
target bit rate is achieved with minimum degradation in the image quality of the reconstructed image. Techniques 
for quantization come from the rate-distortion branch of information theory[4]. Some examples of quantization 
techniques as applied to data compression are contained in [5] [6] [7]. Entropy encoding provides additional 
lossless compression and generates the bitstream that is transmitted to the ground andlor on-board storage device. 
Common entropy encoding techniques employed in lossy data compression schemes include Huffman coding and 
arithmetic coding (see [4]). 

Wavelet-based compression provides high image quality at low bit rates due to: (1) the sparse nature of the wavelet 
representation, (2) the optimized allocation of bits, and (3) the absence of objectionable blocking artifacts (as 
observed in PEG) since processing operates on the entire image (or very large sections of an image). This 
technique also exhibits reasonable computational complexity since the bulk of the processing is in the wavelet 
decomposition step which simply consists of a finite number of convolutions and decimations of the input image 
with small separable kernels (on the order of 2-20 pixels). Also, BalVAware-developed hardware for 
implementing wavelet-based compression in real-time systems will be available in the near future. These attributes 
make wavelet-based compression very attractive to incorporate into a remote sensing system. The results presented 
in this paper are obtained using a software simulator of the BallIAware-developed wavelet compression hardware. 

4. Simulation Results 

The simulation results are split into two sections: one for correcting flat field images, and one for correcting 
representative images. For both sections, simulation results are presented for three cases: i) computing and 
applying the correction factors prior to compression (Prior), ii) computing the correction factors prior to 
compression and applying the correction factors after compression (Mixed), and iii) computing and applying the 
correction factors after the compression (Post). Cases (i) and (ii) require either a compression bypass option or a 
lossless compression option in calibration mode (non real-time) so that calibration data can be taken and correction 
factors computed without compression. For cases (ii) and (iii), where the correction factors are applied after 
compression, the calibration hardware for applying these corrections may reside on the ground. For case (i), where 



the correction factors are applied prior to the on-board compression, calibration hardware must be included on- 
board. 

4.1 Correcting Bat field images 

The objective in trying to correct non-uniform "flat field" images is to obtain, as closely as possible, a true flat 
field, i.e., for a constant input radiance, all responses ideally are identical. To evaluate the performance of the 
correction, we wish to compute the standard deviation across the detectors in the line array. Prior to computing 
these statistics, the pixels are averaged in the in-track direction to reduce the effects of noise. To evaluate the 
performance of the corrections, a third radiance level (x;? = 75,000 e-) is also corrected which is not used in the 
computation of the correction values. This gives an independent test of how well the correction performs on values 
not used during the calibration process. 

One way to evaluate the performance of the correction is to look at detector response versus flux level 
parameterized over individual pixels. Plots of detector response versus flux level for the the uncorrected pixel 
responses and corrected pixel responses (for the Prior, Mixed, and Post cases as defined above) are shown in 
Figure 2. One hundred pixels are plotted in each graph. The plots for the Mixed and Post cases are for a bit rate 
of 1.2 bpp. In the ideal corrected case, every pixel would exhibit the same response. It is clear that the Prior case 
performs best, followed by the Post case, and then the Mixed case. 
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Figure 2. Detector Response vs. Input Flux for uncorrected case (upper left) and 
Prior (upper right), Mixed (bottom left), and Post (bottom right) corrected cases 

More quantitative results are shown in Figure 3. Here plots of the line-to-line standard deviation versus bits per 
pixel are shown for the high, medium, and low input radiance levels. By line-to-line standard deviation we mean 
the standard deviation from detector to detector in the corrected image after averaging in the in-track direction. 
These plots are parameterized over correction technique (Uncorrected, Mixed, Post). Note that, since the Prior 



case is computed prior to any compression, this case is implicitly contained in these plots as the values at the 
original bit rate of 12 bpp. 
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Figure 3. Lie-to-line standard deviation vs. bit rate for the low, medium, and high radiance levels. 
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These plots show that the performance of the correction is best when the correction coefficients are both computed 
and applied prior to compression (Prior case). Also, the performance of the correction is superior, in general, 
when the correction coefficients are both computed and applied after compression (Post case) as opposed to 
computed prior to compression and applied after compression (Mixed case). To explain this behavior, we offer the 
following argument. Prior to compression we have 

P 1 :  
0 
-0 

with gain and offset correction factors (also computed prior to compression) of 

: - 

If we compress the images prior to computing the correction coefficients, we can model the compressed images 
similarly to the uncompressed images, i.e., as a linear model with additive noise (plots of pixel response vs. 
radiance level in the compressed flat field images averaged in the in-track direction show good linear behavior) : 

8 
0 - 
5; 0; . . . . . . . .  

