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Abstract

An analysis of the radiation hazards in support of NASA deep space exploration

activities is presented. The emphasis is on materials required for radiation protection

shielding. Aluminum has been found to be a poor shield material when dose equiva-

lent is used with exposure limits for low Earth orbit (LEO) as a guide for shield

requirements. Because the radiation issues are cost related--the parasitic shield mass

has high launch costs--the use of aluminum as a basic construction material is

clearly not cost-effective and alternate materials need to be developed. In this context,

polyethylene is examined as a potentially useful material and demonstrates important

advantages as an alternative to aluminum construction. Although polyethylene is use-

ful as a shield material, it may not meet other design criteria (strength, stability, ther-

mal); other polymer materials must be examined.

Introduction

The long-range strategic outlook for the "Human
Exploration and Development of Space Enterprise" is to

"[o]pen the space frontier to international human expan-

sion and commercial development." In order to accom-

plish these ends, "We look to the Space Technology

Enterprise (STE) to develop revolutionary advanced

technologies critical to establishing a sustained human

presence in space" (ref. 1).

"The Enterprise works in partnership with the

science community to create new scientific knowledge

by studying the effects of gravity and the space environ-

ment on important biological, chemical and physical pro-

cesses" (ref. 1). The hazards of space radiations are a

primary limiting factor in future human space operations;
hence, shielding technology is a critical design issue.

Within a few years of the discovery of particles of
high charge and energy (HZE) as components of the

galactic cosmic rays (GCR), the unique pattern of energy
deposition on the microscopic scale raised issues with

respect to effects on living cells (ref. 2). Although radio-

biological knowledge has greatly improved, our ability to

estimate risk to the astronaut from such exposures is still

quite uncertain (ref. 3). No exposure limitation has been

recommended for deep space missions as yet, but in the
interim the recommendation is that estimates of inter-

planetary exposure using quality factors dependent on
the linear energy transfer (LET) with exposure limits rec-

ommended for operations in low Earth orbit (LEO) be

taken as a guide to deep space mission shield require-

ments. These LEO exposure limits were established

under the assumption that the GCR components are

diminished in LEO by their deflection in the Earth's

magnetic field so that LEO exposures are dominated by

trapped protons and electrons. Deep space exposure esti-

mates using LET-dependent quality factors result in
exposures of as much as 1 Sv/yr near solar minimum

depending on shielding. A large potential impact exists

on the career of a space worker for whom annual expo-

sure limits (table 1) are currently 0.5 Sv/yr for the LEO

environment with additional total career exposure limits

that depend on age and gender (ref. 4). The primary lim-

iting factor in future deep space manned operations is

anticipated to be the health risks associated with expo-

sures to galactic cosmic rays.

The galactic cosmic rays consist of all the known

ions extending to very high energies with time variable

intensities over the solar cycle exhibiting periodic max-

ima and minima in intensity with a variable 10-

to 13-year cycle. The annual fluence for the main compo-

nents are shown in figure 1 for the 1977 solar minimum
and the 1981 solar maximum (ref. 5). The environmental

data in the figure span the range of variation induced by

the solar cycle in the GCR intensities as yet observed.

The near-term deep space exploration objectives are con-

tingent on current cost and emphasize the possibility of a
low cost return to the Moon or going to Mars. Radiation

protection systems (shielding, monitoring, and medical

supplies) impact mission cost, and uncertainty in past
shielding databases is inadequate for present design stud-

ies. For example, the required shielding to reduce the

5-cm-depth dose from GCR at solar minimum to 45 cSv
behind an aluminum shield was estimated to be 2 _cm 2

by the NCRP in 1989 (ref. 4), to be 7 g/cm 2 by

Simonsen, Nealy, and Townsend in 1992 (ref. 6), and to
be 55 + 10 g/cm 2 by the present estimate (table 2) using

current transport codes and databases. Whereas alumi-
num was considered a useful shield material a few years

ago, now it is considered as not only a poor shield mate-

rial but may even be hazardous to the astronaut's health

because dose equivalent may be a poor predictor of

astronaut risk (ref. 7). The relative advantage of poly-

meric materials can be judged from table 2 in that only
17 g/cm 2 of polyethylene is required for a reduction in

shield mass of approximately a factor of 3.