0.1 1 .o 10.0 
~ P P  

y k j  = (G~x, + 6 + ii) / c + ii, (13) 

The correction factors for this case are then 



These are matched sets, i.e., the correction factors computed on the uncompressed calibration images will perform 
best when applied to uncompressed flat field images while the correction factors computed on the compressed 
calibration images will perform best when applied to compressed flat field images. The worst performance will be 
observed in the unmatched case, i.e., when the correction factors are computed with the uncompressed calibration 
images and applied to compressed flat field images. These observations agree with the data. 

Another question to answer about Figure 3 is why does the line-to-line standard deviation of the uncorrected image 
first increase and then decrease with decreasing bit rate? To help answer this question we plotted cross-track slices 
of the high and low uncorrected images at bit rates of 12,2.4, 1.2,0.6, and 0.4 bpp (see Figure 4). They were 
plotted with successive offsets between curves for easier viewing. The top curve represents 12 bpp and the bit rate 
decreases down to the bottom curve which represents 0.4 bpp. These plots show two trends: (1) the low amplitude 
noise tends to be increasingly spatially averaged (high frequency information was lost during the quantization 
process) for lower bit rates which reduces the line-to-line standard deviation, and (2) the high amplitude noise 
(which the quantizer decides should be preserved) tends to be amplified which increases the line-to-line standard 
deviation. At the higher bit rates, the second trend dominates, whereas at the lower bit rates, the first trend 
dominates, thus resulting in the behavior seen in Figure 3. 
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Figure 4. Cross-track slices of the uncorrected flat field image at high and low radiance levels for bit rates of 12,2.4,1.2,0.6, and 0.4 bpp. 

4.2 Correcting representative images 

The raw image containing non-uniformities and the corrected images (for the Prior, Mixed, and Post cases) are 
shown in Figure 5 for a representative image. The striping effect due to pixel-to-pixel nonuniformity is very 
apparent in the uncorrected image. The correction using the Prior technique virtually eliminates all visible 
striping. Correction using the Mixed and Post techniques still exhibit a fair amount of striping. 

On a more quantitative note, it is desirable to compare the corrected images to the ideal corrected image (no 
compression). Figure 6 shows the mean squared error between the ideal and non-ideal corrected images vs. bit rate 
for the Prior, Mixed, and Post cases. 
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Figure 5. Uncorrected and Prior-, Mixed-, and Post-Corrected Images for the Representative Image 
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Figure 6. Comparison of Calibration Techniques for prior, Figure 7. Comparison of pixel response and gain values for the 
mixed, and post algorithms flat field (uncompressed and compressed at 1.2 bpp) and represent- 

ative (uncompressed and compressed at 1.2 bpp) images. 

Figure 6 shows that the best performance is clearly obtained when the correction coefficients are both computed 
and applied prior to compression (there is an increase in RMSE of between 12% and 29%, depending on the bit 
rate, for the Post case as compared to the Prior case). This is because the Prior case is now the only matched case. 
Compression of flat field images behaves much differently than compression of representative images (frequency 
components in the flat field images will, in general, have different amounts of quantization than corresponding 
frequency components in the representative images due to different wavelet coefficient statistics), so the Post case 
is no longer a matched case. Therefore, the performance of the Post case will be worse than the Prior case for 
representative images. To illustrate this point, we plotted four pairs of curves, shown in Figure 7. One curve in 
each pair represents the pixel-to-pixel gains of the detector responses (note that pixel response is dominated by 
gain, not offset). The other four curves (one in each pair) represent a cross-track slice of the medium radiance flat 
field image, uncompressed (top curve) and compressed at 1.2 bpp (second curve); and a cross-track slice of the 
representative image in a uniform part of the image (white roof in the top left of image), uncompressed (third 
curve) and compressed at 1.2 bpp (bottom curve). The flat field images are normalized by the mean of the slice 
and the representative images are normalized by the mean of the slice as well as the ideal normalized value for 
each pixel. The bottom three pairs of curves are offset for easier viewing. 