As an aid to understanding these recent develop-

ments in shield design technologies, the progression of
aluminum shield GCR attenuation characteristics (refs. 8



through13)isshownin figure2.Thelowercurveisthat
generatedby thecodeof Letaw,Silberberg,andTsao
(ref.8)andusedbytheNCRP(ref.4).TheNUCFRG1
curveusedthefirstLangleynuclearfragmentationdata-
base(ref.9) andthecorrespondingfirst version space

radiation transport code (ref. 10). Limiting values of the

fragmentation cross sections for the primary ions can be

made with the assumption of conservation of mass and

charge in the event (unitary condition). The peripheral
limit and central limit curves are those unitary limits on

the projectile fragmentation which assure charge and

mass conservation in breakup of the cosmic ions, not

including the direct target knockout contributions to the
transmitted fluence (ref. 11). The NUCFRG2 curve is
from the revised NUCFRG 1 database as a result of the

experiments at 600 A MeV in the Bevalac facility
(refs. 12 and 13). The two upper curves (labeled "Hard

spectrum" and "Soft spectrum") include improved

nuclear data for the knockout of light fragments from

projectile and target nuclei and the uncertainty in their

production spectra (ref. 14) and encompass our best cur-

rent estimate of the attenuation of dose equivalent in alu-

minum. Clearly large changes in the nuclear data and

transport procedures have occurred in the last several

years. Only the completion of the transport code with the

as yet neglected radiation components with added labora-

tory and flight validation will allow a final evaluation of

the expected astronaut exposure. The remaining problem

is relating the exposure fields at specific tissue sites
within the astronaut to the tissue response and the related
health risk.

Clearly, aluminum which was taken as a reasonable

shield material a few years ago is now considered a poor

candidate for future spacecraft construction. Indeed, the

thickness of 55 g/cm 2 would make the deep space explo-

ration cost very high (ref. 15); therefore, alternative
materials must be examined to control the mission cost.

Polymers (table 2) and polymer/composites (ref. 7) are

among the alternate materials under consideration. In the

present report, results are reviewed for the attenuation
characteristics of aluminum and polyethylene as a poten-
tial shield material.

Radiation Environment and Computational

Models

The model of Badhwar and O'Neill (ref. 5) is used to

estimate the GCR environmental components. The

model is represented by particle spectra for successive

solar maxima and minima associated with solar cycles 19

through 22. The maximum observed GCR flux was near

the 1977 solar cycle minimum at the end of cycle 21 and

the highest GCR flux of the solar cycle maxima was

observed during the peak solar activity in 1970. To estab-

lish a permanent human presence in space, one must
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design for the maximum environmental intensity. In

principle, one could conduct a mission near solar maxi-

mum to reduce exposure but the long-range prediction of

when the solar cycle maximum will occur is poor and

once it is missed another will not appear for 10 to 13 yr.

In addition, in years of elevated solar activity, the possi-
bility of a large solar particle event exists in which the

annual exposure limit could be exceeded in several
hours. Both the 1977 solar minimum and 1970 solar

maximum environments are used to examine shielding

requirements. The exposures for these environments in

aluminum and polyethylene are shown in tables 2 and 3.

The largest solar event observed in terms of the exposure

potential to astronauts was the event on August 4, 1972

(fig. 3), which corresponds to approximately the 97 per-

centile annual solar particle fluence. An even larger

event may occur with an estimated 3 percent probability.

In an actual engineering design study, we would

model a baseline configuration of spacecraft and/or habi-
tat to determine the geometric distribution of materials

provided by the basic structure, internal and external

equipment, consumables (ref. 16). Those results com-

bined with the transport properties of the specific materi-

als provide an estimate of the radiation environment in

the spacecraft and/or habitat. Various configurations

would be tried to improve the protection and minimize
the mass of the construction. The choice of construction

materials strongly influences the results as shown later.

In such studies, many design requirements exist and one
must evaluate the overall structural and thermal integrity

of the design, the equipment requirements with power

generation and distribution, as well as other environmen-

tal design criteria such as cabin air quality, flammability,

and toxicity. Change in scenarios and alteration of mis-

sion objectives and mission operating plans would be
used as trade-offs for the most efficient means of accom-

plishing the primary mission goals. Then the optimum

placement of equipment to minimize parasitic shield

requirements can be investigated. Obviously, efficient

computational procedures are a base requirement for

such design studies and the Langley code HZETRN has

been proven to meet this requirement.

In the present study, simple spacecraft geometry is
chosen in which an astronaut is assumed to be at the cen-

ter of a large spherical shell of uniform material. The

total shield mass is then proportional to the shield thick-

ness in units of areal density. The geometry of the astro-

naut is represented by the Computerized Anatomical

Model (CAM) containing 2400 separate geometric tissue

regions of several different elemental compositions and

densities (ref. 17). The emphasis is on the effectiveness

of the shield material used in the construction of a spher-
ical shell shield.



Currentlylarge uncertaintiesexist in biological
response,spacecraftshieldingproperties,andtransport
propertiesofbodytissuestoHZEparticles,suchasthose
whichcomprisethegalacticcosmicrays.Theseuncer-
taintiescanbejudgedby theevolvingchangesin the
transmissioncharacteristicsof aluminumshielding
shownin figure2. Theuncertaintyin astronautriskto
HZEparticlesconsistsof thebiologicalresponsewith
uncertaintiesup to a factorof =5, and to the transport
properties of materials with uncertainties up to a factor of

--2. (See fig. 2.) Of little importance is the uncertainty in
the GCR background environment which is estimated to

be about 10 to 15 percent in the near-Earth environment.

Long-range predictions are not yet possible, and the
understanding of the near-Mars environment is limited.

The anomalous cosmic ray components which are not

represented in the present model mainly affect the dose

and dose equivalent to the skin and ocular lens for very

low shielding (few millimeters) and are of no practical

consequence in the present study.

The HZETRN code is used to evaluate the transport
of the primary ions into the spacecraft interior. Given the

interior environment, the transport through the astronaut
tissues in reaching critical tissues is evaluated with the

HZETRN code with the appropriate database. In the cur-

rent version of the code, the breakup of the primary ions

and the knockout of target constituents by the neutrons
and light ions are represented. Transition effects at the

interface of dissimilar materials due to the atomic colli-

sional nonequilibriums (ref. 18) and neutron transition

effects (ref. 19) are included in the present codes. Target

fragmentation in each medium is represented by the equi-
librium solution wherein transition effects near bound-

aries of dissimilar materials are neglected. Also

neglected in the present calculations are the knockout of

target constituents by multiple charged ions, pion pro-

duction and transport, and coupling of the neutral pion

field to the electromagnetic cascades. The addition of

these processes to the transport codes further increases

the dose behind a given thickness of shielding for which
aluminum is perhaps an even less effective shield mate-

rial than is indicated by the present calculation. Clearly,

these issues need resolution before designing systems to

send astronauts into space for extended periods.

GCR Radiation Protection From Various

Thicknesses of Shielding

The annual dose and dose equivalent to critical body

tissues during the 1977 solar minimum in a spherical

shell of aluminum are shown in figure 4 and table 4.
There is a transition effect in the skin and to a lesser

extent in the ocular lens dose and dose equivalent as the

aluminum shield thickness is increased over the first few

grams per square centimeter. No such transition is seen

in the blood forming organ (BFO) since equilibrium is

established in the surrounding tissue. The most con-
straining exposure limit is that for the BFO for which the

50 cSv/yr is not achieved until =30 g/cm 2. The LET dis-

tribution of the exposure is shown in figure 5 for three
aluminum shield thicknesses. The main contribution to

the dose equivalent is from particles with LET above

10 keV/ktm. The greatest attenuation of exposure is near

100 keV/btm and above. This can be in part understood

by observing figure 6 showing the contributions of vari-

ous charge groups to dose equivalent. A large contribu-
tion comes from the iron ions (Z = 26) which can be

broken up into smaller fragments by the shield. The iron

ion has an associated LET of 200 keV/lxm and greater

depending on the energy of the ion. The breakup of the
ions results in a proliferation of light particles which

attenuate more slowly in the shield material. Some of

these light particles are produced as knockout particles
from the shield nuclei and the control of the production

of such light particles is part of the shielding problem.