The first set of pairs for the flat field image, match very well, i.e., the normalized detector response is very close to 
the detector gains, as expected. The slight differences are due to detector offsets and noise. The second set of pairs 
for the compressed flat field image are still close, but not as close due to the effects of the compression. One can 
see that the effective gains of this equivalent system will be close to the original gains. The third set of curves for 
the representative image, are also very close to each other. Again, this simply illustrates that the detector response 
is dominated by gain and verifies that the gains on the flat field image are the same as the gains on the 
representative image. The fourth set of pairs, for the representative image compressed at 1.2 bpp, are not very 
close. The compression process on the representative image smoothed out the pixel-to-pixel variations. If we look 
at this smoother curve as having the same input radiance as the uncompressed representative image, then it is 
apparent that it has very different effective gains than the gains in the uncompressed system and even the gains 
computed in the compressed flat field system. Therefore, correction coefficients that were computed from either 
the uncornpressed or compressedflatfield images will not correct the compressed representative images as well as 
flat field images since the flat field and representative images have different effective gains. 

5. Conclusions 

Line scan sensors used in remote sensing systems exhibit striping artifacts due to detector-to-detector 
nonunifonnities. These nonuniformities are generally characterized by a gain and offset for each detector in the 
array and are corrected via flat field calibration. Current high-end and next-generation remote sensing systems are 
demanding incorporation of high quality, low bit rate data compression onto the spacecraft. A good candidate to 
apply in this arena is wavelet-based data compression due to its high image quality at low bit rates with reasonable 



computational complexity and soon-to-be-available hardware. This paper described our understanding of the 
effects of wavelet-based data compression on flat field calibration. Both corrections of flat field images and 
representative remote sensing imagery are evaluated. Three calibration/compression approaches were studied: (i) 
computing and applying correction coefficients prior to compression, (ii) computing correction coefficients prior to 
compression and applying correction coefficients after compression, and (iii) computing and applying correction 
coefficients after compression. Cases (i) and (ii) require a lossless or no compression mode for gathering 
calibration data and computing correction factors without compression. For case (i), where the correction factors 
are applied prior to the on-board compression, calibration hardware must be included on-board, whereas for cases 
(ii) and (iii), where the correction factors are applied after compression, the calibration hardware for applying these 
corrections may reside on the ground. 

The previous section explained that approaches (i) and (iii) work well when correcting flat field images because the 
computation and application of the correction factors operate on matched sets of data, i.e., the computation and 
application of the corrections are either both applied to uncompressed data or both applied to compressed data at 
the same compression level. However, when trying to correct representative images using correction factors 
computed from the flat field calibration data, we observed that approach (i) performs better than approach (iii). 
There is an increase in RMS error of between 12% and 29% observed in case (iii) as compared to case (i). This is 
because approach (iii) is no longer a matched case due to the fact that compression of flat field images behaves 
differently than compression of representative imagery. If one chooses to implement approach (i) due to the 
improved performance provided, then the spacecraft must have: (a) a compression bypass option or a lossless 
compression option in calibration mode, and (b) additional on-board hardware to apply the gain and offset 
correction factors to every frame of collected imagery. If one chooses to implement approach (iii), then: (a) no 
compression bypass or lossless mode is required, and (b) all calibration can be performed on the ground. Clearly, 
there is a tradeoff between calibration performance and increased hardware/complexity requirements of the on- 
orbit system. Future work entails a system-level evaluation of this trade as well as continued development of data 
compression hardware for realization on next-generation space-based remote sensing systems. 
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ABSTRACT 
The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary 

in spatial frequency and orientation. It is widely used for image compression. 
Measures of the visibility of DWT quantization errors are required to achieve optimal 
compression. Uniform quantization of a single band of coefficients results in an 
artifact that is the sum of a lattice of random amplitude basis functions of the 
corresponding DWT synthesis filter, which we call DWT uniform quantization noise. 
We measured visual detection thresholds for samples of DWT uniform quantization 
noise in Y, Cb, and Cr color channels. 

The spatial frequency of a wavelet is r 2-L , where r is display visual resolution in 
pixelsfdegree, and L is the wavelet level. Amplitude thresholds increase rapidly with 
spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation 
from low-pass to horizontal/vertical to diagonal. 

We propose a mathematical model for DWT noise detection thresholds that is a 
function of level, orientation, and display visual resolution. This allows calculation of 
a "perceptually lossless" quantization matrix for which all errors are in theory below 
the visual threshold. The model may also be used as the basis for adaptive 
quantization schemes. 

NASA's extensive image compression requirements may be met in part by the use 
of wavelet techniques 131. Wavelets form a large class of signal and image transforms, 
generally characterized by decomposition into a set of self-similar signals that vary 
in scale and (in 2D) orientation [4]. The Discrete Wavelet Transform (DWT) is a 
particular member of this family which operates on discrete sequences, and which 
has proven to be an effective tool in image compression 11, 2, 7, 81. In a typical 
compression application, an image is subjected to a two-dimensional DWT whose 
coefficients are then quantized and entropy coded. 

DWT compression is lossy, and depends for its success upon the invisibility of the 
artifacts. The purpose of this paper is to provide information on the visibility of DWT 
artifacts, and to show how it may be used in the design of wavelet compression 



systems. In this research we have generally followed earlier work on the Discrete 
Cosine Transform [5, 9, 111, with some important differences that will be discussed 
below. 

11. BACKGROUND 
A. Discrete Wavelet Transform 

Figure 1 illustrates the elements of a one-dimensional, two-channel perfect- 
reconstruction filter bank. The input discrete sequence x is convolved with high- 
pass and low-pass analysis filters a H  and aL, and each .result is down-sampled by two, 
yielding the transformed signals x~ and XL . The signal is reconstructed through up- 
sampling and convolution with high and low synthesis filters s~ and s~ . For 

properly designed filters, the signal x is reconstructed exactly (y=x). 

Figure 1. A two-channel perfect-reconstruction filter bank. 

A DWT is obtained by further decomposing the low-pass signal XL by means of a 

second identical pair of analysis filters, and, upon reconstruction, synthesis filters, 
as shown in Figure 2. This process may be repeated, and the number of such stages 
defines the level  of the transform. 

Figure 2. Two-level 1D Discrete Wavelet Transform. 

With two-dimensional signals such as images, the DWT is typically applied in a 
separable fashion to each dimension. Now each filter is two-dimensional, with the 
subscript indicating the separable horizontal and vertical components, and the 
downsampling operation is applied in both dimensions. As in the one-dimensional 



case, the process may be repeated a number of times, in each case by applying the 
component XLL as input to a second stage of identical filters. 

Here we adopt the term level to describe the number of 2D filter stages a 
component has passed through, and the term orientation to identify the four possible 
combinations of low-pass and high-pass filtering the signal has experienced. We 
index orientations as follows: {1,2,3,4} = {LL,HL,HH,LH} where low and high are in the 
order horizontal-vertical. Each combination of level and orientation {L,O} specifies a 
single band. For the purpose of this research we selected the 9-7 tap Antonini 
biorthogonal filters [I]. 

D. DWT Quantization Matrix 

Compression of the DWT is achieved by quantization and entropy coding of the 
DWT coefficients. Typically a uniform quantizer is used, implemented by division by a 
factor Q and rounding to the nearest integer. The factor Q may differ for different 
bands. It will be convenient to speak of a quantization matrix to refer to a set of 
quantization factors corresponding to a particular matrix of levels and orientations. 

A particular quantization factor Q in one band will result in coefficient errors in 
that band that are approximately uniformly distributed over the interval [-Q/Z,Q/Z]. 

The error image will be the sum of a lattice of basis functions with amplitudes 
proportional to the corresponding coefficient errors. To predict the visibility of the 
error due to a particular Q ,  we must measure the visibility thresholds for individual 
basis functions and error ensembles. 

E. Display Visual Resolution 

Visibility of DWT basis functions will depend upon display visual resolution in 
pixelsldegree. Given a viewing distance v in cm and a display resolution d i n  
pixelslcm, the effective display visual resolution (DVR) r in pixelsldegree of visual 
angle is 

F. Wavelet Level and Spatial Frequency 

A single basis function encompasses a band of spatial frequencies.We take the 
Nyquist frequency of the display resolution as the nominal spatial frequency of the 
first DWT level, and the frequency of each subsequent level will be reduced by a 

factor of two. Thus for a display resolution of r pixelsldegree, the spatial frequency f 
of level L will be 



Stimuli were modulations of either Y, Cb, or Cr channels of a color image. These 
produce images that are blacklwhite, yellowlpurple, and redlgreen respectively. All 
modulations were added to an otherwise uniform (YCbCr = {128,0,0)) image of size 

1024x1024 pixels. Modulations were either single DWT basis functions or samples of 
DWT uniform quantization noise, as shown in Figure 3. In either case, individual 

modulation images were scaled to produce amplitudes in the range of [0,126]. The 
amplitude of the modulated signal is our measure of stimulus intensity. The modulated 

channel, plus the two remaining unmodulated channels, were then transformed to 

R'G'B' using the rule 

Figure 3. Example stimuli: a) basis function , b) DWT noise. 

To vary the display visual resolution we pixel-replicated the stimuli by factors of 1 
(no replication), 2, or 4 in both dimensions, yielding visual resolutions of 64, 32, and 
16 pixelsldegree. For all stimuli, the duration was 16 frames in duration at a frame 

2 
rate of 60 Hz, or 267 msec. The time course was a Gaussian e-n(f/8) where f is in frames. 