Considerable attenuation has already occurred in the

transport of the radiation through body tissues in reach-

ing the BFO. Shielding is therefore less effective in con-

trolling the exposure. This effect can easily be seen in

figure 6(b) since the BFO contribution from the iron ion

is greatly reduced at even low shielding thicknesses

(compare with ocular lens exposure in fig. 6(a)).

The various solar maxima were likewise different for

different solar cycles, and the 1970 solar maximum
resulted in the most intense minimum GCR environment

observed over the last several solar cycles. The dose and
dose equivalent for critical tissues are shown to attenuate

slowly an aluminum spherical shell shield of varying
thickness in figure 7 and table 5. This slow attenuation is
distinct from the attenuation of the solar minimum envi-

ronment where a great number of lower energy particles
are present and are easily attenuated by low amounts of

shielding with little contributions of secondary radia-

tions. In distinction to figure 4, the dose at solar maxi-

mum in figure 7 increases dramatically due to secondary

particle production processes in the aluminum shield.

The increase is most dramatic for tissues near the body

surface, whereas effects of secondary particle production
processes are already apparent in the BFO which lies

deeper in the human body. The aluminum shield is less

effective in reducing the dose equivalent during solar
maximum in all tissues as seen in figure 7(b).

From the results in figures 4 and 7, it is clear that

aluminum is marginally useful as a shield material for

reducing adverse astronaut health risks. In fact studies
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usingbiological-based models of radiation response indi-

cate that aluminum may indeed provide an additional
hazard to the astronaut (ref. 7). This ineffectiveness and

possibly added hazard of aluminum result from the sec-

ondary particle production processes in breaking up inci-
dent GCR ions within the shield. These effects can be

reduced by introducing hydrogen into the shield as a
chemical constituent. The possible use of polyethylene as
a more efficient shield material is demonstrated for the

1977 solar minimum environment in figure 8. Again, a

small transition effect is present in the first few millime-

ters of shielding in the skin dose which quickly disap-

pears at the depth of the ocular lens. There is a persistent

interface effect in crossing the polyethylene to tissue

boundary which leaves the skin dose reduced relative to

the ocular lens. This holds true also for the dose equiva-

lent as seen in figure 8. This transition effect is caused by

the equilibrium spectrum from atomic collisions which

requires the particle stopping power times the flux (i.e.,

S(E) t_(E)) to approach a constant at low energies. As

S(E) in the tissue and polyethylene differ, then the shape

of the equilibrium spectrum is different, and the

low-energy equilibrium spectrum in polyethylene is

depleted in low-energy protons relative to equilibrium in

tissue leaving the skin dose reduced. Equilibrium is rees-
tablished within the tissue by the time the radiation

reaches the ocular lens causing an increase in the dose.

Whereas large amounts of aluminum were required to

reduce the BFO dose equivalent to 50 cSv/yr, the poly-

ethylene reduces the exposure of the BFO to this value in

10 g/cm 2. Note, the 10 g/cm 2 is less than the required

17 g/cm 2 for the dose at 5-cm depth which is often used

to represent the BFO dose; this shows the importance of

an accurate representation of the body geometry.