To measure detection thresholds for individual stimuli we used a two-alternative 

forced-choice (2AFC) procedure. Three observers took part in the experiments. 

IV. RESULTS 

A. EfSect . of DWT Level 

Thresholds for display resolutions of 16, 32, and 64 pixelsldegree, all at orientation 

4, are shown in Figure 4. In general thresholds are largely unaffected by resolution, 
once they are expressed as a function of spatial frequency in cyclesldegree. 

Additional data from observer sf1 confirm this observation. 

B. Single Basis Functions vs Noise Images 

Figure 5 plots the difference between log thresholds for single basis functions 
and for noise. As expected, basis function thresholds are uniformly higher than 

noise thresholds. 
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Figure 4. Thresholds at display resolutions of 16 (triangles) 32 
(squares) and 64 pixelsldegree (circles), for orientation 4. 

Spatial Frequency (cyldeg) 

Figure 5. Difference between log thresholds for DWT noise and basis 
functions. Open symbols show data for individual orientations, solid 
symbols are means. Heavy line is the probability summation prediction. 

We considered a simple spatial probability summation model to account 

quantitatively for the difference between basis function and noise thresholds 16, 101. 
In this context, this model asserts that the Minkowski sum over individual basis 

functions amplitudes is equal for all basis functions ensembles at threshold. This 

prediction is plotted as the horizontal line in Figure 5. It is clear that probability 

summation provides an excellent account of the difference between basis and noise 

thresholds.  



C. Grayscale Model 

One model that provides a reasonable fit to thresholds for grayscale DWT is 

This is a parabola in log Y vs log f coordinates, with a minimum at gofo and a width 
of k-2  . The term g o  shifts the minimum by an amount that is a function of 
orientation, and where g2 = g4= I. The term a defines the minimum threshold. The 

optimized parameters and rms error (of log Y) are given in the first line of Table 3. 
The fit is shown in Figure 6. 

Spatial Frequency (cyldeg) 
Figure 6. Fit of the threshold model to grayscale data of gyy and sfl. 

128 
64 - 32 > 

D. Color Results and Model 
Figure 7 shows results for observers sf1 and abw at orientations 1, 3, and 4 for a 

DWT noise pattern and display gamma of 2.3. We have applied the same model used for 
grayscale thresholds to the color thresholds in Figure 7. The solid curves therein 
show the various fits. The parameters are in Table 3, along with the Y parameters. 

y 
gyy & sf1 
orient=l 

Table 3. Parameters for DWT YCbCr . threshold model. 
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Figure 7. Thresholds for DWT uniform noise in Cr and Cb channels. 



We now use the model developed above to compute a "perceptually lossless" 
quantization matrix, by using a quantization factor for each level and orientation 
that will result in a quantization error that is just at the threshold of visibility. For 

uniform quantization and a given quantization factor Q ,  the largest possible 
coefficient error is Q / 2 .  The amplitude of the resulting noise is approximately AL,O Q/2. 

Thus we set 

Q L , ~  = 2  YL,O/AL,O . (5) 

The basis function amplitudes AL,O are given for six levels in Table 4. 

Table 4. Basis function amplitudes AL,O for a six-level Antonini DWT. 

Combining (4), (5), and (2), 

Table 5 shows example matrices computed from this formula. 

Table 5. Quantization factors for four-level Antonini DWT for r = 3 2  
p i x e l f d e g r e e .  



Figure 8 shows an example image compressed using the quantization matrix of 

Table 6, and twice that matrix. Only the grayscale image is shown in this printed 

paper, though the actual compression was done on a color image. Viewed from the 
appropriate distance (24 inches, approximately arm's length) the quantization 

artifacts should be invisible for the left image, and visible for the right. Using 

typical entropy coding techniques, the resulting bitrates for these two examples a r e  

1.05 and 0.67 bitstpixel. 

Figure 
matrix 
256x256 
24 inch 

8. Image compressed with perceptually lossless DWT quantization 
(left) and twice that matrix (right). Image dimensions are 

pixels. Quantization matrix is designed for a viewing distance of 
~es .  Actual images are in color; only grayscale is shown here. 

IX. CONCLUSIONS 

We have measured visual thresholds for samples of uniform quantization noise of 

a DWT based on the Antonini wavelet. Thresholds were collected for gamma-corrected 

signals in the three channels of the YCbCr color space. We propose a mathematical 
model for the thresholds, which may be used to design a simple "perceptually 

lossless" quantization matrix, or which may be used to weight quantization errors or 
masking backgrounds in more elaborate adaptive quantization schemes. These 

perceptual data, models, and methods may enhance the performance of wavelet 
compression schemes. 
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