These improved attenuation characteristics of poly-

ethylene shielding can be seen in the LET distribution of

the organ exposures shown in figure 9. The reduction of

dose equivalent occurs over the whole LET range as

opposed to aluminum wherein the highest LET values

were mainly affected. Clearly the attenuation of the high-
est LET is more efficient in the polyethylene, whereas

secondary particle production is substantially lower in

comparison with aluminum. These results are even better
understood in terms of the charge distribution of the dose

equivalent shown in figure 10. The heaviest ions are rap-

idly attenuated in the polyethylene with only modest
increases of the single charged components and virtually

no change in the double charged components. An impor-

tant difference between aluminum and polyethylene is in
the cluster knockout effects which were first observed in

shuttle experiments (ref. 20). Clearly, a better knowledge

of cluster effects in representing the nuclear structure is

important to shield evaluation.

In addition to the GCR exposures, there is always the

possibility of a major solar event. The solar events are

random and unpredictable in both intensity and spectral

content. The most important particles are protons in the

energy range of 20 to 120 MeV (ref. 21). In the prior

analysis of reference 21, we suggested that the design

should be for the largest event observed which is on the

order of the 97 percentile annual fluence and treat a pos-
sible larger event as an accidental exposure. Thus, the

event on August 4, 1972, is the defining event. The dose

and dose equivalent for this event are calculated accord-
ing to measurements by the Interplanetary Monitoring

Platform (IMP) satellite.

Crew Dosage Expected During Solar Proton

Events on August 4, 1972

The HZETRN code and IMP satellite data have been

used for the event on August 4, 1972, to evaluate the

exposure of the astronaut critical tissues in a spherical

shell shield of varying thickness. The results for an alu-
minum shell are in table 6. In a solar cycle independent

design, the shield of approximately 30 g/cm 2 required for

the 1977 solar minimum will be sufficient to give the

required combined protection from both the 1970 solar
maximum GCR environment and the August 4, 1972,

event. However, the shield of 30 g/cm 2 would result in

high mission cost. If a specific design for the solar
maximum mission is considered, then a more modest

shield of 10 g/cm 2 would be sufficient. Although a shield

of 10 g/cm 2 is massive compared with those typical for

space operations today, it may be considered manageable

(ref. 16) but incompatible with the requirement of low
mission cost.

If the aluminum can be replaced by a polyethylene
shield, then the required shield of 10 g/cm 2 for a solar

minimum will provide more than adequate protection
from the combined environment of the August 4, 1972,
event and the 1970 GCR environment. On the other

hand, a polyethylene shield of about 7 g/cm 2 would pro-

vide adequate protection from both the 1970 GCR
environment and the 1972 solar event. This thickness is

still large compared with the shielding of a typical space

station module but is comparable with the shield of

4.5 g/cm 2 used for the Apollo missions.

Radiation Protection Properties of Materials

The protection of the astronaut from space radiation

is dependent on the local distribution of materials. Much

of the protection will be derived from materials and

equipment onboard the spacecraft for other purposes.
The materials used to construct those systems would be

of great importance and some attention needs to be given
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to materialsusedin futurespacecrafttechnology.It is

clear from the present and past studies that the use of

hydrogen-containing materials has great advantage over
customary spacecraft materials. Design of water and

food storage should likewise be utilized. Parasitic

shielding is expensive, but polyethylene is a good mate-

rial if added shield material is required. However, poly-

ethylene has limited material properties and poses a
flammability issue to be solved. Polymer composites are

likely useful materials, but one would prefer a high

binder-to-fiber ratio to maintain high hydrogen content.

Careful consideration should be given to the other
onboard materials.

The results in figure 2 show that, as particle produc-

tion processes are added to the transport codes, the esti-

mated attenuation properties show less protective
properties. Aluminum is now estimated to be of little

value in protection from the galactic cosmic rays, and
further code improvement is expected to further detract
from aluminum as a useful shield material. The increased

importance of alternate materials will surely be the result

of further code development. In this respect, a need exists

to further identify potentially useful materials which are

capable of providing the complete design properties

required for spacecraft construction.

Concluding Remarks

Space radiation exposures will be the primary limit-

ing factor in space exploration and in establishing a per-

manent human presence in space. During the past several

years of shield code development, it has been established

that aluminum space structures would make poor shields

for human occupants. The need to look at new ways of

constructing spacecraft is now evident because current
estimates indicate aluminum to be an ineffective protec-

tion material. This result mainly comes from the second-

ary particle production processes in collision with target
nuclei within the shield material and can be minimized

by adding hydrogen as a constituent of the shield mate-

rial. The most natural choice is polymeric materials for

which advances in their development have been a focus

for many years because of their mechanical properties.

Their further development as a base construction mate-
rial for future manned missions will have the added

potential of minimizing the health risk to the astronaut

from space radiations.

NASA Langley Research Center
Hampton, VA 23681-2199
September 16, 1997
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Table 1. Ionizing Radiation Exposure Limits

[From NCRP 98 (ref. 4)]

Exposure
interval

Career
Annual

30 Days

Dose equivalent, Sv, for--

Blood forming organ (BFO)

al-4
0.5
0.25

Skin

6
3
1.5

Ocular lens

4
2
1

aVaries with age and gender at initial exposure.

Table 2. Annual Dose and Dose Equivalent for GCR in Spherical Shell Shield for
1977 Solar Minimum

Shielding Dose, D, cGy/yr, Dose equivalent, H, cSv/yr,
thickness, for depth of-- for depth of--

x, g/cm 2 0 cm 5 cm 0 cm 5 cm

Aluminum

0

1

2

5

10

25

5O

75

19
22

22
22

22

21

19

18

20

20

20

20

20

19

18
17

120

132

127
111

93

69

56

53

95

91

88

79

69

54

46

43

0 19

1 21
2 20

5 20

10 19

25 17

50 16

75 14

Polyethylene

20

2O

20

19

19

17

16

14

120

118

109

87
64

39

31

28

95

89

83

71

57

41

35

32



Table 3. Annual Dose and Dose Equivalent for GCR in Spherical Shell Shield for
1970 Solar Maximum

Shielding Dose, D, cGy/yr, Dose equivalent, H, cSv/yr,
thickness, for depth of-- for depth of--

x, g/cm 2 0 cm 5 cm 0 cm 5 cm

Aluminum

0

1

2

5
10

25

50

75

6.1

7.2

7.4
7.7

7.9

8.0

7.9

7.7

6.9

7.0

7.0

7.1

7.2

7.4

7.4

7.3

37.9

39.1

37.0

31.4

24.5

15.4

12.4

11.7

34.5

33.7

32.9
30.7

27.8

22.8

20.0

19.4

Polyethylene

0

1

2

5

10

25

50

75

6.t

6.6

6.7

6.7

6.5

6.2

6.0
5.8

6.9

6.9

6.9
6.8

6.7

6.4

6.2

5.8

37.9

39.1
37.1

31.4

24.5

15.3

12.3

11.7

34.5

32.7

31.2

27.2

22.6

16.4

14.4

13.7

Table 4. Annual Dose and Dose Equivalent for GCR Behind Slab Shield for 1977 Solar Minimum

Shielding Dose, D, cGy/yr, to--- Dose equivalent, H, cSv/yr, tit--

thickness, Ocular Ocular
x, g/cm 2 Skin lens BFO Skin lens BFO

Aluminum

0.00
0.30
1.00
3.00
5.00

10.00
20.00
30.00
50.00

19.66
20.33
20.60
20.75
20.74
20.57
20.14
19.69
18.76

20.44
20.33
20.43
20.50
20.47
20.30
19.89
19.46
18.57

19.52
19.53
19.50
19.43
19.36
19.20
18.86
18.51
17.75

Polyethylene

96.09
100.69

98.78
92.11
86.29
75.37
62.66
55.93
49.69

104.31
100.08

97.46
90.46
84.55
73.51
60.67
53.92
47.79

73.13
72.56
71.17
67.67
64.69
58.90
51.76
47.84
44.07

0.00
0.30
1.00
3.00
5.00

10.00
20.00
30.00
50.00

19.66
19.96
19.93
19.58
19.22
18.49
17.52
16.84
15.68

20.44
20.27
20.17
19.79
19.42
18.68
17.71
17.03
15.86

19.52
19.48
19.35
19.02
18.74
18.17
17.34
16.68
15.47

96.09
96.69
92.17
80.64
71.71
56.84
42.95
37.45
33.38

104.31
99.47
94.69
83.04
74.06
59.09
45.12
39.63
35.60

73.13
72.01
69.47
63.33
58.43
49.90
41.40
37.75
34.52



Table5. AnnualDoseandDoseEquivalentforGCRBehindSlabShieldfor 1970SolarMaximum

Shielding Dose,D, cGy/yr, to--- Dose equivalent, H, cSv/yr, to---

thickness, Ocular Ocular
x, g/cm 2 Skin lens BFO Skin lens BFO

Aluminum

0.00
0.30
1.00
3.00
5.00

10.00
20.00
30.00
50.00

6.55
6.85
7.03
7.25
7.37
7.54
7.69
7.75
7.72

6.76
6.84
6.96
7.15
7.26
7.43
7.59
7.65
7.64

6.82
6.83
6.86
6.94
7.00
7.10
7.23
7.29
7.31

32.67
34.87
34.78
33.70
32.51
29.88
26.22
24.05
21.99

34.80
34.77
34.44
33.20
31.95
29.24
25.50
23.29
21.23

27.65
27.49
27.17
26.33
25.56
23.95
21.77
20.52
19.41

Polyethylene

0.00
0.30
1.00
3.00
5.00

10.00
20.00
30.00
50.00

6.55
6.69
6.74
6.74
6.70
6.57
6.39
6.28
6.09

6.76
6.79
6.82
6.80
6.76
6.63
6.45
6.34
6.15

6.82
6.81
6.79
6.75
6.70
6.59
6.44
6.33
6.10

32.67
33.37
32.41
29.50
26.94
22.15
17.07
14.96
13.60

34.80
34.43
33.37
30.39
27.79
22.95
17.84
15.73
14.40

27.65
27.28
26.52
24.57
22.92
19.87
16.63
15.26
14.28

Table 6. Dose and Dose Equivalent Behind Shield for Solar Event on August 4, 1972

[Data from IMP satellite]

Shielding Skin Ocular lens BFO

thickness, Dose, D, Dose equivalent, Dose, D, Dose equivalent, Dose, D, Dose equivalent,

x, g/cm 2 cGy H, cSv cGy H, cSv cGy H, cSv

Aluminum

0.4
1
5

10
25
5O

4830
2120

294
76.1
10.4
0.313

935O
3560

427
110.01

16.8
1.34

2400
1420

263
71.4
10.2
0.378

3830
2140

367
101.01

16.8
1.66

157
130
46.9
16.7
3.23
0.216

217
180
65
24.3

5.85
0.891

Polyethylene

0.4
1
5

10
25
50

3620.01
1540.01

184.01
39.4

1.68
0.12

6770.01
2510.01

267.01
58.01

3.45
0.49

2080.01
1150.01

171.01
38.01

1.71
0.13

3530.01
1810.01
251.01

56.9
3.68
0.54

151.01
120.01
34.2

9.98
0.69
0.09

221.01
174.01
50.01
15.5

1.7
0.35
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Figure 1. Differential annual fluence spectra.
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Figure 4. Annual GCR dose and dose equivalent during 1977 solar minimum behind aluminum shielding of varying

thickness.
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Figure 5. Distribution of dose equivalent to ocular lens and BFO over LET behind various amounts of aluminum shield-
ing for 1977 solar minimum.
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Figure 6. Distribution of dose equivalent to ocular lens and BFO over ion charge behind various amounts of aluminum

shielding for 1977 solar minimum.
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Figure 7. Annual GCR dose and dose equivalent during 1970 solar maximum behind aluminum shielding of varying
thickness.
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Figure 8. Annual GCR dose and dose equivalent during 1977 solar minimum behind polyethylene shielding of varying

thickness.
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Figure 9. Distribution of dose equivalent to ocular lens and BFO over LET behind various amounts of polyethylene
shielding for 1977 solar minimum.
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